0

7
4

文字

分享

0
7
4

超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰

Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

-----廣告,請繼續往下閱讀-----

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

-----廣告,請繼續往下閱讀-----

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

-----廣告,請繼續往下閱讀-----

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(Initial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

-----廣告,請繼續往下閱讀-----
IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

-----廣告,請繼續往下閱讀-----
文章難易度
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

1
0

文字

分享

0
1
0
環評大解密:「備審」到「面試」,開發案環評都在做什麼?從蘇花安帶你實際走一遭!
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/19 ・3191字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

每當大雨來襲,往返臺北與花蓮的要道——蘇花公路——總是令人提心吊膽,2024 年的 0403 大地震也讓東部邊坡變得更加不穩定,使得「蘇花公路安全提升計畫」(以下稱蘇花安)能否順利進行備受關注。然而許多人也擔心,要在本就脆弱的地質上動工,會不會造成更多環境傷害?

面對這樣的開發案,我們需要一個既科學又客觀的評估機制,以把持開發需求與環境保護間的平衡點,也就是「環境影響評估」(以下稱「環評」)。但,為什麼在新聞裡,環評會議總是砲火隆隆?有人覺得太輕率,又有人覺得太拖延?環評到底是怎麼一回事?

環評成爭論之源,到底有什麼好吵?

根據《環境影響評估法》(以下稱「環評法」)第 1 條,環評的定義是「為預防及減輕開發行為對環境造成不良影響,藉以達成環境保護之目的」。所謂建設,多少會對環境動刀,既然如此,我們就須把傷害最小化,在開發前釐清可能對環境造成的影響,然後提出相應的保護對策。

-----廣告,請繼續往下閱讀-----

但反過來說,環評也攸關開發案能否順利成行。環評法第 14 條指出,「目的事業主管機關於環境影響說明書未經完成審查或評估書未經認可前,不得為開發行為之許可,其經許可者,無效」。換言之,環評只要沒有通過,開發案就只能停在紙上作業,這也是每當爭議性開發案出現時,環評審查何以成為焦點戰場的原因。

環評旨在預防及減輕開發對環境的影響,確保建設傷害最小化並制定保護對策。圖/envato

想知道環境評估的基礎,就得翻開厚度足以讓人躺平的《環境影響評估模式技術規範彙編》。然而深入瞭解後,你會發現,很多人以為各說各話、給過不給過,全憑長官大人一句話的評估流程,在設計上其實很科學。

以蘇花安為例,走進環評的實務面

在此之前要先釐清,蘇花安裡所指涉的開發標的並非要打造一條全新公路,而是對現有蘇花公路進行「升級改造」,而且也不是第一次。它的前身「蘇花改」包含蘇澳到東澳、南澳到和平、和中到大清水等路段,相比過去雖更安全便捷,但仍有改進空間。

以前不說,光是今(2024)年就災難頻傳。4 月 3 日花蓮發生規模 7.2 的大地震,讓大清水隧道口的下清水橋被落岩擊毀,只能先借用日治時期的舊橋通行,隨後更餘震不斷。6 月時,和中至崇德路段,則因大雨使得落石與土石流阻擋道路。地震加暴雨,前後效應加乘,讓東部交通受到嚴重打擊。

-----廣告,請繼續往下閱讀-----

蘇花安計畫的目標,便是延續蘇花改帶來的可靠與穩定,提高東澳至南澳、和平至和中、還有和仁到崇德三大路段的安全性。然而,要在這些穿越太魯閣國家公園的路段挖鑿隧道、加固邊坡,要考慮的可不只是「做不做得到」的問題⋯⋯

光是工程噪音的模擬、評估與對策,就有許多眉角

為了對噪音進行模擬並加以評估,環評中有時會選用德國聯邦數位及交通部在《道路噪音防護指南》中提到的 RLS-90 模型。

首先是分析車流量、大卡車比例、路段特性等各條件下產生的噪音。圖一為距離車道 25 公尺測得的噪音大小(噪音源為車輛底盤的位置,離地 50 公分處);橫軸為每小時經過的車輛數,縱軸為噪音分貝,七條線則為大卡車在車流中的占比。以這個例子來說,車流量每增加十倍,噪音就會提升約 10 分貝。

圖一

此外,RLS-90 也探究相應對策下的噪音表現。圖二為加設牆壁、土堤等設備後的隔音效果;橫軸代表相對於道路的高度,縱軸為音量衰減的分貝數(即屏蔽量),六條線則代表牆壁的六種高度。

-----廣告,請繼續往下閱讀-----
圖二

當然也還有許多細部參數,如車流的時速上限、汽車是否頻繁煞車與啟動(有的話噪音基準應提高 3 分貝)、白天或晚上、納入車流量至少會年增 1% 等考量。開發單位要做的,就是輸入各項參數以計算噪音大小,不符標準者則要提出相應防護措施。

以臺 9 線上的崇德國小為例,當環評發現噪音超出環境音量標準,開發單位便提出於施工期間在學校近臺 9 線一側加裝隔音牆,並在學校設置全天候固定式噪音監測點。這些都是環評過程中,在審查委員提出意見後,再經由開發單位回應改善的結果。

除了噪音,環評還需要考慮許多其他因素。以蘇花安來說,開鑿大量隧道後產生的土方該堆在哪裡?如要運送,揚塵是否會造成大量空氣污染?施工廢水要排去哪,能不能循環再利用?施工與營運期間,動物路殺的狀況如何、減輕對策、生態廊道的設立與生態補償等面向,都必須考慮周全,以確保從生物、個人到社會,影響都降到最低。

一階 VS 二階,資料與溝通準備大不同

在經過縝密流程後,蘇花安的環評案於 5 月 14 日正式通過初審,亦無須進入「二階環評」,只要補充易崩塌落石的防護措施與效益評估即可。二階環評常常是環評過程最容易卡關的地方,不免讓人好奇:一階與二階到底差在哪?為何有的案子要進入二階,有的不用呢?

-----廣告,請繼續往下閱讀-----

在一階環評裡,開發商提交的文件叫「環境影響說明書」,必須說明開發行為可能造成的環境影響、保護措施和替代方案,有點像考大學靠備審資料決定要不要讓你入學的概念。至於二階環評,則需要提交更詳細的「環境影響評估報告書」,還要在開發場所附近公告先前的「環境影響說明書」並舉行公開說明會,聽取當地居民意見。相比之下,就像入學前還得通過多次面試,才能決定最終分數。

一般來說,某些如高速公路、捷運等的重大開發行為,都得進行二階環評。蘇花安雖然只需要一階環評,但因為涉及原住民族土地,根據《原住民族基本法》還需要諮商並取得原住民族或部落同意或參與才行。雖然是拿面試當比喻方便區別,但這並不代表環評通過與否將由居民投票決定喔!二階的最大目的,還是廣泛蒐集受影響居民的意見,藉以提出合理的減輕與改善措施,再回到審查委員那裡綜合評估開發案的可行性。

二階環評重要的目的之一,是廣蒐受影響居民的意見,與合理的改善措施。圖/envato

拜環評之賜,我們得以在土地開發的過程裡,盡所能打造與自然環境的雙贏局面,然而為了審慎周全,環評「花時間」的印象也成很難撕下的標籤。然而動作慢的,其實通常不是環評本身,而是開發單位自己準備要花時間,而其他主管機關也有不同的把關機制跟考量。這就像研究生要畢業,口試跟論文審查其實很快,但寫論文以及找對主題做研究,就是自己得花的工夫。為此,環評法已經歷經多次修正,像是 2015 年即要求目的事業主管機關應「主動針對開發行為提出說明與建議」,而不是到了真正要評估時才來處理爭議環節。

打造永續共存的未來

瞭解環評過程就能發現,開發單位有沒有花費足夠的心力理解環境議題,並準備完整的資料與保護對策,是環評能否順利通過的關鍵。環評既非開發者的眼中釘,亦非護航者,過往歷史也在在說明,多方評估建設發展的安全性、維護自然環境仍有其必要。

-----廣告,請繼續往下閱讀-----

通過蘇花安的案例,我們可以看到環評如何在實際開發案中發揮作用。它不僅保護了環境,也為居民權益提供了保障,更幫助開發單位將方案最佳化,是打造永續共存的未來不可或缺的好工具!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
221 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
221 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從 MiniLED 到 QLED:量子點技術如何改寫螢幕的未來?
PanSci_96
・2024/11/17 ・2235字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子點:從顯示技術到量子計算的革命

顯示面板的技術一直在進步,從最早的液晶顯示(LCD),到日益火熱的 MiniLED,再到正在被熱烈研發中的 MicroLED。隨著像素越來越小,螢幕畫質的進步讓人驚嘆不已。然而,現在有一項技術,它並非透過縮小像素來提升畫質,而是以更純淨的顏色帶來視覺上的革命—那就是「量子點技術」(Quantum Dot)。

量子點技術不僅為我們的螢幕帶來更好的顏色,甚至還有可能在量子電腦的未來發展中扮演重要角色。究竟這些小到幾奈米的半導體晶體是如何改變我們的世界?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子點?

量子點是一種半導體奈米晶體,其直徑僅為幾奈米大小,也就是僅包含數百到數萬個原子。在這麼小的尺寸下,量子力學的奇妙特性開始影響顆粒的物理性質。這些量子點能夠吸收特定波長的光,並根據自身大小發射出頻寬極窄的單色光。這也意味著,透過控制量子點的大小,我們可以精確地調整它所發出的顏色。

這項技術在顯示領域中得到了應用,稱為量子點顯示技術(QLED)。QLED 螢幕通常使用藍光 LED 作為背光源,再經由塗有量子點的薄膜來產生鮮艷的紅光和綠光,以此混合出更飽和的色彩,並提供更廣的色域。此外,由於減少了傳統彩色濾光片的使用,QLED 螢幕也更為省電且光效更高。

-----廣告,請繼續往下閱讀-----

MiniLED 與 MicroLED 的比較

要了解量子點技術的優勢,我們首先需要認識當前的顯示技術:MiniLED 與 MicroLED。

MiniLED 雖然名字聽起來和 MicroLED 相似,但它們的工作原理和應用有所不同。MiniLED 屬於有背光結構的面板,主要用於電腦和電視螢幕市場。它的顯色能力優秀,且通過調整背光區域的亮度,可以產生高對比度的畫面,甚至能呈現比傳統 LCD 更黑的黑色。

相比之下,MicroLED 則是無背光的技術,利用紅、綠、藍三種顏色的小燈泡直接發光,這些燈泡小到可以嵌入每個像素中。因此,MicroLED 的螢幕結構更薄,並能減少顏色劣化問題。然而,由於技術難度高,MicroLED 目前仍處於開發階段。

量子點的顯色技術有多特別?

傳統的顯示技術中,無論是 LCD、MiniLED 還是 OLED,它們的色彩顯示都需要依賴彩色濾光片來混合光源。而量子點技術則不然。量子點可以根據顆粒的大小發射出精確且純淨的單色光,其顏色純度遠超傳統濾光片。

-----廣告,請繼續往下閱讀-----

量子點的神奇之處在於,同一種材料可以隨著顆粒尺寸的變化而發射出不同的顏色。這意味著我們只需要製造出不同大小的量子點,就可以得到紅、綠、藍三原色的高純度光源,進而混合出更加鮮豔的色彩。這種「大小決定顏色」的現象,正是量子力學中能階與顆粒大小之間微妙關係的體現。

量子點技術憑顆粒大小精準發光,色彩純度遠勝傳統濾光片。圖/envato

量子力學與量子點的關聯

量子點的顏色之所以能隨顆粒大小改變,是因為量子點內部的電子受到能階的限制。在半導體材料中,電子的能量可以分佈在幾個不同的能階上,當電子從高能階回到低能階時,會以光的形式釋放出多餘的能量。而量子點的尺寸越小,電子能佔據的能階也越少,因此當電子釋放能量時,會放出更高能量的光子,這也導致了更短波長的光,比如藍光。

諾貝爾化學獎與量子點的製備技術

早在幾千年前,工匠們就已經能透過加入不同的金屬粉末來製作出不同顏色的玻璃,但他們並不知道背後的原理。直到 1980 年代,科學家們才發現,這些顏色變化與量子效應有關。2023 年的諾貝爾化學獎,正是授予了對量子點研究做出重要貢獻的三位科學家(分別為巴汶帝 ( Moungi G. Bawendi )、布魯斯 ( Louis E. Brus ) 和艾吉莫夫 ( Alexei I. Ekimov )),他們開發的技術讓量子點的製造變得更加容易且精確。

其中,蒙吉·巴文迪(Moungi Bawendi)開發的製程可以在溶液中精確控制量子點的大小,這使得量子點的性質與應用變得更加穩定且可預測,從而加速了量子點在顯示技術和其他領域的商業化應用。

-----廣告,請繼續往下閱讀-----

量子點在量子電腦中的應用

量子點的應用並不僅限於顯示技術。由於它們能夠透過改變大小來調控各種物理特性,因此又被稱為「人工原子」。這使得量子點在量子電腦中也有巨大的潛力,特別是在儲存與處理量子位元資訊方面。

量子電腦與傳統電腦不同,其運算依賴量子位元,而量子位元可以同時處於多個狀態。要讓量子位元的狀態穩定且能長時間儲存,是量子電腦硬體設計的一大挑戰。量子點因其特殊的能階特性,有望成為量子電腦中儲存量子位元的理想材料。

量子點技術的未來

量子點技術的出現,不僅改變了我們對顯示面板的認知,也為量子計算領域帶來了新希望。隨著技術的進一步成熟,量子點在顯示技術之外,還有可能應用在更多的高科技領域,如光學感測、生物醫學標記等。

如果你對量子點的應用充滿好奇,不妨繼續關注相關的技術發展。也許有一天,這些微小的「人工原子」會成為推動科技變革的核心力量,為我們的生活帶來更多的驚喜和便利。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。