4

9
4

文字

分享

4
9
4

超乎想像的運算力:量子電腦時代來臨,幾件你需要知道的事

科技大觀園_96
・2021/08/14 ・4039字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

臺灣大學 IBM 量子電腦中心主任張慶瑞表示,IBM 希望 15 年內讓量子位元數突破千萬,屆時傳統電腦耗費「萬年」才能計算的線性代數難題,量子電腦在數分鐘就可迎刃而解,因此現在密碼學的系統必須調整,立即進入「抗量子」時代。

為什麼「量子電腦」像隻巨獸般無所不能呢?難道它是「超級電腦」的加強版,由更多的位元組成嗎?不是的,傳統電腦和量子電腦是兩種截然不同的資料處理形式。

IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/32390815144/in/album-72157663611181258/)
IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,) 

神秘的量子行為,連愛因斯坦都無法接受 

傳統電腦以位元(bit)的形式處理資料,每一個位元會在兩種狀態中切換, 這兩種狀態被標為 0 和 1;量子電腦則用量子位元(qubit)來做, 它可以 0、1 的線性組合的疊加態。 

量子位元在疊加態(superposition)時,張慶瑞主任表示,假如把位元的位置以球體標示,南、北極位置分別代表 0 和 1,傳統電腦的位元只能在兩極之間切換,但若是量子位元疊加時,它能在二維球面上任何位置,不限於南北極。 

傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪)
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪) 

量子電腦的具體表現,可以用「翻硬幣」的量子博弈遊戲來想像,一個黑盒子中有一枚硬幣,你跟電腦輪流去黑盒子裡翻硬幣,你可以選擇翻或不翻,你和電腦都不會知道彼此對硬幣做了什麼,數輪下來,打開盒子如果是人頭朝上就是你勝,反之就是電腦勝。

張慶瑞表示,如果是古典博弈,你跟古典電腦的勝率各是一半一半,因為古典行為只有翻或是不翻,位元只能以 0、1 兩種方式呈現;但量子電腦不一樣,它在黑盒子裡可能不直接翻成正或反面,而可能是將硬幣「轉動」起來,而這個量子轉動,不懂量子策略的人無法察覺。最後,只要你一開蓋觀測,硬幣就會變成反面朝上,量子電腦勝率達百分之百。

這聽起來非常不可思議,對吧!連愛因斯坦也難以接受量子力學,他曾說:「是不是只有當你在看它的時候,月亮才在那裡呢?」這個奇怪問題點出「量子行為過程無法被觀測」的神秘性質。沒有人知道在黑盒子裡,量子電腦到底對硬幣做了什麼事情,量子具體處在什麼位置,只要我們一觀測,量子疊加和糾纏等行為便會消失,量子就恢復古典粒子行為。

「要了解這個現象,恐怕要讀個十幾年物理學了。但現在量子電腦都被製造出來,你不如就接受它、用它吧!」張慶瑞笑著說。 

臺大IBM量子電腦中心主任張慶瑞曾至IBM參訪與量子電腦合照。(圖/張慶瑞提供)
臺大 IBM 量子電腦中心主任張慶瑞曾至 IBM 參訪與量子電腦合照。(圖/張慶瑞提供) 

量子糾纏 帶來雙指數成長的計算能力

量子的神秘力量不只如此,當粒子處於量子狀態時會有糾纏的特性,又稱為「量子糾纏」(quantum entanglement)。如同字面上的意思,「糾纏」指的是數個量子綁在一起成為命運共同體,張慶瑞提到,這就是「你泥中有我,我泥中有你」,彼此的狀態會連動,力量還能夠加乘,同時處理不同於古典電腦的計算。

大家都聽過「摩爾定律」(Moore’s law),指的是積體電路上容納的電晶體數量,每隔兩年便會增長一倍,大致說明電腦運算能力會呈指數型的成長,即 2¹ 、2²、2³ 。不過,張慶瑞表示,纏繞特性會讓量子電腦的計算能力以「雙指數成長」,即 2、2、2,這是今年Google量子人工智慧實驗室主任 Hartmut Neven 所提出的,又稱為 “Neven Law” [註1]

去年世界最快超級電腦 Summit 每秒能夠執行 20 億億次(2*1018)的浮點運算,它的非揮發性記憶體(NVRAM)達 800GB(gigabyte,10億位元組) [註2]。但張慶瑞提到,如果能控制量子彼此糾纏,並經過運算的除錯程序,量子電腦就能以 40 個左右邏輯量子位元,達成「兆」位元(1012)才有的運算能力,目前一般認為一個有除錯功能的邏輯量子位元,可能需要一千到一萬左右的物理量子位元組成。

「這很難做到!」張慶端表示,目前 IBM 開放 5 個量子位元供大眾使用,只有兩位元糾纏而已,臺大與 IBM 合作可使用 20 個量子位元,也沒有全部位元糾纏。今年十月 IBM 53 個量子位元的新機器即將上線,預計有 16 個量子位元可以直接糾纏 [註3] 。 

圖左上是IBM 20qbits系統,圖下是50qbits系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38270974841/in/album-72157663611181258/)
圖左上是 IBM 20qbits系統,圖下是 50qbits 系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q

 張慶端進一步解釋,量子難以糾纏是因為粒子是很難達到量子狀態,即便達到量子狀態,要長時間控制它也不容易,像 IBM 就採超導體材料製造量子位元,並以微波控制位元,但超導體必須在接近絕對零度(-273.15℃)的嚴苛環境下運作,亦有相干狀態壽命短等許多問題待克服,目前各國科學家還在尋求不同方式突破,主要當然政府也砸錢支持才會有突破。

為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow,https://www.flickr.com/photos/ibm_research_zurich/26774588908/in/album-72157663611181258/)
為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow) 

量子電腦的應用:量子通訊、量子金融  

目前世界上量子電腦商業運轉的進程是 IBM 量子電腦 53 位元,去年(2018)Google 發表 72 位元的量子處理器,但並未提供大眾使用。張慶瑞表示,量子電腦至少要 500 位元以上才能逐漸顯現威力,並進入量子優勢的階段。儘管量子電腦離商用還有段距離,不過現階段量子科技已在量子通訊及軟體應用上百花齊放呢! 

IBM量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38296273694/in/album-72157663611181258/)
IBM 量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q

張慶瑞提到,糾纏的量子之間,當一方狀態改變,另一方也會跟著變,所以開發量子網路系統就能增加訊息傳遞效率,因為知道一方的內容,就能得知另外一方的訊息。再者因為量子不可測量的性質,如果以量子作為秘密鑰匙,任何嘗試取得密碼的行為,都會造成量子狀態改變,因此可確保通訊無法被竊聽。

軟體開發以及應用部分正是「臺大 IBM 量子電腦中心」主攻的部分,張慶瑞提到今年在科技部支持下與 IBM 合作成立量子電腦中心,提供臺灣學界連接進入 IBM Q 系統的服務平臺。

目前 IBM 提供 20 個量子位元供臺灣的學術界成員使用,主要著墨的部分有兩類,一是處理基礎物理和化學的計算問題;二則是解決特定問題,尋找最佳解,例如:貨車要跑 100 個地點配送貨品,如何配送最有效率;工廠進出貨如何管理最有效率,金融最佳投資與風險控管等。

「現今 70% 量子電腦相關的新創公司,都只針對一個特定問題來研究與發展量子電腦解決方案。」張慶瑞表示,量子電腦最適合解複雜和大數據的難題,量子人工智慧、量子金融與區塊鏈都是很熱門的題目,

根據 IBM 報告估計,他們期待在 15 年後能進入千萬量子位元時代,也就是有超過 1000 個除錯的邏輯量子位元。屆時不用量子電腦就會喪失競爭力,因此即便現在硬體還不到位,新創公司也要搶奪先機、申請專利。

「我現在常跟大學生開玩笑說,你們及你們的下一代,應該無法脫離量子電腦了!五十歲以上可以不學,但是 20 歲以下必須要立刻開始。」張慶瑞坦言,這兩年大家才驚覺量子電腦的時代即將來臨,但大多並不重視,就如同 1968 年個人電腦剛出現一樣,當時並不知道現在會有人手多機的世界。

IBM 5位元的量子晶片(圖/flickr IBMQ,https://www.flickr.com/photos/ibm_research_zurich/26093923343/in/album-72157663611181258/  )。
IBM 5 位元的量子晶片(圖/flickr IBMQ )。 

在家就能用量子電腦了!跟上前沿科技的第一步 ,從學寫量子電腦程式開始

IBM 在 2016 年就推出 IBM Q5 五位元量子電腦,供大眾在線上體驗量子電腦,在家就可以在 IBM Q Experience上註冊帳號,雲端連線使用它了!

至今全球約有 18 萬名用戶在 IBM 量子電腦上做超過1千萬量子電腦模擬計算,並發表超過 150 篇量子電腦相關文章,台灣目前則有約 50 名用戶 [註4] 。不過目前它沒有辦法像現在電腦一樣友善,有各種軟體直接幫你解答,你必須要自己寫程式告訴它:問題是什麼及如何解決問題。

不過,學習量子電腦的程式語言並不會太難,所以全球目前有許多聰明的高中生也在使用。張慶瑞表示,只是你要懂一點物理與數學,又有 Python 的程式語言基礎,把一些量子概念像是 Hadamard gate(H gate)等概念加入程式中,努力就可以學會。

臺大 IBM 量子電腦中心不定期開設量子電腦的入門課程,臺大校內也有選修課,每個月巡迴到臺灣各大學舉辦量子電腦課程。目前正預備辦理高中老師的培訓,希望也能在高中推廣量子計算的應用,培育未來的人才。九月底科技部也與量子電腦中心合辦「 量子電腦導航」,內容包括:量子電腦與其計算原理、量子程式教學、量子邏輯閘初用,大家可以至臺大 IBM 量子電腦中心查詢相關活動。

如果覺得學寫程式太可怕,不妨就下載 IBM 推出的 “Hello Quantum” 的手機遊戲吧!用破關解題的方式,逐步認識量子電腦的運算規則。破關征服它後,說不定你會愛上它。 

臺大IBM量子電腦中心(圖/臺大IBM量子電腦中心提供)
臺大 IBM 量子電腦中心(圖/臺大 IBM 量子電腦中心提供) 
文章難易度
所有討論 4
科技大觀園_96
82 篇文章 ・ 1112 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

1

4
1

文字

分享

1
4
1
從 J 粒子到宇宙射線——實驗物理學家丁肇中的研究之旅
研之有物│中央研究院_96
・2023/05/20 ・9459字 ・閱讀時間約 19 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 整理撰文/郭雅欣
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

丁肇中是享譽全球的物理學家,他的研究為現代物理學奠定了基礎,也讓他獲得 1976 年的諾貝爾物理獎。丁肇中是中央研究院院士,也是現任麻省理工學院的物理學教授。

歷經數十年實驗物理的研究之路,他用一次次的實驗結果打破原本的理論認知,為物理學開創了新的道路。

丁肇中如何從 J 粒子的發現,走到最前沿研究宇宙射線,探索宇宙的起源與未知?中研院「研之有物」梳理記錄丁肇中 2022 年在院內物理研究所的演講內容,介紹他在物理學領域的傑出成就以及科學家的體悟。

丁肇中院士 2022 年 12 月在中研院物理所演講,題目為「我所經歷的現代物理和我的體會」。圖/中研院物理所

實驗是自然科學的基礎,理論如果沒有實驗的證明,是沒有意義的。當實驗推翻了理論後,才可能創建新的理論;理論是不可能推翻實驗的。過去 400 年來,我們對物質基本結構的了解,大都來自於實驗物理。」

中研院物理所於 2022 年 12 月 27 日舉辦了李水清講座,邀請到著名的實驗物理學家丁肇中,他以這段話做為整場講座的開端。

從丁肇中踏上實驗物理之路開始,至今已有 60 多年,這一路走來,丁肇中累積了許多突破性的成果,這些經歷也讓他獲得了豐富的人生體會。在這場講座中,丁肇中以「我所經歷的現代物理和我的體會」為題,一一細數這些成果及體會,在言談中展露出他對物理的熱情、堅持,以及永不磨滅的興趣與好奇心。

做實驗不盲從專家:證明電子沒有體積

1965 年丁肇中前往德國的大型粒子物理學研究機構「德國電子加速器」(DESY)進行第一個實驗工作,目的是證明「電子沒有體積」。為什麼要做這個實驗呢?因為當時科學家對電子有無體積的問題出現了爭議。

根據理查.費曼(Richard Feynman) 、朱利安.施溫格(Julian Schwinger)和朝永振一郎在 1948 年提出的量子電動力學理論(Quantum Electrodynamics,簡稱 QED),電子是沒有體積的,當時所有的實驗都證明了 QED 理論的完備性,他們三人也因此獲得 1965 年的諾貝爾物理獎。

可是在 1964 年時,哈佛大學和康乃爾大學的科學家和專家耗費多年心思,進行兩個不同的實驗,卻得出與 QED 相反的結論——量子電動力學是錯誤的,電子是有體積的,半徑是 10-13~10-14 公分。這個結論是兩個不同實驗團隊的成果,也因此受到物理界人士的認可和重視。

當時剛獲得博士學位的丁肇中,決定用不同方法來測量電子半徑。丁肇中回憶:「那個時候沒有人相信我能做出這個實驗,更沒有人支援我。」所以在 1965 年,丁肇中決定離開美國,到德國新建的 DESY,利用這個周長 320 公尺的加速器,產生能量 75 億電子伏特的光,打到儀器上,以測量電子的半徑。

在德國八個月後,丁肇中的實驗結果證明量子電動力學是正確的:電子真的沒有體積,它的半徑小於 10-14 公分。我們可以說:在當年實驗可及的範圍內,電子半徑為零(consistent with zero)。這推翻了當初康乃爾大學與哈佛大學備受重視的實驗結果。

丁肇中:「我的第一個體會就是:做實驗不要盲從專家的結論。」

縱軸是正負電子對產生率的實驗結果和 QED 理論預測的比值,橫軸是到電子中心的距離,代表電子半徑大小。圖/研之有物(資料來源/丁肇中)

證明宇宙新物質—— J 粒子

1965 到 1970 年間,丁肇中在 DESY 做了他的第二個實驗,這是一系列和光子、重光子相關的實驗。光子的質量為 0,當時已經知道有三種重光子,它們的質量約為 8 億~10 億電子伏特(eV/c2),其他的特徵則與光子一樣。

丁肇中表示,在高能情況下,重光子與光子應該可以互相轉化,只是機率很低。要找到互相轉化的事例,實驗裝置必須能辨識出一億分之一的發生事例,後來他也成功完成了這項困難的實驗。

之後,丁肇中還想解決另一個問題:「為什麼所有的重光子質量都和質子的質量相近,都是 10 億電子伏特左右?」為了尋找更重的重光子,丁肇中決定到美國布魯克黑文國家實驗室(Brookhaven National Laboratory)的質子加速器上,做一個更加精密的探測器。

要找到高質量的重光子,必須每秒鐘輸入一萬億個高能量質子到探測器上,這會徹底破壞探測器,也會對工作人員造成危險。所以,丁肇中發展的新探測器不但必須非常精確,還必須是在非常強的放射線下,能正常工作的儀器。

因此輻射遮蔽相當重要,如下圖。藍色部分是磁鐵,黃色部分是大型探測器,為了保護探測器,在中心放射線周圍包裹了厚厚的水泥,黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂(含水可吸收中子),放在水泥周圍遮蔽輻射,位置會依實際需求做改動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。

這個實驗的遮蔽材料總共用了 5 噸鈾 -238、100 噸的鉛、 5 噸的肥皂,以及 1 萬噸的水泥。整個實驗設施的最外圍,還會堆上大量的水泥塊,保障工作人員安全。

新探測器必須非常精確,還必須在非常強的放射線下遮蔽輻射,避免影響儀器。圖中藍色部分是磁鐵,黃色部分是大型探測器;黑色區塊部分是遮蔽材料,例如鈾、鉛和肥皂,放在水泥周圍遮蔽輻射,位置會依實際需求而變動。此外,圖中 A0、 A、B、C、a、b、S 等黑色線段都是小型探測器。圖/研之有物(資料來源/丁肇中)

高質量的質子碰撞,可以增加新粒子產生的機率,但其他無關事例產生的機率也同樣會提高。丁肇中形容,尋找高質量的重光子就像是:

「在臺北下雨的時候,每秒鐘會降下 100 億顆雨滴,其中有一顆的顏色不同,你必須在 100 億顆裡面把它找出來。」

可想而知,物理界都不看好這個實驗,因為理論物理學家認為,現有理論已「足夠」解釋現象,找高質量的重光子物理意義不大;實驗物理學家則認為,沒有人能做出如此困難的實驗。

在排除萬難的堅持之下,1974 年丁肇中就在實驗中發現了新的粒子「J 粒子」,它的壽命比已知的粒子長一萬倍。丁肇中說:「這個發現的重要性,就等同於我們到深山裡發現了一個偏僻的村子,村民不是一百歲,而是一百萬歲,也就是這些人和普通人類是不一樣的。」

換句話說,這證明了宇宙中有新的物質存在,理論必須修正。

當時科學界流行三夸克模型,也就是用三種夸克基本粒子來解釋質子和中子的狀態,而 J 粒子的發現,證實了還有第四種夸克「魅夸克」(Charm quark)的存在。

這段歷程讓丁肇中有了第二個體會:

「做基礎研究要對自己有信心,做你認為正確的事,因為自然科學的發展基本上是多數服從少數,不要因為大多數人反對而改變你的興趣。」

意外的發現——膠子

1970 年代,丁肇中的第三個實驗,是在德國正負電子對撞機(PETRA)上做的,PETRA 是當時能量最高的正負電子對撞機,可讓 300 億電子伏特的正負電子對撞。丁肇中在實驗過程意外發現膠子的存在。

膠子是人眼不可見的基本粒子,是自然界基本作用力「強作用力」的傳遞媒介(Force carrier)。根據現在的標準模型(Standard Model),我們知道原子核裡面有質子和中子,質子和中子是由數個夸克組成,而膠子可以在夸克之間傳遞強作用力,讓夸克束縛在一起。

從原子到夸克的示意圖,膠子是夸克之間的「強作用力」傳遞媒介,用彈簧形狀示意。(為求圖片精簡,仍使用三夸克模型)圖/研之有物(資料來源/丁肇中)

那麼,丁肇中是如何發現膠子的呢?

物理中用來描述強作用力的理論是量子色動力學(Quantum Chromodynamics),根據理論預測,一個正電子和負電子碰撞時會產生能量,大部分是轉變成一對夸克和反夸克(兩個噴柱)。偶爾會產生夸克、反夸克和一個膠子(三個噴柱)。

在丁肇中的實驗中,透過大量的測量,發現正負電子對撞後,果真出現了許多三噴柱的事例,這三個噴柱現象的數量與分布和量子色動力學是符合的,這個實驗結果證明了膠子的存在。

「我們最初做實驗的時候,並沒有想到會發現膠子。最初做實驗目的是繼續尋找電子的半徑。」丁肇中說。因此這個實驗帶給丁肇中的第三個體會,就是:

「對於意外的現象,要有充分的準備。」

大型國際科學合作:L3 實驗

丁肇中的第四個實驗,是 1982~2003 年在歐洲核子研究中心(CERN)進行的 L3 實驗。他們以周長 27 公里的加速器,將對撞的正負電子能量增加到 1000 億電子伏特,碰撞時的溫度是太陽表面的 4000 億倍,也是宇宙誕生最初的 1000 億分之一秒時的溫度,「我們是在實驗室內製造宇宙剛開始的情況。」丁肇中說。

這個實驗的目的是尋找宇宙中最基本的粒子,解答關於宇宙中各種粒子的問題,包括宇宙中有多少種電子?電子有多大?為什麼找不到電子的體積?電子能不能分成更小的粒子?現在有人說最基本的粒子是夸克,夸克到底有幾種?夸克有多大?能不能分成更小的粒子?

這次的國際合作實驗,有美國、蘇聯 、中國、臺灣、歐洲等 19 個國家,共約 600 名科學家共同參加。實驗的規模很大,每個國家也各司其職。

實驗的最外層重達 1 萬公噸的磁鐵,以及探測器中 300 公噸的鈾,都來自蘇聯;用於探測高能粒子和高能射線的鍺酸鉍晶體(簡稱 BGO),原本全世界年產量只有 4 公斤,經由中國上海矽酸鹽研究所研發成功,生產了 12 公噸,用於這項實驗中;臺灣與義大利、瑞士的團隊共同研發矽微條軌跡探測器,測量粒子位置的解析度可達 5 微米,中央大學團隊也參與了數據分析。

L3 的實驗前後進行了 20 年,發表了 300 篇相關論文。丁肇中總結出以下結論:

  1. 宇宙中只有三種不同的電子和六種不同的夸克。
  2. 電子是沒有體積的,它的半徑小於 10 -17 公分。
  3. 夸克也是沒有體積的,它的半徑小於 10 -17 公分。
  4. 所有的實驗結果都和電弱理論符合,電弱理論是描述電磁力和弱作用力的理論。

「很不幸的,所有的結果都和電弱理論符合。」丁肇中說:「當一個實驗和理論有衝突的時候,才能學到新的東西,把理論推翻掉。假如實驗結果和理論符合,那麼學到的東西就很少。所以對我來說,L3 並不是成功的實驗。」

這個首次的大型國際合作經驗,也為丁肇中帶來了第四個體會:要領導一個國際合作,要選科學上最重要的題目,引起參加國際科學家的最大興趣。對貢獻大的國家要有優先的認可,使之得到國際上的公認,才能得到參加國政府長期的優先支援。

「要領導一個國際合作,要選科學上最重要的題目。」

國際太空站照片,阿爾法磁譜儀(AMS-02)位於國際太空站一側, 如右側紅圈處。圖/European Space Agency

史上創舉:阿爾法磁譜儀上太空

丁肇中的第五個實驗目前仍在進行中,那就是位在國際太空站上的阿爾法磁譜儀(Alpha Magnetic Spectrometer,AMS)。

AMS 目標是研究宇宙射線的特性和起源。帶電的宇宙射線有質量,會被地球表面上 100 公里厚的大氣層吸收,所以我們無法在地面上研究帶電宇宙射線的電荷、動量等性質。這就是為什麼必須把一個磁譜儀放在外太空。

磁譜儀內含有磁鐵,當宇宙射線進入磁譜儀,會因為磁鐵的影響而偏轉軌跡,不同的粒子會留下不同的軌跡,因此根據偏轉的軌跡,就可以分辨出是哪一種宇宙射線粒子。在此之前,從來沒有人會把一個超大磁鐵放到太空站上。

國際太空站照片,阿爾法磁譜儀(AMS-02)正在收集宇宙數據,於 2011 年 5 月 19 日安裝完成。圖/NASA

丁肇中說,原因非常簡單,「大家都知道指南針的原理。當指南針放在太空站上,一端向北、一端向南,很快就會讓太空站失去控制。」為此,AMS 團隊設計了一個特殊的環形磁鐵,從外觀看就像一個木桶,它的磁場不會洩露,「AMS 做過兩次飛行,第一次是用太空梭載運到軌道上運行十天,就回到地面,驗證了這個實驗的可行性。第二次才送到太空站上。」丁肇中說。

AMS 也是一個國際合作的科學計畫,參與的團隊來自世界各地,臺灣也包括在內。對於如何挑選合作夥伴,丁肇中特別提到:「這個實驗很困難,是一個沒有人做過的實驗,你一定要專心。所以參加的人通常只做這個實驗。」

NASA YouTube 頻道對 AMS 磁譜儀的簡介。圖/NASA

AMS 獲得了很多的支援,2008 年,美國參議院和眾議院甚至通過了一條法律,在當時希望盡量減少太空飛行的時空背景下,要求美國政府為 AMS 增加一次太空梭飛行任務,把磁譜儀送到國際太空站上去。

自從 2011 年 5 月升空至今,AMS 在太空中順利地運行,值得一提的是,由臺灣製造的電子系統非常成功,丁肇中說:「整個電子系統包括 650 個微處理器 、30 萬個訊號通道。最值得驕傲的是,至今已經 11 年了,沒有一個是壞的 。

AMS 的訊號經由 NASA 通訊衛星傳遞,每日 16 小時由位在 CERN 的控制中心負責監控。在歐洲的夜間時段,則轉到中山科學院的亞洲控制中心監控,實現全年無休,每日 24 小時的監控。

「一開始做實驗的時候,我並沒有想到,太空站在太空中一定要不斷運行,這樣向心力與引力才會平衡。」丁肇中說:「這就表示我們沒有週六、週日,沒有中秋節也沒有過年,每天都要嚴格地監控著。」

丁肇中院士於 2013 年 5 月講述 AMS 首次研究成果。圖/NASA

科學研究的競爭只有第一,沒有第二

這 11 年來,AMS 獲得了許多和現有理論不符合的結果,帶來了對宇宙全新的認知。AMS 第一個成果是探索宇宙中電子與正電子的來源。

目前推測電子和正電子來源有三種可能性:宇宙線(含有質子和氦)與星際物質之間的碰撞、脈衝星產生、再來是暗物質的碰撞。圖/研之有物(資料來源/丁肇中、Wiki)

根據 AMS 目前的成果,關於電子的來源,宇宙線碰撞產生的電子佔比極低,顯然不是主要來源。從數據來看,電子主要是由兩個未知來源的冪律譜數據疊加而得,目前仍缺乏理論解釋冪律譜的來源。所謂的冪律譜,就是能譜隨著能量的某次方變化。

至於正電子的來源,如下圖所示,低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,丁肇中表示,「到 2030 年,AMS 的數據誤差會更縮小,」屆時就能真正證明高能正電子是否來自暗物質碰撞,「這是一個非常重要的目標。」

另一方面,AMS 也從數據推論出高能量正電子的來源很可能不是脈衝星,所以更意味著暗物質才是高能量正電子的主要來源,後續期待更多數據的佐證。

除了探索電子來源之外,AMS 也檢視了正電子的來源。低能量的正電子主要來自宇宙線的碰撞,高能量正電子的分布則大致與暗物質理論相符合,有待更多數據驗證。圖/研之有物(資料來源/丁肇中)

AMS 的第二個重要成果,是探索宇宙射線的特性和起源。

宇宙射線分為一級、二級宇宙射線。一級指的是在恆星裡經過核融合產生,然後在恆星爆炸的過程中被加速到高能量的射線,包括氫、氦、碳、鐵等。二級宇宙射線是一級宇宙線和星際物質相撞產生的,包括鋰、鈹、硼、氟等。

AMS 發現,一級宇宙射線可以依據剛度(動量除以電荷)的變化分成兩種,第一種包括氦、碳、氧、鐵,第二種則包括氖、鎂、矽、硫。而二級宇宙射線也分為兩種剛度變化:鋰、鈹、硼隨著剛度的變化是一樣的,氟則是另外一種變化。

宇宙中有各式各樣的宇宙射線,可是它們隨著剛度的變化卻是有限的,「這是不可想像的現象,」丁肇中說:

「所有宇宙射線的實驗結果都與理論不符合——所有目前的理論都是錯誤的。」

AMS 將繼續工作到 2030 年,在那之前,AMS 的探測器會升級,讓接收度提升三倍。AMS 將在宇宙這個最廣袤的實驗室中,持續收集數據,尋找自然界中存在,而我們未曾想到、也不曾發現的現象,改變我們對宇宙的認知。

「我的大多數實驗都受到很多人的反對。理由是實驗沒有物理意義、實驗非常困難,不可能成功。」丁肇中說:「可是過去 45 年來,很多優秀的科學家,包括臺灣的李世昌院士和張元翰教授[註],對實驗做出很重要的貢獻。實驗結果改變了我們對宇宙的認知。每一個實驗都發展新的儀器,讓實驗成功。」

丁肇中以自身的最後一個體會,為整場講座下了一個總結:

「自然科學的研究,是具有競爭性的,只有第一名,沒有第二名。」畢竟,「沒有人知道誰是第二個發現相對論的。」

最後,「研之有物」也收錄了在該場演講的尾聲,中央研究院物理所的李世昌院士與丁肇中院士的精彩對談,他們是合作多年的朋友,在問答之間,我們也能更瞭解丁院士如何看待實驗物理,節錄摘要如下。

李世昌院士(左)與丁肇中院士(右)對談。圖/中研院物理所

Q:您到母校密西根大學的時候 ,起初是想要鑽研理論物理,但為什麼後來改朝實驗物理的方向進行?

我起初其實是學機械工程,但當時還沒有電腦,必須自己畫圖,而我一條線都畫不直,所以我的老師建議我改念數學或物理。而就像李院士說的,我一開始選擇了理論物理,但後來,發現電子自旋的喬治.烏倫貝克(George Uhlenbeck)教授給了我啟發。

烏倫貝克說:「如果重來一次,我會選擇當個實驗物理學家,而不是理論物理學家。」我問他為什麼,他說:「對物理真正有影響力的理論物理學家,一隻手的指頭就數得出來。但做實驗得到的每一個結果,都是對物理、對人類知識有貢獻的。」我和他談完之後,就在他的辦公室外走來走去,然後告訴他:「You are right, I’m leaving you.」(在場聽眾笑)

Q:剛才演講中,您強調科學需要打破現有理論才會進步。但是我跟您工作這麼多年,看到您經常徵詢有名的物理學家意見,也有邀請理論物理學家參加 AMS 實驗組的大會。因為您對理論不會完全相信,所以想請問您在什麼情況下 ,會覺得要跟這些理論物理學家談一談?

我通常在進行大型實驗之前 ,會找幾個人談一談。 一個是實驗物理學家沃爾夫岡.帕諾夫斯基(Wolfgang K. H. Panofsky),他在史丹佛大學做了一個兩公里長的直線加速器,對技術及理論都非常了解。還有一個人是理查.費曼(Richard Feynman),我和費曼相熟是因為我證明了他的理論是對的。

此外包括史蒂文.溫伯格(Steven Weinberg) 、謝爾登.格拉肖(Sheldon Glashow)等物理學家,我也會跟他們談我的實驗。通常我都是已經想好實驗以後,再聽聽他們的意見作為參考,不過我從來不照他們所說的去做。

Q:您曾經說過,如果人是依據自己有什麼能力,再來選擇研究的課題,這是最笨、最愚蠢的,應該先看一個題目有沒有重大影響力來決定。如果自己的能力不足,可以找別人合作。請問您在做完 L3 實驗之後,是如何選擇現在正在進行的 AMS 實驗?

當時我已經做了很多加速器的實驗,我想下一步,應該挑一個大家都認為不可能的實驗,所以就挑了一個到太空去做的實驗,也就是 AMS。我從來沒有做過太空實驗,我們組裡也沒有一個人有太空相關的經驗,所以過去的經驗是沒有意義的。

當我和美國政府提出 AMS 實驗時,美國能源部反對。他們認為我從來沒做過太空實驗,而且太空實驗非常非常貴。為了證明實驗的價值,我要求他們成立評審委員會,成員必須是世界第一流的科學家 、美國科學院院士以及拿過諾貝爾獎的人。

這是因為第一流科學家眼光比較遠,能夠看到將來。後來委員會成立,成員包括許多天文物理學家。經評審後,他們認為這是很重要的實驗。最後我們就在 NASA 展開了 AMS 實驗。

Q:發表的實驗結果一定要正確,這是您最重視的一件事。在發現 J 粒子的時候,從您看到訊號到最後決定發表,隔了很長的時間。有人說如果您早一點發表,Burton Richter 可能就沒有機會和您共同得到諾貝爾獎。您對於實驗的結果,是如何決定發表的時機?

我們是在 1974 年 8 月看出有 J 粒子的訊號,本來打算在 10 月時發表,但我想稍微等一等,看能不能看到更高能量的粒子,所以才等到 11 月。當時我並不知道別人可以用正負電子對撞機來做這個實驗。直到 11 月 11 日,我到史丹佛大學去,才知道伯頓·里克特(Burton Richter)帶領的 SLAC 國家加速器實驗室團隊也發現了一樣的事情。

至於 AMS 的成果,我一直提醒大家記住一件事,我們花了 20 年的時間準備這個實驗,在接下來的半個世紀,我想很可能沒有人會再像我們這麼笨,再放一個磁譜儀到太空中,所以如果發表了什麼結果,一定會影響整個物理研究的方向,所以要特別小心謹慎。

註解

  • 註:李世昌院士現為中研院物理所兼任研究員,張元翰現為中研院物理所特聘研究員。

延伸閱讀

  1. Mars, K. (2022). About AMS-02. NASA. 
  2. Spry, J. (2021). A $2 billion particle detector stars in new Disney Plus docuseries “Among the Stars”: Q&A with principal investigator. Space.com. 
  3. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2021). The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven yearsPhysics Reports894, 1–116. 
  4. AMS Collaboration, Aguilar, M. A., . . . Zuccon, P. (2019). Towards Understanding the Origin of Cosmic-Ray PositronsPhysical Review Letters122(4). 
  5. Lindley, D. (2016). Landmarks—The Charming Debut of a New Quark. Physics. 
  6. SciShow. (2012). Strong Interaction: The Four Fundamental Forces of Physics #1a [Video]. YouTube. 
  7. Samuel C.C. Ting. MIT Physics. 
  8. Samuel C. C. Ting | The Alpha Magnetic Spectrometer Experiment. (n.d.). AMS-02.space.
  9. Samuel C.C. Ting Facts. (n.d.). NobelPrize.org. 
  10. Samuel C.C. Ting Nobel Lecture. (n.d.). NobelPrize.org. 
  11. 張忻郁(2021)。〈【丁肇中獲頒諾貝爾物理獎40週年專題】丁肇中院士介紹〉(張元翰編),《科學 Online》。
  12. 國立成功大學-數位演講網(2018)。〈20150813 丁肇中探索宇宙中的基本結構和宇宙的起源 [影片]〉,《YouTube》。
  13. 臺大科學教育發展中心 CASE(2016)。〈【大師演講】丁肇中院士獲頒諾貝爾物理學獎40週年:我所經歷的實驗物理 [影片]〉,《YouTube》。 
  14. 簡宗奇(2016)。〈談物理課中的典範敘述-丁肇中的實驗物理——《科學月刊》〉,《PanSci 泛科學》。
  15. 張瑞棋(2015)。〈發現「J 粒子」──丁肇中生日|科學史上的今天:1/27〉《PanSci 泛科學》。
  16. Musser, G.(2011)。〈反物質之眼〉(甘錫安譯),《科學人知識庫》。
  17. 郭雅欣(2011)。〈上太空找反物質〉,《科學人知識庫》。
所有討論 1
研之有物│中央研究院_96
271 篇文章 ・ 2658 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

3
0

文字

分享

1
3
0
搭上量子科技熱潮,「量子系統推動小組」帶領臺灣站穩腳步
研之有物│中央研究院_96
・2023/04/14 ・7886字 ・閱讀時間約 16 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/郭雅欣
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

臺灣量子科技的未來

量子科技腳步不遠了,臺灣甚至為此成立了「量子國家隊」。我們身處這轉變的時刻,應該先做好準備,了解量子科技究竟包含哪些部分,又會帶來哪些影響。中央研究院應用科學研究中心張文豪特聘研究員長期研究光量子技術,並擔任量子系統推動小組執行長。

在這次中研院「研之有物」的訪談中,張文豪除了帶領我們認識光量子技術裡的關鍵外,也會談談量子國家隊在忙些什麼?能否在這股量子科技發展的浪潮中,帶領臺灣站穩腳步?

中研院應科中心的張文豪特聘研究員,目前擔任量子系統推動小組執行長。圖/研之有物

量子科技即將走入你我的生活。有一天,我們將打開以量子位元建構的量子電腦,透過量子演算法進行各種計算,並把資訊用量子傳輸的方式傳遞出去。這樣的日子可能不遠了~

為了因應量子科技時代的來臨,行政院去(2022)年 3 月宣布成立「量子國家隊」,由 17 個產學研團隊組成,包含了通用量子電腦硬體技術、光量子技術、量子軟體技術與應用開發這三大領域。同時亦成立「量子系統推動小組」進行跨部會整合,協助國家隊達成目標。

通用量子電腦硬體技術,是指開發以量子位元作為運算位元的量子電腦,在概念上接近一般電腦,有一個 CPU,有控制、讀取的晶片,可以透過程式設計得到你想做的計算。中研院的陳啟東研究員陳應誠研究員都是此領域的計畫主持人之一。

量子軟體技術與應用開發,顧名思義是軟體及演算法的開發,也包含未來量子電腦裡必須有的量子糾錯設計,以及量子計算的應用開發,如金融、製藥與材料開發等。中研院的鐘楷閔研究員是這領域的計畫主持人之一。

光量子技術,分為「光量子計算」與「量子通訊」。光量子計算是以光作為量子位元而設計的計算系統,而量子通訊則是以光的量子態來傳遞訊息。

中研院應科中心特聘研究員張文豪長期研究光量子技術,並擔任量子系統推動小組執行長。在這次「研之有物」的訪談中,張文豪深入淺出地介紹了光量子技術,也與我們分享了許多量子國家隊的願景。

  • 在量子國家隊的三大領域中,您的專長在光量子計算與量子通訊。請問光量子計算與通用量子電腦有何不同?

光量子計算系統是針對特定問題而設計,當一個光量子系統設計好之後,由於光的晶片、路徑等都已經確定下來,無法中途改變,所以,它就只能對同一種問題做計算。光量子計算的困難在於光會跑,而且是用光速在跑,不會回頭。

也就是說,光子不會中途停止,一定會把整個計算做完。所以它跟一般的量子位元不一樣,一般的量子位元做完計算可以恢復原來的狀態。光子跑完就沒了,無法暫存,如果要重啟計算,要再給予新的光子。光量子計算對於一些傳統電腦難以解決問題,例如最佳化以及取樣的問題,有很大的幫助。

  • 量子通訊用的也是光量子技術,它和現在以光纖傳輸資訊,有什麼不同?

過往的光通訊是用「有沒有光」來當 0 跟 1 兩種狀態,量子通訊則是用光的量子態來當 0 跟 1,把訊息全部都用量子態編碼,這就是量子通訊的基本概念。而量子通訊的好處是因為竊取的動作會干擾量子態,因此資訊不容易被竊取,或者說外人無法在不被發現的情況下竊取資訊。這種通訊方式可以透過量子的性質本身,來保護資訊安全。

量子加密的概念如上影片,Alice 要傳訊息給 Bob 之前,會先發送解密訊息的量子金鑰給 Bob,這個金鑰是由一顆顆光子構成,每顆光子都被賦予不同的偏振方向和順序。因為駭客無法與 Alice 逐個比對光子的偏振,竊取資訊時會干擾原本的量子態,導致接收端結果異常,Alice 和 Bob 會發現有人在竊聽。影/YouTube
  • 意思是說,量子通訊的發展不是為了讓資訊傳輸得更快,而是為了更安全?

對,其實這也牽涉到量子電腦的發展。因為量子電腦的一個重點,就是可以破解現今最常使用的密碼系統 RSA(知名的非對稱加密演算法)。雖然量子電腦可能不會那麼快發展出來,可能還要再等幾十年,但仔細想想,有沒有什麼資料其實必須保密幾十年呢?

有心人士可以現在就先截取訊息,等幾十年後有了量子電腦再來進行破解。基於這個原因,量子通訊的加密技術必須走得比量子電腦更快才行。

  • 量子通訊現在發展到什麼程度了?有什麼困難點?

在目前的各種量子技術中,量子通訊應該是發展最快的,它有一些難度,但沒有量子電腦那麼難。很好的量子通訊系統,要有好的單光子光源、高效率的偵測器,以及不會破壞量子態的傳輸通道。

好的單光子光源以及偵測器都不容易製作,但是因為量子通訊很重要,所以大家開始用替代的光源,比如把雷射光降到非常弱,弱到一次只會跑出一顆光子,偵測器的效率可能也只要六七成。這樣的話,儘管不是那麼完美,但還是可以得到量子通訊的好處。

傳輸通道則是另一個困難點。訊息在傳輸過程中會慢慢衰減,所以目前的光纖每隔一段距離都有放大器,但放大器卻會對量子訊號造成干擾。清華大學褚志崧副教授團隊,為量子國家隊光量子研究團隊之一,他們就在進行這方面的研究,透過推動小組協助與中華電信建立合作,接下來就要在新竹、楊梅之間找到一條沒有經過放大器的光纖進行長距離量子通訊測試。

還有一種發展趨勢,就是往天上走,以衛星或低軌衛星來做量子通訊,這也是另一個較不受干擾的做法。

清華大學褚志崧副教授(左1),在量子推動小組的協助整合下,預計在新竹、楊梅之間找到一條沒有經過放大器的光纖進行長距離量子通訊測試。圖/工程科技推展中心

單量子的重要挑戰

量子通訊光源即便有點不盡完美,但仍可接受,不過光量子計算就不行了。光量子計算必須有良好的單光子光源及高效率的偵測器,才能正確地讓光子在系統中進行運算,並準確偵測輸出的結果。因此,「如何製造出好的單光子光源?」是張文豪以及其他光量子研究團隊的重要挑戰。

單光子光源指的是「一個時間點只會放出一個光子」的光源。從原理來說,這樣的光源是一個單一的二能階系統,也就是「基態—激發態」,當一個位於基態的電子獲得能量,躍遷到激發態,然後從激發態掉回基態時,就放出一顆特定波長的光子。

單光子光源是一個二能階系統,每次只能放出一顆光子。圖/研之有物(資料來源|Scientific Reports

在這樣的二能階系統中,只要有一顆電子躍遷到激發態,在它還沒掉回基態前,我們無法激發另一顆電子到激發態去,張文豪形容:「所以這就像捷運的閘門,前一個沒過去之前,後一個進不來。」也因為這樣的機制,每次就只能放出一顆光子。

那麼,要在哪裡找到這樣的二能階系統呢?科學家最一開始的想法是用「單一原子」,例如鈉原子。但要把單一個原子分離出來太困難了,所以到了公元 2000 年後,科學家轉而從半導體製程上,尋找製造出單光子光源的「人造系統」,而目前有兩種最主要的做法,一個是製造「量子點」,一個是製造「缺陷」。

量子點是利用半導體製程做出的一個小體積物體,通常是將兩種不同材料疊起,因為彼此間的應力而凸起成一個「島狀物」,外面再用另一種材料包覆。這個島狀物裡面會產生類似於原子的能階,所以也被稱為「人造原子」。

除此之外,在晶體中製造出某些特定的缺陷,也能達到單一光子源的效果。這類缺陷中最常見的就是鑽石裡的「NV center」,意思是在鑽石晶體結構中,其中一個碳由氮(N)取代,這個氮的隔壁又有一個碳被拿掉,出現一個空缺(Vacuum)。這樣的缺陷裡也會產生上述的二能階系統,可以如單一原子、量子點一樣,放出單光子。

在鑽石晶體結構中,原本都是碳原子,如果其中一個碳由氮(N)取代,這個氮的隔壁又有一個空缺(Vacuum),這樣的材料缺陷系統可以放出單光子。圖/Quantum Beam Sci.
  • 是否可以比較量子點與材料缺陷這兩種做法,各有什麼優缺點?

目前為止做得最好的單光子光源其實是量子點,可以產生幾乎完美的單光子,但是它必須在低溫環境下才能運作。而材料缺陷則大部分可以在室溫下運作。

我們還必須考慮單光子光源所放出的光子,是否處於我們需要的波段。舉例來說,在目前的光纖裡,光波長約在 1310~1550 奈米,因為這是損耗很低的波段。而前述的鑽石 NV center 產生的光,則固定是 600 多奈米的紅光,波長還不夠貼近光纖傳輸波段。

現在有許多團隊,都在嘗試從鑽石裡製造出其他缺陷,以符合光纖傳輸的波段,也有人開始嘗試其他材料,例如被稱為第三代半導體的碳化矽。

  • 單光子光源未來還會往哪個方向發展?理想的單光子光源是什麼樣子?

我們也希望單光子光源,可以用脈衝來激發,讓光子出現的時間差都是固定的。脈衝雷射激發是像機關槍一樣,一打開光子就以相同的間隔,源源不絕地出來。更理想的情況是,我們如果能把單光子光源做成電激發的元件,就可以在我想要有光子的時候,就打出一道脈衝,產生一個光子。

以目前的半導體製程,有成功做到過打一道脈衝、換一個光子的過程,但必須在低溫操作,效率也不理想。

  • 您的研究團隊最近嘗試以二維材料製造單光子光源,這部分目前有什麼進展?

我們最近使用的二維材料是六方晶格的氮化硼(hBN),用來做室溫的單光子光源。氮化硼蠻有趣的,就像二維的鑽石,寬能隙又是絕緣體,不太和其他東西起作用,裡面的缺陷也會形成單光子。

我們幾年前跟台積電合作,用化學氣相沉積(CVD)做出晶圓尺寸的大面積氮化硼,並發表在《自然》Nature)期刊上。我們未來可以透過這技術進行「缺陷工程」,也就是控制在哪裡製造出缺陷,產生單光子輻射的陣列。例如用聚焦離子束打掉其中某些位置的原子.再透過熱處理修復。先破壞再建設,才能產生缺陷。這個技術以目前來說,還是很有挑戰性。

  • 二維材料最近似乎有愈來愈火紅的趨勢?

在過往的傳統半導體研究中,往往將二維材料當成垃圾,不過現在,垃圾變成黃金了。以前這種材料是被用來當固態潤滑劑,因為層與層之間很容易剝落、滑動,根本沒甚麼用處。

但自從石墨烯出現之後,大家才意識到二維材料的好處,而且何必一定要用石墨烯?有一大堆半導體材料都是這樣一層一層的,把它們拿來做電子元件不是更好?所以現在很多人都在做二維半導體材料。

張文豪向研之有物團隊介紹單光子光源的測量方式。圖/研之有物

抓到了!真的是單一光子!

儘管有了製造單光子光源的方法,但該如何確認放射出來的是單一光子呢?

張文豪解釋,單光子的定義是同一時間點只放出一個光子,「所以是同一時間只有一顆,並不是真的只放出一顆。」換句話說,光子其實是像機關槍一樣,源源不絕地一直從光源放射出來的,而且每個光子之間的時間間隔也並不平均。

測量是否為單光子的方法稱為「HBT 實驗裝置」,包含一個分光鏡、兩個偵測器(D1 與 D2),以及一個可以決定要啟動計時或停止計時的計時器。

HBT 實驗裝置示意圖。圖/研之有物

當每一個光子遇到分光鏡時,會隨機前往 D1 或 D2,如果 D1 偵測到光子,計時器就會開始計時;如果 D2 偵測到光子,則會停止計時。因為光子是隨機前往 D1 或 D2,所以每一次停止計時,可能測到是兩個、三個、或四個……不等的光子出發間隔時間。

如果有兩個光子是同時出發,且它們正好分別通過 D1、D2,那麼就會測到一組間隔時間為 0 的數據。所以相反的,如果測量出的結果中,完全沒有間隔時間為0的數據,就可以確認光源是單光子光源

HBT 裝置的量測數據示意圖,可以確認光源是否為單光子光源。如果兩光子的時間差(延遲時間)為 0 秒,符合計數也是 0,則可以確認該光源為單光子光源。圖/研之有物(資料來源|科儀新知

張文豪指出,HBT 實驗裝置要準確,也考驗兩個偵測器的敏銳度。「目前效率最好的是用超導體來做偵測器,不過這樣的話,偵測器也得在低溫環境。」

  • 除了單光子光源與偵測器外,光量子計算還需要哪些相關的技術配合?

光量子計算還是必須在光量子晶片上運作,用的是積體光學,就像積體電路一樣,只是用波導取代電線、光子取代電子。這其中的製程必須讓光能在晶片裡前進、轉彎,做一些操作。中央大學陳彥宏特聘教授的團隊,是量子國家隊光量子研究團隊之一,主要工作就是開發光量子晶片

陳彥宏團隊所研發之光量子位元晶片。圖/陳彥宏
陳彥宏團隊預計於 2023 年開發能執行容錯式秀爾演算法之光學量子運算晶片。圖/陳彥宏
  • 臺灣發展量子科技的前瞻性或潛力如何?我們有什麼優勢?

臺灣早期生產很多電腦,當時我們做的事情主要是零組件的開發、組裝,所以我常笑稱是一種「偽高科技組裝業」。可是臺灣現在已經不一樣了,臺灣從這個組裝業,慢慢掌握關鍵的製程,當產業供應鏈整個建構起來之後,現在變成了全世界很重要的製造中心。

如果未來量子電腦量產,臺灣絕不可能缺席,也不能缺席。為此,我們必須知道,從零到有把一臺量子電腦建構起來需要多少技術。這是一個龐大的系統工程,需要各種人才與技術。我們要知道每個技術細節,才會知道國內各研究單位、法人,以致於工研院、經濟部和產業界,各自可以扮演什麼角色。

  • 成立國家隊來發展量子科技,是為了整合資源的考量?

因為我們的人力與資源都有限,所以必須透過整合的方式,各團隊做自己擅長的部分,再用系統整合把大系統建構起來。最重要的目的,是在每一個環節把技術與人才建立起來。

我們推動小組還找了中研院天文所的王明杰研究員來當總工程師,他負責連結各團隊的不同技術,橫向整合。為什麼找上天文背景的王明杰博士?這很有趣。

第一個原因在於王明杰是超導材料與偵測器的專家,因為天文觀測裡要偵測很微弱的訊號,他們必須要發展非常靈敏的偵測器。

第二個原因是,天文研究都是國際性的大團隊,例如蓋一座大型天文台,各國不同的單位個別負責開發部分技術且為了同一個目標努力,需要有總工程師來連結各團隊所開發的技術,透過系統工程變成最後的系統。做天文觀測的人比較有這樣跨團隊組大系統的經驗,所以我們就請他來協助。

  • 量子科技現在還沒有發展出產業,培養出的人才怎麼辦?

量子科技並不是全新的技術,而是範圍很廣的跨領域技術,所以你學會了這些技術,仍然可以在現有的科技產業發揮所長。等到有一天公司需要投入量子科技的時候,儘管公司老闆可能沒有量子的知識和概念,但公司裡有這些背景知識的人才就可以立即參與。

所以人才是最重要的,我們必須現在就開始把量子的 DNA 植入產業界。如果等需求出現才開始培育人才,就來不及了。

  • 中研院預計在南部院區建立量子研發基地,可否談談這部分的規劃?

我們預計在 2023 年下半年進駐南部院區的研究大樓 II,建置一些製程與量測的核心設施。此外,還會蓋一棟「量子實驗大樓」,主要做一些精密的量測,也包含一部分精密製程。

未來,這個量子研發基地將會是一個提供國內產學研單位進行量子科技研究的基地,所建置的核心設施也將開放給其他研究團隊進駐使用進行研發,有點類似國家同步輻射中心,透過建置一個大型的量子科技實驗場域,讓需要的國內外團隊共同使用。

這也是希望能橫向、縱向整合資源,不要重複投資。畢竟我們資源有限,應該集合大家的力量,攜手共同邁向臺灣量子新世代。

延伸閱讀

  1. 量子系統推動小組網站
  2. 工程科技推展中心(2023)。〈【多功能量子通訊網路】 褚志崧副教授|國立清華大學物理學系〉,YouTube。
  3. Lodahl P., Ludwig A., & Warburton R.(2022)。〈決定性的單光子源〉(張鳳吟翻譯), 《物理雙月刊》。
  4. 王志洋、陳啟東(2021)。〈量子世代產學佈局〉,《科學人》。
  5. 科技魅癮(2022)。〈量子新時代|全國70位科學家的超強大腦,如何一起推動量子計畫〉,YouTube。
  6. 陳彥宏(2021)。〈量子光電晶片將延續臺灣半導體晶片的榮耀〉,《臺灣研究亮點》。
  7. 郭雅欣(2019)。〈量子電腦到底有多霸氣?即將引爆終極密碼戰?!〉,《研之有物》。
  8. 林婷嫻(2017)。〈量子電子元件 hen 夯,但如何掌握像情人心難測的量子位元?〉,《研之有物》。
  9. 張文豪、徐子民(2006)。〈半導體量子光學〉, 《物理雙月刊》。
  10. 張文豪、徐子民(2004)。〈單量子點光譜技術的介紹與應用〉,《科儀新知》。
  11. Gillis, A. S. (2022, January 28). quantum cryptography. TechTarget.
  12. Shaik, A. B. D. a. J. W. I., & Palla, P. (2021). Optical quantum technologies with hexagonal boron nitride single photon sourcesScientific Reports, 11(1).
  13. Ishii, S., Saiki, S., Onoda, S., Masuyama, Y., Abe, H., & Ohshima, T. (2021). Ensemble Negatively-Charged Nitrogen-Vacancy Centers in Type-Ib Diamond Created by High Fluence Electron Beam IrradiationQuantum Beam Science, 6(1), 2.
  14. Chen, T. A., Chuu, C. P., Tseng, C. C., … Chang, W. H., & Li, L. J. (2020). Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)Nature, 579(7798), 219–223.
所有討論 1
研之有物│中央研究院_96
271 篇文章 ・ 2658 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

38
1

文字

分享

1
38
1
回到 AlphaGo 打敗棋王的那一天,看 AI 如何顛覆世界——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/30 ・4915字 ・閱讀時間約 10 分鐘

谷歌收購深度心智(DeepMind)幾週後,深度心智創辦人德米斯.哈薩比斯(Demis Hassabis)與其他幾位深度心智研究人員搭機來到北加州,與他們母公司的領袖舉行會議,並向他們展示深度學習如何破解「打磚塊」。

幕後推手——德米斯.哈薩比斯

會議結束後,哈薩比斯和谷歌創辦人賽吉.布林(Sergey Brin)聊了起來。他們聊著聊著發現有一共同的興趣:圍棋。布林表示當初他和賴利.佩吉(Larry Page)建立谷歌時,他沉迷在圍棋中,害得佩吉擔心他們根本無法成立公司。

哈薩比斯表示,如果他和他的團隊想要的話,他們能夠建造一套系統來打敗世界冠軍。「我覺得這是不可能的。」布林說道。就在這一刻,哈薩比斯下定決心要做到。

深度心智創辦人、英國人工智慧研究者——德米斯.哈薩比斯(Demis Hassabis)。圖/維基百科

「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)將哈薩比斯比作羅伯.奧本海默(Robert Oppenheimer),二戰期間做出第一顆原子彈的曼哈頓計畫主持人。奧本海默是世界級的物理學家:他懂得眼前重大任務的科學原理,不過他更深諳激勵之道,他結合手下不斷擴大的科學家,將他們的力量合而為一,並且接納他們的弱點,一起為計畫目標努力。

他知道如何感動男人(以及女人,包括辛頓的堂姊瓊安.辛頓),辛頓在哈薩比斯身上看到同樣的特質。「他主持 AlphaGo 就像奧本海默主持曼哈頓計畫,如果是別人來主持,他們可能就不會這麼快成功。」辛頓說。

揭開比賽序幕

深度心智的研究員們在 2014 年中曾發表一篇關於他們初期研究的論文,之後他們的研究規模大為擴大,並在第二年擊敗歐洲圍棋冠軍樊麾。此一結果震驚了全球圍棋界與人工智慧研究圈,但是 AlphaGo 對戰李世乭所造成的聲勢更是轟動。

IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。

圍棋在中、日、韓具民族性,AlphaGo 與李世乭的對弈備受矚目。圖/維基百科

在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。

第二天下午,在展開第一局對戰的兩小時前,他與幾名記者共進午餐,他拿著一份《韓國先驅報》(Korea Herald),這是用桃色紙張印刷的韓國英文日報。他和李世乭的照片都出現在報紙的頭版上半部。他沒有想到竟會受到如此重視。

「我知道會受到關注,」這位像孩子般矮小,39 歲但已禿頂的英國人說道,「但是沒有想到會這麼多。」不過,在吃著餃子、韓式泡菜的午餐時,哈薩比斯表示他對這場棋賽「審慎樂觀」。他解釋,那些名嘴並不知道 AlphaGo 在十月的棋賽後仍在繼續苦練棋藝。

他和他的團隊初始是將三千萬步棋路輸入深度神經網路來教導機器學習圍棋,自此之後,AlphaGo 就開始不斷與自己對弈,並且記錄哪些棋路是成功的,哪些又是失敗的——其運作與實驗室用來破解雅達利老遊戲的系統類似。自擊敗樊麾以來這幾個月,AlphaGo 已和自己對弈了數百萬局;AlphaGo 持續自學圍棋,學習速度之快遠超過所有人類。

在四季飯店頂樓的賽前餐敘,谷歌董事長艾力克.施密特(Eric Schmidt)坐在哈薩比斯的對面,以他一貫冷峻的態度闡述深度學習的優點。一度有人稱他為工程師,他糾正他們,「我不是工程師,」他說道,「我是電腦科學家。」

艾力克.施密特(Eric Schmidt)2001~2011 年間在 Google 擔任 CEO。圖/維基百科

他回憶他在 1970 年代研讀電腦科學時,人工智慧看來前景一片大好,但是隨著 1980 年代過去,進入 1990 年代,這樣的美景從未實現。如今,終於實現了。「這一科技,」他說道,「力量強大,引人入勝。」他表示,人工智慧不只是辨識照片的戲法,同時也代表谷歌 750 億美元的網際網路事業與其他無數的產業,包括保健產業。

機器與人類高手對決

在第一局,哈薩比斯是在私人觀賞室與走廊另一頭的 AlphaGo 控制室之間來回兩頭跑。控制室滿是個人電腦、筆記型電腦與平面顯示幕,這些設備全都與遠在太平洋彼端的谷歌數據中心內部數百台電腦相連。一支谷歌團隊在比賽前一週就已架設一條專屬的超高速光纖電纜直達控制室,以確保網際網路暢通無阻。

不過結果卻顯示控制室根本不需要進行多少操控:幾過多月的訓練之後,AlphaGo 已能完全獨力作業,不需要人為的幫助。同時,就算哈薩比斯與團隊想幫忙,也無用武之地。他們沒有一人的圍棋棋力達到大師級的水準,他們只能觀看棋局。

「我無法形容有多緊張,」深度心智研究員說道,「我們不知道該聽誰的。一邊是評論員的看法,你同時也看到 AlphaGo 的評估。所有的評論員都有不同的意見。」

在第一天的棋賽,深度心智團隊與谷歌的重要人物都親眼目睹 AlphaGo 獲勝。

賽後記者會上,李世乭面對來自東、西方數百名記者與攝影師表示他感到震驚。這位 33 歲的棋士透過口譯員說道:「我沒想到 AlphaGo 下棋竟能夠如此完美。」經過逾四小時的對弈,AlphaGo 證明自己的棋力可與全球最厲害的高手匹敵,李世乭表示他被 AlphaGo 殺了個措手不及,他在第二局會改變策略。

左為代替 AlphaGo 移動棋子的深度心智台灣研究員黃士傑,右則為李世乭。圖/YouTube

神來一筆的第三十七手

第二局對弈進行一小時後,李世乭起身離開賽場,走到露台抽菸。坐在李世乭對面,代替 AlphaGo 移動棋子的是來自台灣的深度心智研究員黃士傑,他將一枚黑子落在棋盤右邊一大塊空地上單獨一枚白子的側邊下方,這是該局的第三十七手。

在角落的評論室內,西方唯一的圍棋最高段九段棋手邁克.雷蒙(Michael Redmond)忍不住多看了一眼確認,然後他告訴在線上觀看棋賽的兩百多萬英語觀眾:「我真的不知道這是高招還是爛招。」他的共同評論員克里斯.戈拉克(Chris Garlock)則表示:「我認為下錯了。」他是一本網路圍棋雜誌的資深編輯,同時也是美國圍棋協會的副會長。

李世乭在幾分鐘後返回座椅,然後又緊盯著棋盤幾分鐘。他總共花了 15 分鐘才做出回應,在棋局的第一階段他有兩小時的時間,而這一手占用了他不少時間——而且此後他再也沒有找回節奏。在經過逾四小時的對弈後,他投子認輸,他連輸兩局了。

第三十七手也讓樊麾大感詫異,他在幾個月前遭到 AlphaGo 徹底擊敗,自此之後他就加入深度心智,在 AlphaGo 與李世乭對弈前擔任它的陪訓員。他從來沒有擊敗過這部人工智慧機器,但是他與 AlphaGo 的對弈也讓他對棋路的變化大開眼界。事實上,他在遭 AlphaGo 擊敗後的幾週內,與(人類)高手對弈連贏六場,他的世界排名也升至新高。

現在,他站在四季飯店七樓的評論室外面,在第三十七手落子幾分鐘後,他看出了此一怪招的威力。「這不是人類會下的棋路,我從來沒有看過有人這麼下,」他說道,「太美了。」他不斷地重複說道,太美了、太美了、太美了。

第二天上午,深度心智的研究員大衛.席瓦爾溜進控制室,他想知道 AlphaGo 如何做出第三十七手的選擇。AlphaGo 在每一局對弈中都會根據它所受過數千萬種人類落子變化的訓練,來計算人類做出此一選擇的機率,而在第三十七手,它算出的機率是萬分之一。

AlphaGo 在對弈中會根據千萬種落子變化,計算出人類下此一步棋的機率。圖/YouTube

AlphaGo 知道這不是專業棋手會選擇的路數,然而它根據與自己對弈的數百萬次經驗——沒有人類參與的棋局——它仍是這麼做了;它已了解儘管人類不會選擇這一步,這一步棋仍是正確的選擇。「這是它自己發現的,」席瓦爾說道,「透過它的內省。」

這是一個既甜美又苦澀的時刻,儘管樊麾大讚此一步棋是神來之筆,但是一股鬱悶之情席捲四季飯店,甚至整個韓國。一位中國記者表示,儘管他為 AlphaGo 贏得第一局感到高興,可是現在他深感沮喪。

第二天,一位在首爾彼端經營一家新創企業育成中心的韓國人權五亨表示他也感到悲傷,這並非因為李世乭是一位韓國人,而是因為他是人類,「這是全人類的轉捩點,」權五亨說道,他的幾位同事點頭表示同意,「它讓我們了解人工智慧真的已在我們眼前——也讓我們了解到其中的危險。」

在那個週末,此一鬱悶的情緒只增不減。李世乭第三局也輸了,等於輸掉整個棋賽。坐在賽後記者會的桌子後面,李世乭懺悔之情溢於言表。「我不知道今天要說什麼,但是我首先要表達我的歉意,」他說道,「我應該拿出更好的成績,更好的結局,更好的比賽。」但是坐在李世乭身邊的哈薩比斯卻發現,自己衷心期盼這位韓國棋手在接下來的兩局中至少能贏一局。

AlphaGo 認輸的那一局

在第四局的七十七手,李世乭再度陷入長考,就和第二局的情況一樣,但是這一回他考慮的時間更久。棋盤中間有一堆棋子,黑白相間,他有近二十分鐘只是緊盯著這些棋子,抓著後頸前後擺動。最後,他將他的白子落在棋盤中央的兩枚黑子之間,將棋勢一分為二,AlphaGo 方寸大亂。

在每一場對弈中,AlphaGo 都會不斷重新計算勝率,並且顯示在控制室的一台平面顯示幕上。

在李世乭落子後——第七十八手——這部機器的反擊很差,在顯示幕上的勝率立刻大降。「AlphaGo 累積到那一步之前的所有戰略都算是報銷了,」哈薩比斯說道,「它必須重新再來。」就在此刻,李世乭抬頭看著對面的黃士傑,彷彿他擊敗的是這人,不是機器。自此之後,AlphaGo 的勝率一路下跌,在近五個小時後,它投子認輸。

DeepMind 製作的 AlphaGo 與李世乭對弈紀綠片。/YouTube

兩天後,哈薩比斯穿過四季飯店的大廳,解釋 AlphaGo 為什麼會輸。AlphaGo 當時是假設沒有人類會這樣下第七十八手,它計算出來的機率是萬分之一——這是一個它熟悉的數字。

就像 AlphaGo 一樣,李世乭的棋力也達到一個新境界,他在棋賽最後一天的私人聚會場合中這樣告訴哈薩比斯。他說與機器對弈不僅讓他重燃對圍棋的熱情,同時也讓他茅塞頓開,使他有了新想法。「我已經進步了。」他告訴哈薩比斯,一如幾天前的樊麾,李世乭之後與人類高手對弈,連贏九場。

AlphaGo 與李世乭的對弈,使得人工智慧在世人眼前大爆發,它不僅是屬於人工智慧領域與科技公司,同時也是屬於市井小民的里程碑。在美國如此,在韓國與中國更是如此,因為這些國家視圍棋為人類智慧結晶的巔峰。這場棋賽彰顯出科技的力量與其終將超越人類的恐懼,同時也帶來樂觀的前景,此一科技往往會以出人意表的方式推動人類更上層樓。儘管馬斯克等人警告其中的危險性,但是這段時期人工智慧的前景一片光明。

裘蒂.英賽恩(Jordi Ensign)是佛羅里達州一位四十五歲的程式設計師,她在讀完棋賽報導後出去在身上紋了兩幅刺青,她在右臂內側紋了 AlphaGo 的第三十七手——左臂紋了李世乭的第七十八手。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載

所有討論 1
時報出版_96
156 篇文章 ・ 30 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。