0

3
3

文字

分享

0
3
3

超級電腦爭霸戰的新一頁開始了:Exascale(10 的 18 次方)之戰

Y.-S. Lu
・2022/09/10 ・5230字 ・閱讀時間約 10 分鐘

2023 即將上線的超級電腦(Supercomputer)

歐洲最大的超級電腦(Supercomputer),將要在 2023 年上線啦!今年六月中時,德國于利希研究中心(Forschungszentrum Jülich GmbH)的超級計算中心(Jülich Supercomputing Centre, JSC)發佈新聞稿[1],表示歐盟的歐洲超級電腦中心聯合承辦組織(EuroHPC Joint Undertaking)選定該研究中心的超級計算中心,做為歐洲第一個設立 Exascale 超級電腦 Jupiter 的地點[2],歐盟出資一半,而另一半的資金將由德國教育部(BMBF)以及北萊茵威斯特法倫州(Nordrhein-Westfalen)文化部共同出資,其意昧著這台超級電腦也將優先提供給德國的科學家,以及北威州的研究單位使用[註一]。表示現今的超級電腦軍備競賽,已打到了 Exascale 了,Jupiter 將是繼美國設立世界第一台 Exascale[註二]的超級電腦 Frontier 後[3],即將出現的次世代超級電腦(如果德國的施工期有好好的踩點)

位於阿貢國家實驗室的 IBM Blue Gene/P 超級計算機。圖/wikipedia

Exascale 的超級電腦具有「每秒百億億次(1018)」(也就是 100 京)的每秒浮點運算(FLOP)能力,實際規模也將具有國家高速運算中心台灣杉二號[4]的 111 倍以上的運算能力,也就是要建立超過百台規模的台灣杉二號才具有 Exascale 的規模,但也同時考驗硬體的處理能力、主機間節點的連線架構、資料讀寫能力,更甚者,則是軟體是否具有 Exascale 的使用能力,也就是硬體與軟體都必須要能夠良好的契合才行。

什麼是超級電腦?可以幫助都市成為超級都市嗎?

「這些顯示器太舊了」雷迪亞茲說。

「但它們後面是世界最強大的電腦,每秒可以進行五百萬億次浮點運算。」

~ 劉欣慈《三體:黑暗森林》

劉欣慈《三體:黑暗森林》(2007)提到人類「當時」最強的電腦,為五百萬億的運算能力「而已」,沒想到 15 年後的今天,地表最強的超級電腦 Frontier 是出現在美國的橡樹嶺國家實驗室(Oak Ridge National Laboratory),而不是小說裡說的,在洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory),而且 Frontier 的效能還是小說裡超級電腦的五千多倍,可說是現實終於有超過小說的時候了(但我們依就沒有飛天滑板可以借東京都的死神小學生)

超級電腦是科學家進行高速/高效計算(High Performance Computing)的主要設備。超級電腦的架構,可以說是非常的簡單:用網路線連結各台主機,讓主機間互相溝通,才能夠進行平行運算。

一般超級電腦的架構大致上如下:一機板上可能會有一個到數個 CPU,而一個或是數個機板會組成一個節點(Node),有時數個結點會組成一個機櫃(Rack/Cabinet)。節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。

節點與節點間的連結,就是依靠網路線在進行 CPU 之間的溝通,因此網路變成非常重要的元件。圖/pixabay

在此架構下,如何讓結點間有效溝通,也是一門學問了[5]。這些 CPU 可以想象是每個拿著工程計算機的研究生,正等著教授指派任務給他們算,而一個節點就是一個房間,在同一個房間內的溝通一定是比較快的,當不同房間需要溝通時,就會需要走出房間去給資料,如果所有的人一起拿資料回報給教授,那這教授可能就會崩潰,所以如何讓研究生(CPU)互相溝通,又不至於塞車,就是電腦工程專家們的專業了。

現在超級電腦的架構也與過往的超級電腦不同了。除了採用巨量 Arm 晶片的日本富岳(具 158,976 節點)、自主研發晶片的中國神威太湖之光(具 40,960 節點)外,前十大超級電腦[3]都是採用 CPU 加上 GPU 的混合架構(如在機板上插上 GPU 增加運算效率),才達到 100 Peta-Flop(1Peta = 1015) 以上的計算量,也意味著未來要在超級電腦上進行高效計算,GPU 運算也成為很重要的應用,因此也有許多計畫正在將軟體朝 GPU 運算的方向前進與推動。

軟體是否能配合平行化,也是非常是否能進行高效運算的重點之一。所謂的高效計算,也是利用許許多多的運算元件(CPU 或是 GPU),採平行運算的方法,將一個問題切成許多碎片,以螞蟻雄兵的方法一一解決,所以不要再怪為什麼你家的電腦 CPU 無論幾核心都只用了一核心,那是因為你的軟體沒有進行平行處理。早期土木界在進行坡面的圓弧破壞面計算時,據說就是用人力一人算一片圓弧的切片,也算是(人力)平行運算的先驅之一了。一般電腦中使用平行運算最多的,應該就是你手上那張 GPU 顯卡,在 GPU 的加持下,電腦螢幕中每個點、每個邊、每個平面上的顏色與光影,才能完美的呈現在使用者的眼前,所以與其用顯卡挖礦,還不如投身虛幻而真實的遊戲世界

不過有了地表最強的超級電腦,並不代表我們今天就能夠像小說形容的一樣,能幾秒內預測核子彈的破壞能力,或是在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。

有了地表最強的超級電腦,並不代表我們能夠像小說一樣,在一天內算出地球百年後的氣候狀況,因為平行計算加快了計算的速度,但有其極限。圖/pixabay

資料的讀入或是寫出,也是瓶頸之一,電路板與網路速度,以及資料存取方式都會造成資料讀寫的延遲,更不用說,若是打算模擬地球,其將耗盡 80 exabyte 等級的儲存空間,其為 CERN 的 ATLAS 與 CMS 計畫所產生的資料量的十倍[6]

為什麼氣候模擬要用到 Exascale?

Exascale 的超級電腦除了可以提供更多的運算能力,給更多的使用者進行模擬與計算外,也是挑戰超大型計算的開始。不過為什麼要 Exascale?到底為什麼一個模擬要用到上千甚至是上萬顆的 CPU 在運算?氣象氣候模擬已經將 Exascale 喻為下一階段應使用的救星[7],在氣象上除了要能做到一小時內達成氣象預測外,也希望能夠進行叢集式運算(像是利用隨機方法產生上百個因亂度而有不同結果的預測),進而進行機率式預測分析,或是提高水平距離至 2.5 公里以下的網格精度,此精度也為可進行對流模擬 (Convection-Permit)[8] 的精度。氣候模擬也需要高效能的運算,除了高精度的全球模型外,也需要進行長程的氣候模擬,幾十年到幾百萬年的模擬時間,也將需要 Exascale 等級的超級電腦來加速模擬,縮短實驗時間。越多的計算核心以及有效的平行運算,才能讓最真實的模擬結果讓人類使用,畢竟,誰都希望出遊不要遇上下大雨,也會希望能夠提前幾天知道颱風的路徑。

地球系統模擬中,其中一個挑戰便是進行模擬時程:挑戰一日(24 小時)的超級電腦計算可以得到多少年的模擬結果(simulated years per wall-clock day, SYPD)[6]還真的是「度日如年」,而此地球系統的精度為水平方向僅一公里的超高解析度,用來進行最終極的地球系統模擬:數位攣生(Digital Twins)[9]。數位攣生計畫主要是要建立地球的複製體,以方便人們對地球進行各種「實驗」,了解到經濟或政策面對地球生態或是氣候的影響,因此要達成此目的,強大具 Exascale 能力的電腦,便成為了目標。

目前已經有部份超級電腦都在進行 SYPD 的挑戰,如中國的神威太湖之光,其已完成了每日 3.4 年的地球系統模擬[10],只不過其地面僅有 25 公里的水平精度,海面僅 10 公里的水平精度,還有非常多的進步空間。只可惜,這個實驗並沒有進行進行資料輸出,無法得到正確的效能結果(資料的寫入與輸出也是非常費時的),以及真正的運算結果:因為沒有資料,就沒有辦法分析。

從高速電腦看量子電腦:量子電腦會是傳統的救星嗎?

量子電腦目前也成為了熱門名詞,從 2019 年開始,IBM 與 MIT 共同開始了量子計算課程,各學術單位也在搶攻量子電腦領域,但對地球模擬領域而言,量子電腦還太遙遠,對「傳統物理」的地球科學來說,我們解偏微分、解多項式,用的是傳統的數值方法,跟量子電腦界在進行的運算,也差了十萬八千里。

編按:這邊所說的數值方法,簡單講就是「暴力解」。例如要求圓周率,就先設定一個半徑為 1 的圓面積公式,然後問電腦答案是多少,電腦的第一步會把所有正整數代入公式中從一個初始數字(Initial State)開始,先找到答案會在 3 到 4 之間,之後又把 3 到 4 之間的所有數,帶回一開始的公式,得知答案在 3.1 到 3.2 之間,之後又將這個區間的所有數帶回一開始的公式,如此重複很多次後,就會得到相對接近的正確答案。

量子電腦就比較詭異了,量子態的平行運算與邏輯閘,使得兩者的運算邏輯完全不同,以上面的圓周率問題為例,量子電腦會直接給出在 3.1415925 至 3.1415927 之間,存在正確答案的可能性是最高的,但是這個範圍也有可能是錯的,而且就算是錯的,以我們現在的能力也很難說明它錯在哪裡。

從表面上來看,傳統電腦用暴力解,以排除錯誤答案的方式逼近正確答案,而量子電腦不排除錯誤答案,直接找到最有可能的答案會在哪個區域,但不保證運算過程中的正確性。

因為這個區別,若將現在成熟的模擬方法直接導入量子電腦中,最有可能出現的就是不知道怎麼解讀得到的數據,這包含了答案的正確程度,以及改動特定變數後所產生的答案變動是從何而來?

IBM 與 GOOGLE 正在爭奪追逐量子霸權(Quantum Supremacy)的同時[11],(不過 Google 號稱的量子霸權,也就是一萬倍的計算速度,在 2021 年被中國科學院理論物理所的 Feng 等人用了 15 個 NVIDIA V100 GPU 給追上[12][註五]),其離傳統電腦計算的距離,也有十萬八千里遠,離應用於地球科學計算上還有一定的距離,但只要哪一天能夠應用在普通的大氣循環模式(GCM),就可以算是第一步吧。但是在量子力學進入大氣科學前,我們氣候與氣象模擬還是只能使用傳統的電腦主機,靠著 2 位元的方法進行大氣模擬,所以目前傳統超級電腦還沒有被取代的機會。

結語:超大主機與超大計算

依摩爾定律,每十八個月,CPU 晶片的製成就會進步一倍,同時,超級電腦中心卻是一直受益於摩爾定律帶來的好處,也就是 CPU 的能力越來越強,而價格也越來越親民,也讓氣候氣象模擬的空間精度也隨之升高。

Neumann 等人也預計在 2030 年代後,進行 1 公里等級的超高精度計算也將不是夢想[7],而在 Exascale 主機降臨前的這個年代,有些超級計算中心已經以節點(Node)做為計算資源耗費的單位(Node per hour),而非 CPU per hour,顯示出大型主機對計算資源消耗的想法以從 CPU 規模上升到了 Node 規模。

一方面使用者受益於更多的 CPU 資源,但同時這些主機也要求更新更大量的計算能力,如瑞士的 Piz Daint 與瑞典的 LUMI,皆要求使用者的計算必須是含有 GPU 運算能力,而純粹靠 CPU 運算的軟體,將無法享受到同等的巨量資源。

IBM為橡樹嶺國家實驗室開發的Summit超級計算機(或 OLCF-4)。圖/flickr

而相應的挑戰也隨之而生,除了硬體將進入 Exascale 的時代,軟體也將一同進入這場大戰,才能享受同等的資源。另外一個挑戰則是綠色挑戰,1 公里精度的氣象模擬,每一模擬年將耗盡 191.7 百萬瓦時[6],相當於台灣一個家庭可以用上 43 年的電量[註三],也可以讓特斯拉的 Model 3LR 從地球開到月球來回開 1.5 次[註四],其耗能之巨,也是我們計算或是模擬界科學家應該要注意到的問題,也是為何除了 HPC Top500 外,亦有 Green 500[13]的原因吧,而具有超高效能的 Frontier,也同時奪下了 Green 500 之冠,也算是 Exascale 的好處吧。

註解與文獻

  • [註一] 若需使用 JSC 的超級電腦,必須透過不同的計畫項目進行申請,其計畫主持人(PI)為歐洲或是德國的研究者[14]
  • [註二] 日本的富岳其實也可以進行到 Exscale 的運算,只是要超頻而已,想當然爾是非常規設定。
  • [註三] 根據台電 2021 年新聞稿中,家庭離峰平均用電為 339 度以及 6-9 月為 434 度推估。
  • [註四] 根據 Tesla M3 LR 為 25kWh per 100 Miles,月球至地球為 384400 公里推估
  • [註五] Feng 也公開了他的程式碼
  • [1] Forschungszentrum Jülich 新聞稿
  • [2] EUROPE HPC 新聞稿
  • [3] 2022 年六月 HPC Top 500 名單
  • [4] 國家高速網路中心台灣杉二號介紹
  • [5] 司徒加特超級電腦中心:HAWK 主機之連線架構
  • [6] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler and C. Schär, “Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations,” in Computing in Science & Engineering, vol. 21, no. 1, pp. 30-41, 1 Jan.-Feb. 2019, doi: 10.1109/MCSE.2018.2888788.
  • [7] Neumann P et al. 2019, Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?. Phil. Trans. R. Soc. A 377: 20180148. http://dx.doi.org/10.1098/rsta.2018.0148
  • [8] Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., & Wilkinson, J. M. (2017). Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?, Bulletin of the American Meteorological Society, 98(1), 79-93
  • [9] Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
  • [10] Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. https://gmd.copernicus.org/articles/13/4809/2020/
  • [11] 「嗨量子世界!」~ Nature Newsletter
  • [12] Feng Pan, Keyang Chen, and Pan Zhang, Solving the sampling problem of the Sycamore quantum circuits, accepted by Phys. Rev. Lett.
  • [13] 2022 年六月 HPC Green 500 名單
  • [14] JSC 系統申請辦法

文章難易度
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

0
0

文字

分享

0
0
0
只有女生需要?「子宮頸癌疫苗」不論性別都要打!
鳥苷三磷酸 (PanSci Promo)_96
・2023/11/21 ・2525字 ・閱讀時間約 5 分鐘

為什麼男生也要打子宮頸癌疫苗?

你知道嗎?其實子宮頸癌疫苗應該被正名為「人類乳突病毒疫苗(HPV 疫苗)」,因為並不是只有子宮的人才要打!在過去的研究報告中,女性的子宮頸上皮細胞因感染人類乳突病毒(HPV )的高危險型別(會致癌的型別如16、18型)後,受到病毒蛋白的作用而使正常健康的子宮頸細胞會出現癌前病變,之後就有極高可能變為子宮頸癌 1,因此在這樣的認知基礎與方便宣傳下,HPV 疫苗漸漸被以「子宮頸癌疫苗」代稱,但這反而讓大眾形成「只有女性需要施打」的迷思。其實,男性也該依醫囑施打 HPV 疫苗唷!

為什麼男生也會感染 HPV?病毒感染症狀、傳播方式?

人類乳突病毒(Human Papillomavirus ,簡稱 HPV)是一種 DNA 病毒,目前已有兩百多種型別被發現,雖然被稱為「乳突」病毒,但實際上跟乳頭沒關係,千萬不要混淆了。是因為感染 HPV 病毒的病患,會造成感染部位的表皮細胞增生,在臨床病理切片下看起來像是鐘乳石般突起而有這樣的命名 3。大多數 HPV 類型會感染皮膚上皮細胞,並引起常見的皮膚疣,約有 40 種型別會感染黏膜上皮細胞。

除了上述 HPV 16、18 型會引起侵襲性子宮頸癌與其他男女生殖部位癌症外,若感染 HPV 6、11型人類乳突病毒可能會引起尖形濕疣(俗稱菜花)或其他生殖器病變,但由於致癌機率相對小,被分類為低危險型別 2, 7

依照感染部位的不同(黏膜與非黏膜部位),與感染的 HPV 類型而有不同的病徵或病變。 圖/美國疾病管制中心(CDC)

HPV 的傳染途徑主要是經由性行為的接觸傳染,極少數是經由母嬰垂直感染 (子宮內 HPV 可能是經由精液由下生殖道上升感染,或嬰兒出生時產道直接接觸感染)。在性行為過程中,病毒會透過接觸皮膚、黏膜或體液而感染。

有時,若外部生殖器接觸帶有 HPV 的物品,也可能造成 HPV 感染。根據統計資料,不論男女生,每個人一生中約有 5-8 成的機會感染到 HPV。儘管大多數感染 HPV 的情況,是無症狀且可透過身體的免疫系統而自行消退,但若是持續感染的情況,則會發展為肛門生殖器疣、癌前病變以及子宮頸癌、肛門生殖器癌或頭頸部位癌症。因此,如果是伴侶的性經驗較複雜、自身有長期免疫力低落等情況,都可能增加 HPV 的感染風險。

最新研究指出,全球三分之一的男性感染 HPV

過去許多有關 HPV 的研究,皆主要探討「如何預防女性因感染 HPV 而罹患子宮頸癌」,但 2023 年 9 月國際頂尖期刊 Lancet 系列的 Lancet Global Health 中發表的論文帶來了新的視角。

研究團隊回顧 1995 年到至 2022 年間發表的 65 份研究報告中,評估一般男性族群生殖器 HPV 感染的盛行率,發現在 15 歲以上的男性中,每3名就有1名感染至少一種 HPV 類型,每 5 名就有 1 名感染一種或多種高致癌型別的 HPV,導致男性罹患生殖器疣以及口腔癌、陰莖癌和肛門癌等疾病。研究團隊認為不管是在哪個年齡層的男性,又或特別是性行為較活躍的男性,其生殖器官就是「 HPV 病毒重要的儲存庫」4

世界衛生組織(WHO)也針對研究內容表示:「男性生殖器 HPV 感染盛行率的全球研究證實了 HPV 感染的廣泛性。高危險 HPV 類型的感染可導致男性頭頸部位的癌症(如口腔癌、口咽癌)、陰莖癌和肛門癌。我們必須繼續尋找機會預防 HPV 感染,並降低男性和女性 HPV 相關疾病的發生率 5。」

另外,根據台灣2020癌症登記資料中,頭頸癌是台灣男性發生率第3名的癌症,而在頭頸癌中的口咽癌,被發現有 30% 是與 HPV 感染相關 6。從這樣的數據資料來看,若要全面性預防 HPV,更需要兩性一起施打疫苗。

男性也會感染 HPV 病毒。圖/wikimedia

全球跟進,台灣不可置身事外。世界男性的施打情況為何?

全世界已有 126 個國家將 HPV 疫苗納入國家疫苗接種計畫,其中已有 58 個國家提供男女共同施打 HPV 疫苗,其中包括美國、英國、德國、澳洲等國家。以美國為例,從 2019 年統計的 HPV 疫苗覆蓋率來看,男性中約有 69.8% 的人至少接種過 1 劑 HPV 疫苗 7

反觀台灣目前只提供國中「女生」公費接種 HPV 疫苗,雖然已經有地方政府自行編列預算讓轄區內國中「男生」同樣享有公費接種疫苗服務,但以台灣現階段的公衛政策而言,還是將 HPV 疫苗接種的主要目標放在 9 至 14 歲、未開始有性行為的女生上,不只未跟上國際趨勢,兩性健康平權也尚有努力空間。

HPV 疫苗種類及補助

國內目前提供三種為食品藥物管理署核准的 HPV 疫苗,不論施打哪一種疫苗,皆可預防最重要的第 16 型及第 18 型所引起的高致癌風險,保護力約 8 年,分別為下列種類 9, 10

種類保蓓 Cervarix(二價)嘉喜 Gardasil 4(四價)嘉喜 Gardasil 9(九價)
適用對象9-14 歲女性 (2 劑)
15 歲以上女性 (3 劑)
9-13 歲女性 (2劑)
14-45 歲女性 (3劑)
9-26 歲男性 (3劑)
9-14 歲男女性 (2 劑)
15-45 歲男女性 (3 劑)
預防型別16、18 型6、11、16、18 型6、11、16、18、31、33、45、52、58 型
價位每劑疫苗市價約 3000-7000 元
*補助:國民健康署自 107 年 12 月底開始,全面推動國中女生免費接種 HPV 疫苗服務。
表格資料來源:台北市政府衛生局、衛福部健康署

參考資料

  1. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1799#list0 國民健康署
  2. https://www.commonhealth.com.tw/article/82881 康健網站
  3. https://www.syh.mohw.gov.tw/?aid=626&pid=112&page_name=detail&iid=384 新營醫院
  4. https://www.who.int/news/item/01-09-2023-one-in-three-men-worldwide-are-infected-with-genital-human-papillomavirus WHO文章
  5. https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(23)00305-4/fulltext Lancet Global Health期刊論文
  6. https://www.cna.com.tw/news/ahel/202309280241.aspx 新聞
  7. https://www.cdc.gov/vaccines/pubs/pinkbook/hpv.html 美國CDC
  8. https://www.who.int/news/item/20-12-2022-WHO-updates-recommendations-on-HPV-vaccination-schedule WHO指引
  9. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1752&pid=11889 國民健康署
  10. https://health.gov.taipei/cp.aspx?n=239A1E89D0295C00&s=437A8C567509EB04 台北市政府衛生局
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
184 篇文章 ・ 293 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
0

文字

分享

0
4
0
標誌物理學新頁的會議:一場顛覆古典物理的寧靜革命——《大話題:量子理論》
大家出版_96
・2023/04/14 ・2428字 ・閱讀時間約 5 分鐘

被挑戰的古典物理世界觀

古典物理學家建立了一系列的假設,將他們的思想統整起來,這使得他們很難接受新的概念。以下列出他們對物質世界有哪些確定不疑⋯⋯

  1. 宇宙就像一臺放在絕對時空框架中的巨型機器。複雜的運動可以理解為機器內部各零件的簡單運動,即使這些零件並不可見。
  2. 牛頓的理論說明一切運動都有原因。如果一個物體表現出運動,人們一定能找出運動的原因。這是單純的因果關係,沒有人質疑這一點。
  3. 如果我們知道物體在某一點(例如現在)的運動狀態,就能判斷它在未來甚至過去任何時刻的運動狀態。沒有什麼不確定,一切都是先前的一些因素造成的結果。這是決定論
  4. 馬克士威電磁波理論完全描述了光的性質,並可由湯瑪士・楊格在 1802 年簡單的雙狹縫實驗中觀察到的干涉圖樣加以證實。
  5. 運動中的能量可以用兩種物理模型來表達:一種是粒子,其表現就像無法穿透的球體,例如撞球;另一種是,其表現就像在海面上朝著岸邊打去的海浪。這兩者是互相排斥的,即能量必定只以其中一種方式表現。
  6. 一個系統的性質,如溫度或速度等,要測量得多準確都可以。只要降低觀察者的探測強度或根據理論來校正即可。原子級的系統也不例外。
古典物理學家建立了一系列的假設。 圖/《量子理論

古典物理學家認為以上這些事情都是千真萬確的。但這六個假設最終都會被證明是有疑慮的。首先體認到這一點的,是 1927 年 10 月 24 日在布魯塞爾大都會飯店會面的一群物理學家。

1927 年索爾維會議──量子理論的成形

第一次世界大戰爆發前幾年,比利時實業家歐內斯特・索爾維(1838-1922)在布魯塞爾主辦了一系列國際物理會議,延請來賓傾全力討論某項預訂的題目。只有獲得特別邀約的人才能出席,人數通常限制在30人左右。

1911 年至 1927 年舉行的前五次會議,以最令人大開眼界的方式記錄了 20 世紀物理學的發展。1927 年的會議專門討論量子理論,每場至少都有 9 位理論物理學家出席,他們對量子理論做出了根本貢獻,並且最終都因而獲得諾貝爾獎。

1927 年索爾維會議的合照。影響 20 世紀物理學發展的巨擘都齊聚一堂,其中包含許多在教科書中耳熟能詳的物理學家,包括第一排的馬克斯・普朗克(左二)、瑪麗・居禮(左三)、阿爾伯特・愛因斯坦(正中)。圖/大話題:量子理論

要介紹有哪些人推動了最現代的物理理論,這張 1927 年的索爾維會議照片是很好的起點。後代將會驚歎,1927 年這些量子物理巨擘竟然在這麼短的時間、這麼小的地方齊聚一堂。

寥寥數人在這麼短的時間內就釐清了這麼多事情,在科學史上可說是空前絕後。

看看第一排坐在瑪麗・居禮(1867-1934)旁邊那位愁眉苦臉的馬克斯・普朗克(1858-1947)。普朗克拿著帽子和雪茄,看來有氣無力,好像在花了這麼多年試圖反駁自己對物質和輻射的革命性想法後,他已筋疲力盡。

馬克斯・普朗克(1858-1947,第一排左二,即對話框所指處),提出了「能量量子化」的革命性理論。圖/大話題:量子理論

幾年後,在 1905年,瑞士一位名叫阿爾伯特・愛因斯坦(1879-1955)的年輕專利事務員對普朗克的概念進行推論。

前排正中間穿著禮服拘謹地坐著的就是愛因斯坦,他自從 1905 年發表早期論文之後,二十多年來一直苦思量子問題,但未得出任何真實的見解。他一直出力推動量子理論的發展,並以驚人的信心支持其他人的獨創見解。他最偉大的理論「廣義相對論」使他成為國際知名學者,那已是十年前的事了。

在布魯塞爾,愛因斯坦為了量子理論奇怪的結論,和最受敬重、最堅定的量子理論支持者尼爾斯・波耳(1885-1962)爭辯。之後波耳將比任何人都更嘔心瀝血,致力於解釋和理解量子理論。波耳在照片中間那排的最右邊,這位時年 42 歲的教授正如日中天,顯得輕鬆自信。

阿爾伯特・愛因斯坦(第一排左三)與尼爾斯・波耳(第二排右一)。圖/大話題:量子理論

愛因斯坦後方最後一排的埃爾溫・薛丁格(1887-1961)身穿獵裝,戴著領結,顯得非常隨意。他的左邊跳過一人後是「少壯派」的沃夫岡・包立(1900-58)、維爾納・海森堡(1901-76)──兩人當時才二十幾歲。第二排則有保羅・狄拉克 (1902-84)、路易・德布羅意(1892-1987)、馬克斯・波恩(1882-1970)和波耳。這些人的發現與微觀世界的基本性質息息相關,因此名留青史,像是薛丁格方程式包立不相容原理海森堡測不準原理,以及波耳原子等等。

他們都聚在這裡──從 69 歲、年紀最大的普朗克(他在 1900 年開啟了一切),到 25 歲、年紀最小的狄拉克(他在 1928 年完成了這個理論)。

1927 年 10 月 30 日,拍下這張照片的隔天,與會者的腦海中還縈繞著波耳與愛因斯坦的歷史性交鋒。他們在布魯塞爾中央車站坐上了火車,各自返回柏林、巴黎、劍橋、哥廷根、哥本哈根、維也納和蘇黎世。

他們帶著科學家所創造出最離奇的一套理論離開。大多數人私底下可能同意愛因斯坦的觀點,認為這種被稱為量子理論的瘋狂想法,只是通往更完整理論的一步,以後會被更好、更符合常識的理論推翻。

——本文摘自《大話題:量子理論》,2023 年 3 月,大家出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 8 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

1

3
1

文字

分享

1
3
1
搭上量子科技熱潮,「量子系統推動小組」帶領臺灣站穩腳步
研之有物│中央研究院_96
・2023/04/14 ・7886字 ・閱讀時間約 16 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/郭雅欣
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

臺灣量子科技的未來

量子科技腳步不遠了,臺灣甚至為此成立了「量子國家隊」。我們身處這轉變的時刻,應該先做好準備,了解量子科技究竟包含哪些部分,又會帶來哪些影響。中央研究院應用科學研究中心張文豪特聘研究員長期研究光量子技術,並擔任量子系統推動小組執行長。

在這次中研院「研之有物」的訪談中,張文豪除了帶領我們認識光量子技術裡的關鍵外,也會談談量子國家隊在忙些什麼?能否在這股量子科技發展的浪潮中,帶領臺灣站穩腳步?

中研院應科中心的張文豪特聘研究員,目前擔任量子系統推動小組執行長。圖/研之有物

量子科技即將走入你我的生活。有一天,我們將打開以量子位元建構的量子電腦,透過量子演算法進行各種計算,並把資訊用量子傳輸的方式傳遞出去。這樣的日子可能不遠了~

為了因應量子科技時代的來臨,行政院去(2022)年 3 月宣布成立「量子國家隊」,由 17 個產學研團隊組成,包含了通用量子電腦硬體技術、光量子技術、量子軟體技術與應用開發這三大領域。同時亦成立「量子系統推動小組」進行跨部會整合,協助國家隊達成目標。

通用量子電腦硬體技術,是指開發以量子位元作為運算位元的量子電腦,在概念上接近一般電腦,有一個 CPU,有控制、讀取的晶片,可以透過程式設計得到你想做的計算。中研院的陳啟東研究員陳應誠研究員都是此領域的計畫主持人之一。

量子軟體技術與應用開發,顧名思義是軟體及演算法的開發,也包含未來量子電腦裡必須有的量子糾錯設計,以及量子計算的應用開發,如金融、製藥與材料開發等。中研院的鐘楷閔研究員是這領域的計畫主持人之一。

光量子技術,分為「光量子計算」與「量子通訊」。光量子計算是以光作為量子位元而設計的計算系統,而量子通訊則是以光的量子態來傳遞訊息。

中研院應科中心特聘研究員張文豪長期研究光量子技術,並擔任量子系統推動小組執行長。在這次「研之有物」的訪談中,張文豪深入淺出地介紹了光量子技術,也與我們分享了許多量子國家隊的願景。

  • 在量子國家隊的三大領域中,您的專長在光量子計算與量子通訊。請問光量子計算與通用量子電腦有何不同?

光量子計算系統是針對特定問題而設計,當一個光量子系統設計好之後,由於光的晶片、路徑等都已經確定下來,無法中途改變,所以,它就只能對同一種問題做計算。光量子計算的困難在於光會跑,而且是用光速在跑,不會回頭。

也就是說,光子不會中途停止,一定會把整個計算做完。所以它跟一般的量子位元不一樣,一般的量子位元做完計算可以恢復原來的狀態。光子跑完就沒了,無法暫存,如果要重啟計算,要再給予新的光子。光量子計算對於一些傳統電腦難以解決問題,例如最佳化以及取樣的問題,有很大的幫助。

  • 量子通訊用的也是光量子技術,它和現在以光纖傳輸資訊,有什麼不同?

過往的光通訊是用「有沒有光」來當 0 跟 1 兩種狀態,量子通訊則是用光的量子態來當 0 跟 1,把訊息全部都用量子態編碼,這就是量子通訊的基本概念。而量子通訊的好處是因為竊取的動作會干擾量子態,因此資訊不容易被竊取,或者說外人無法在不被發現的情況下竊取資訊。這種通訊方式可以透過量子的性質本身,來保護資訊安全。

量子加密的概念如上影片,Alice 要傳訊息給 Bob 之前,會先發送解密訊息的量子金鑰給 Bob,這個金鑰是由一顆顆光子構成,每顆光子都被賦予不同的偏振方向和順序。因為駭客無法與 Alice 逐個比對光子的偏振,竊取資訊時會干擾原本的量子態,導致接收端結果異常,Alice 和 Bob 會發現有人在竊聽。影/YouTube
  • 意思是說,量子通訊的發展不是為了讓資訊傳輸得更快,而是為了更安全?

對,其實這也牽涉到量子電腦的發展。因為量子電腦的一個重點,就是可以破解現今最常使用的密碼系統 RSA(知名的非對稱加密演算法)。雖然量子電腦可能不會那麼快發展出來,可能還要再等幾十年,但仔細想想,有沒有什麼資料其實必須保密幾十年呢?

有心人士可以現在就先截取訊息,等幾十年後有了量子電腦再來進行破解。基於這個原因,量子通訊的加密技術必須走得比量子電腦更快才行。

  • 量子通訊現在發展到什麼程度了?有什麼困難點?

在目前的各種量子技術中,量子通訊應該是發展最快的,它有一些難度,但沒有量子電腦那麼難。很好的量子通訊系統,要有好的單光子光源、高效率的偵測器,以及不會破壞量子態的傳輸通道。

好的單光子光源以及偵測器都不容易製作,但是因為量子通訊很重要,所以大家開始用替代的光源,比如把雷射光降到非常弱,弱到一次只會跑出一顆光子,偵測器的效率可能也只要六七成。這樣的話,儘管不是那麼完美,但還是可以得到量子通訊的好處。

傳輸通道則是另一個困難點。訊息在傳輸過程中會慢慢衰減,所以目前的光纖每隔一段距離都有放大器,但放大器卻會對量子訊號造成干擾。清華大學褚志崧副教授團隊,為量子國家隊光量子研究團隊之一,他們就在進行這方面的研究,透過推動小組協助與中華電信建立合作,接下來就要在新竹、楊梅之間找到一條沒有經過放大器的光纖進行長距離量子通訊測試。

還有一種發展趨勢,就是往天上走,以衛星或低軌衛星來做量子通訊,這也是另一個較不受干擾的做法。

清華大學褚志崧副教授(左1),在量子推動小組的協助整合下,預計在新竹、楊梅之間找到一條沒有經過放大器的光纖進行長距離量子通訊測試。圖/工程科技推展中心

單量子的重要挑戰

量子通訊光源即便有點不盡完美,但仍可接受,不過光量子計算就不行了。光量子計算必須有良好的單光子光源及高效率的偵測器,才能正確地讓光子在系統中進行運算,並準確偵測輸出的結果。因此,「如何製造出好的單光子光源?」是張文豪以及其他光量子研究團隊的重要挑戰。

單光子光源指的是「一個時間點只會放出一個光子」的光源。從原理來說,這樣的光源是一個單一的二能階系統,也就是「基態—激發態」,當一個位於基態的電子獲得能量,躍遷到激發態,然後從激發態掉回基態時,就放出一顆特定波長的光子。

單光子光源是一個二能階系統,每次只能放出一顆光子。圖/研之有物(資料來源|Scientific Reports

在這樣的二能階系統中,只要有一顆電子躍遷到激發態,在它還沒掉回基態前,我們無法激發另一顆電子到激發態去,張文豪形容:「所以這就像捷運的閘門,前一個沒過去之前,後一個進不來。」也因為這樣的機制,每次就只能放出一顆光子。

那麼,要在哪裡找到這樣的二能階系統呢?科學家最一開始的想法是用「單一原子」,例如鈉原子。但要把單一個原子分離出來太困難了,所以到了公元 2000 年後,科學家轉而從半導體製程上,尋找製造出單光子光源的「人造系統」,而目前有兩種最主要的做法,一個是製造「量子點」,一個是製造「缺陷」。

量子點是利用半導體製程做出的一個小體積物體,通常是將兩種不同材料疊起,因為彼此間的應力而凸起成一個「島狀物」,外面再用另一種材料包覆。這個島狀物裡面會產生類似於原子的能階,所以也被稱為「人造原子」。

除此之外,在晶體中製造出某些特定的缺陷,也能達到單一光子源的效果。這類缺陷中最常見的就是鑽石裡的「NV center」,意思是在鑽石晶體結構中,其中一個碳由氮(N)取代,這個氮的隔壁又有一個碳被拿掉,出現一個空缺(Vacuum)。這樣的缺陷裡也會產生上述的二能階系統,可以如單一原子、量子點一樣,放出單光子。

在鑽石晶體結構中,原本都是碳原子,如果其中一個碳由氮(N)取代,這個氮的隔壁又有一個空缺(Vacuum),這樣的材料缺陷系統可以放出單光子。圖/Quantum Beam Sci.
  • 是否可以比較量子點與材料缺陷這兩種做法,各有什麼優缺點?

目前為止做得最好的單光子光源其實是量子點,可以產生幾乎完美的單光子,但是它必須在低溫環境下才能運作。而材料缺陷則大部分可以在室溫下運作。

我們還必須考慮單光子光源所放出的光子,是否處於我們需要的波段。舉例來說,在目前的光纖裡,光波長約在 1310~1550 奈米,因為這是損耗很低的波段。而前述的鑽石 NV center 產生的光,則固定是 600 多奈米的紅光,波長還不夠貼近光纖傳輸波段。

現在有許多團隊,都在嘗試從鑽石裡製造出其他缺陷,以符合光纖傳輸的波段,也有人開始嘗試其他材料,例如被稱為第三代半導體的碳化矽。

  • 單光子光源未來還會往哪個方向發展?理想的單光子光源是什麼樣子?

我們也希望單光子光源,可以用脈衝來激發,讓光子出現的時間差都是固定的。脈衝雷射激發是像機關槍一樣,一打開光子就以相同的間隔,源源不絕地出來。更理想的情況是,我們如果能把單光子光源做成電激發的元件,就可以在我想要有光子的時候,就打出一道脈衝,產生一個光子。

以目前的半導體製程,有成功做到過打一道脈衝、換一個光子的過程,但必須在低溫操作,效率也不理想。

  • 您的研究團隊最近嘗試以二維材料製造單光子光源,這部分目前有什麼進展?

我們最近使用的二維材料是六方晶格的氮化硼(hBN),用來做室溫的單光子光源。氮化硼蠻有趣的,就像二維的鑽石,寬能隙又是絕緣體,不太和其他東西起作用,裡面的缺陷也會形成單光子。

我們幾年前跟台積電合作,用化學氣相沉積(CVD)做出晶圓尺寸的大面積氮化硼,並發表在《自然》Nature)期刊上。我們未來可以透過這技術進行「缺陷工程」,也就是控制在哪裡製造出缺陷,產生單光子輻射的陣列。例如用聚焦離子束打掉其中某些位置的原子.再透過熱處理修復。先破壞再建設,才能產生缺陷。這個技術以目前來說,還是很有挑戰性。

  • 二維材料最近似乎有愈來愈火紅的趨勢?

在過往的傳統半導體研究中,往往將二維材料當成垃圾,不過現在,垃圾變成黃金了。以前這種材料是被用來當固態潤滑劑,因為層與層之間很容易剝落、滑動,根本沒甚麼用處。

但自從石墨烯出現之後,大家才意識到二維材料的好處,而且何必一定要用石墨烯?有一大堆半導體材料都是這樣一層一層的,把它們拿來做電子元件不是更好?所以現在很多人都在做二維半導體材料。

張文豪向研之有物團隊介紹單光子光源的測量方式。圖/研之有物

抓到了!真的是單一光子!

儘管有了製造單光子光源的方法,但該如何確認放射出來的是單一光子呢?

張文豪解釋,單光子的定義是同一時間點只放出一個光子,「所以是同一時間只有一顆,並不是真的只放出一顆。」換句話說,光子其實是像機關槍一樣,源源不絕地一直從光源放射出來的,而且每個光子之間的時間間隔也並不平均。

測量是否為單光子的方法稱為「HBT 實驗裝置」,包含一個分光鏡、兩個偵測器(D1 與 D2),以及一個可以決定要啟動計時或停止計時的計時器。

HBT 實驗裝置示意圖。圖/研之有物

當每一個光子遇到分光鏡時,會隨機前往 D1 或 D2,如果 D1 偵測到光子,計時器就會開始計時;如果 D2 偵測到光子,則會停止計時。因為光子是隨機前往 D1 或 D2,所以每一次停止計時,可能測到是兩個、三個、或四個……不等的光子出發間隔時間。

如果有兩個光子是同時出發,且它們正好分別通過 D1、D2,那麼就會測到一組間隔時間為 0 的數據。所以相反的,如果測量出的結果中,完全沒有間隔時間為0的數據,就可以確認光源是單光子光源

HBT 裝置的量測數據示意圖,可以確認光源是否為單光子光源。如果兩光子的時間差(延遲時間)為 0 秒,符合計數也是 0,則可以確認該光源為單光子光源。圖/研之有物(資料來源|科儀新知

張文豪指出,HBT 實驗裝置要準確,也考驗兩個偵測器的敏銳度。「目前效率最好的是用超導體來做偵測器,不過這樣的話,偵測器也得在低溫環境。」

  • 除了單光子光源與偵測器外,光量子計算還需要哪些相關的技術配合?

光量子計算還是必須在光量子晶片上運作,用的是積體光學,就像積體電路一樣,只是用波導取代電線、光子取代電子。這其中的製程必須讓光能在晶片裡前進、轉彎,做一些操作。中央大學陳彥宏特聘教授的團隊,是量子國家隊光量子研究團隊之一,主要工作就是開發光量子晶片

陳彥宏團隊所研發之光量子位元晶片。圖/陳彥宏
陳彥宏團隊預計於 2023 年開發能執行容錯式秀爾演算法之光學量子運算晶片。圖/陳彥宏
  • 臺灣發展量子科技的前瞻性或潛力如何?我們有什麼優勢?

臺灣早期生產很多電腦,當時我們做的事情主要是零組件的開發、組裝,所以我常笑稱是一種「偽高科技組裝業」。可是臺灣現在已經不一樣了,臺灣從這個組裝業,慢慢掌握關鍵的製程,當產業供應鏈整個建構起來之後,現在變成了全世界很重要的製造中心。

如果未來量子電腦量產,臺灣絕不可能缺席,也不能缺席。為此,我們必須知道,從零到有把一臺量子電腦建構起來需要多少技術。這是一個龐大的系統工程,需要各種人才與技術。我們要知道每個技術細節,才會知道國內各研究單位、法人,以致於工研院、經濟部和產業界,各自可以扮演什麼角色。

  • 成立國家隊來發展量子科技,是為了整合資源的考量?

因為我們的人力與資源都有限,所以必須透過整合的方式,各團隊做自己擅長的部分,再用系統整合把大系統建構起來。最重要的目的,是在每一個環節把技術與人才建立起來。

我們推動小組還找了中研院天文所的王明杰研究員來當總工程師,他負責連結各團隊的不同技術,橫向整合。為什麼找上天文背景的王明杰博士?這很有趣。

第一個原因在於王明杰是超導材料與偵測器的專家,因為天文觀測裡要偵測很微弱的訊號,他們必須要發展非常靈敏的偵測器。

第二個原因是,天文研究都是國際性的大團隊,例如蓋一座大型天文台,各國不同的單位個別負責開發部分技術且為了同一個目標努力,需要有總工程師來連結各團隊所開發的技術,透過系統工程變成最後的系統。做天文觀測的人比較有這樣跨團隊組大系統的經驗,所以我們就請他來協助。

  • 量子科技現在還沒有發展出產業,培養出的人才怎麼辦?

量子科技並不是全新的技術,而是範圍很廣的跨領域技術,所以你學會了這些技術,仍然可以在現有的科技產業發揮所長。等到有一天公司需要投入量子科技的時候,儘管公司老闆可能沒有量子的知識和概念,但公司裡有這些背景知識的人才就可以立即參與。

所以人才是最重要的,我們必須現在就開始把量子的 DNA 植入產業界。如果等需求出現才開始培育人才,就來不及了。

  • 中研院預計在南部院區建立量子研發基地,可否談談這部分的規劃?

我們預計在 2023 年下半年進駐南部院區的研究大樓 II,建置一些製程與量測的核心設施。此外,還會蓋一棟「量子實驗大樓」,主要做一些精密的量測,也包含一部分精密製程。

未來,這個量子研發基地將會是一個提供國內產學研單位進行量子科技研究的基地,所建置的核心設施也將開放給其他研究團隊進駐使用進行研發,有點類似國家同步輻射中心,透過建置一個大型的量子科技實驗場域,讓需要的國內外團隊共同使用。

這也是希望能橫向、縱向整合資源,不要重複投資。畢竟我們資源有限,應該集合大家的力量,攜手共同邁向臺灣量子新世代。

延伸閱讀

  1. 量子系統推動小組網站
  2. 工程科技推展中心(2023)。〈【多功能量子通訊網路】 褚志崧副教授|國立清華大學物理學系〉,YouTube。
  3. Lodahl P., Ludwig A., & Warburton R.(2022)。〈決定性的單光子源〉(張鳳吟翻譯), 《物理雙月刊》。
  4. 王志洋、陳啟東(2021)。〈量子世代產學佈局〉,《科學人》。
  5. 科技魅癮(2022)。〈量子新時代|全國70位科學家的超強大腦,如何一起推動量子計畫〉,YouTube。
  6. 陳彥宏(2021)。〈量子光電晶片將延續臺灣半導體晶片的榮耀〉,《臺灣研究亮點》。
  7. 郭雅欣(2019)。〈量子電腦到底有多霸氣?即將引爆終極密碼戰?!〉,《研之有物》。
  8. 林婷嫻(2017)。〈量子電子元件 hen 夯,但如何掌握像情人心難測的量子位元?〉,《研之有物》。
  9. 張文豪、徐子民(2006)。〈半導體量子光學〉, 《物理雙月刊》。
  10. 張文豪、徐子民(2004)。〈單量子點光譜技術的介紹與應用〉,《科儀新知》。
  11. Gillis, A. S. (2022, January 28). quantum cryptography. TechTarget.
  12. Shaik, A. B. D. a. J. W. I., & Palla, P. (2021). Optical quantum technologies with hexagonal boron nitride single photon sourcesScientific Reports, 11(1).
  13. Ishii, S., Saiki, S., Onoda, S., Masuyama, Y., Abe, H., & Ohshima, T. (2021). Ensemble Negatively-Charged Nitrogen-Vacancy Centers in Type-Ib Diamond Created by High Fluence Electron Beam IrradiationQuantum Beam Science, 6(1), 2.
  14. Chen, T. A., Chuu, C. P., Tseng, C. C., … Chang, W. H., & Li, L. J. (2020). Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)Nature, 579(7798), 219–223.
所有討論 1
研之有物│中央研究院_96
290 篇文章 ・ 3057 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook