Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

達文西奇想系列模型夏日限定優惠

PanSci_96
・2014/07/31 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 400 ・四年級

feature

8 月:擁有達文西 1.2.3.4.5.6.7.8 種天才研究

PanSci 不僅鍵盤上聊科學,也兼倡實作精神!
首度推出達文西系列模型,讓你動手指體會科學巨匠的工程藝術。

無窮盡的好奇心、是藝術家也是科學家,李奧納多.達文西(Leonardo da Vinci)神秘精細的發明手稿,複雜難解超越當代工程技術,只有少數設計在當時能被實現。

藉由現代細膩電腦繪製,只要拼湊簡單的零件模組,就能完成複雜的機械套件。捕捉達文西五百年前描繪腦中靈感的熱情時刻,體驗活躍多變的創作想像!

毋需膠水、不用電池,所有零件均可進行實際動作

-----廣告,請繼續往下閱讀-----

既然是重現大師手稿,當然每套模組都能進行實際機械運作。
每週限定發售兩款工藝,集滿四週八款,微型工藝博物館再度重現!

達文西奇想系列模型

飛行器 槳葉船 時鐘

飛行器

(短片)

槳葉船

(短片)

時鐘

(短片)

自動車 機械鼓 裝甲車

自動車

(短片)

機械鼓

(短片)

裝甲車

(短片)

加農炮 投石器

加農炮

(短片)

投石器

(短片)


PanSci 的有禮貌好康活動

活動A|文西30秒-影片徵件

憋尿對膀胱不好,憋著科學不講對大家不好,達文西的發明研究手稿收藏起來,科技不知道晚進步多少年。希望大家可以一起來分享科學!

活動辦法:
拍攝 30 秒短片並上傳至自己的facebook塗鴉牆,並將連結留言至PanSci粉絲團置頂活動文,即完成影片報名。

影片內容:
以 30 秒以內長度的影片,針對一組達文西系列模型,向其他泛科學讀者們分享相關科學知識,影片呈現方式不限,不一定要使用模型實體,可使用圖片,但所提及的模型一定要出現。

獎項:

  1. 幽默趣味獎 × 1   編輯群笑越久分數越高,最高分者得獎。
  2. 毀人不倦獎 × 1   科學內容深入淺出,編輯群看完頻頻點頭,點越久分數越高,最高分者得獎。
  3. 人氣影片獎 × 1   留言按讚數最高者得獎;若有兩名並列第一,則抽一名得獎。

活動時間:8/20 0:00 起跑,8/28 24:00 截止;9/1 公佈得獎名單。

獎勵: 每位得獎者可得到 8 入組全套

——————

活動B|叫文西來-開賣商品分享活動

時間: 7/31 ~ 8/2 24:00 截止(對!截止囉)

活動辦法:
在PanSci FB專頁置頂活動文下留言「8/5 達文西投石機加農砲矛矛大對決」按讚並分享,就會抽出 2 位幸運者各贈送 1 組開賣商品:投石機&加農砲。

得獎名單將於 8/4 (一) 公布,請密切注意得獎訊息。得獎者請於 8/8 (五) 17:00 前私訊姓名、電話、收件地址,逾期視同放棄。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

16
2

文字

分享

0
16
2
和鳥類學飛翔,讓人類學會飛行奧秘——《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》
快樂文化
・2021/01/30 ・3697字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

飛行的物理學

「觀察在稀薄高空中飛翔的老鷹,牠的翅膀是如何鼓動著空氣,讓沉重的身體得到支撐。物體對空氣施加的力量,等於空氣對物體施加的力量。」15 世紀末,達文西在筆記本如此寫道。達文西僅憑觀察,就掌握飛行的原理了。

飛行的原理讓達文西深深為之著迷。他發明人力驅動的飛行器,試圖證明人類能否飛上天,還設計人類可以操縱的翅膀。他仔細研究飛行中的鳥,並且提出飛行的假說:「鳥類張開寬寬的翅膀,加上短短的尾巴,準備起飛,」他接著寫道,「鳥類必須用力抬起翅膀,然後放下翅膀拍動下方的空氣。」

金鵰的翅膀善用空氣分子,身體起飛與降落。圖/天才達文西的科學教室

上圖的金鵰比空氣重,但是翅膀造形卻能善用空氣分子,讓身體起飛與降落。金鵰飛行的時候,你認為氣流通過翅膀上方與下方時,哪邊的速度較快?量量看, 1 公尺有多長,是金鵰身體的長度;再量量看 23 公尺有多長?這是牠的翅膀展開的長度!再想像一下:金鵰拍動翅膀、凌空起飛的模樣。你認為翅膀上方還是下方的氣壓比較大?可以解釋原因嗎?

達文西的《鳥類飛行手稿》。圖/天才達文西的科學教室

上圖的字跡與插圖,出自達文西的《鳥類飛行手稿》 (Codex on the Flight Of Birds)。他的研究,造福許多後世的科學家,包括丹尼爾•白努利 (Daniel Bernoulli)。他在 1738 年解釋了空氣流動的科學原理。

-----廣告,請繼續往下閱讀-----

白努利認為:鳥類飛行時, 因為翅膀結構的關係,空氣通過翅膀上方的速度較快, 使得氣壓較低,而空氣通過翅膀下方的速度較,使得氣壓較高。翅膀上方與下方的壓力差,進而造成了升力。

編按:解釋飛機能升空飛行的物理概念,除了白努利概念外,尚有其他因素,例如飛行時的角度、飛機造形和其他效應等。

有許多物理概念可以解釋飛機能升空的原因。圖/天才達文西的科學教室

飛機為什麼可以在天上飛?

開始調查吧!

我們蒐集資訊,一起設計翅膀,就跟達文西一樣!我們將蒐集涵蓋翅膀形狀、空氣與運動方面的資訊,也跟達文西一樣,提出許多問題。

問題:淚珠的形狀,和飛行有什麼關係?

下圖的形狀,好像淚珠的一側。看到這種形狀,是否讓你聯想到它與飛行的關係呢?

-----廣告,請繼續往下閱讀-----
翼型會聯想到噴射機的機翼或鳥翼的形狀。圖/天才達文西的科學教室

答案:這就是翼型。

淚珠的形狀,我們稱為「翼型」。這樣的造形,可能讓你想起噴射機的機翼或鳥翼的形狀。翼型的前端是較厚的圓弧,後端則逐漸變薄、變窄。

飛行中的翼型向前挺進,空氣分子往上也朝下移動。翼型下方的空氣分子,移動的速度慢於上方滑過的空氣分子。空氣分子移動速度較慢,造成的氣壓就比較大。想像一下:翼型下方的空氣,等於處在被壓縮的狀態,翼型下方,較強的氣壓向上推,造成的力量稱為「升力」

模擬飛行中翼型的空氣分子移動狀態。圖/天才達文西的科學教室

受到鳥類的啟發

看到鳥翼的切面,居然就是翼型,你是否大吃一驚呢?說穿了,航太工程師就是從飛行中的鳥類得到靈感。移動的翼型會切過空氣,與周圍的空氣產生了力的作用。空氣分子——渺小不可見卻能施展強大的力量,從四面八方擠壓著翼型。翼型向前移動的時候,因為與空氣產生了交互作用而起飛。

將書本平放在桌上一隻手塞到書本下方,然後把書托起來。你的手在書下施展的壓力,就像慢速通過翼型下方的高壓。另一方面,通過翅膀上方的空氣,移動速度較快,形成了較低的氣壓。

-----廣告,請繼續往下閱讀-----

空氣分子在機翼上的賽跑

讓我們進一步調查

問題:通過翼型上方的空氣,是否因為空氣要通過的距離較長,因此速度才會變快?

答案:根據美國的國家太空總署 (NASA) 工程師分析,機翼上方空氣的速度很快,只是為了比下方空氣更早抵達機翼後方,而不是因為距離較長。機翼上方的低壓空氣,其實速度更快!

畫出你的翼型

畫出屬於你自己的翼型,請標示以下項目

  • 高壓區
  • 低壓區
  • 快速移動的空氣
  • 慢速移動的空氣
  • 空氣流動的方向
  • 升力的方向
嘗試畫出屬於自己的翼型。圖/天才達文西的科學教室

和達文西一起賞鳥

達文西不只觀察飛行中的鳥,他也細看鳥的各種狀態,而且反覆觀看。他寫下筆一三己,問自己問題,例如:鳥類用什麼樣的方式使用翅膀?然後想辦法找出解答。以上這些行為,就是「觀察」。

當個自然觀察家吧!住家附近就可以好好賞鳥。不管你住在哪裡,都有機會走出家門,觀察鳥類百態及其飛行方式。記得帶著筆記本、鉛筆、色鉛筆與望遠鏡,可能的話帶一台相機,現在就抽出時間邁向戶外吧!

-----廣告,請繼續往下閱讀-----

你的觀察記錄將充滿獨一無二的個人風格。看到小鳥,先用肉眼觀察。接著,以素描記錄觀察到的現象:畫出鳥類的輪廓,有沒有值得注意的花紋或樣式?先畫下外形,然後加上顏色:鳥喙是什麼顏色?腳呢?也花點精力注意體型大小:和其他鳥類相較,有多大或多小呢?有沒有攝食?歌聲或叫聲怎麼描述呢?鳥類如何起飛?如何降落?鳥類會順風起飛嗎?其他數據、記錄地點、天氣與賞鳥的時段,都要記錄下來。

用相機記錄身旁觀察到的現象。圖/Pixabay

以飛機工程師的方式來思考!

用另一種角度來看翼型。機翼後緣窄窄的後翼往上或往下,會有怎樣的效果呢?飛機工程師設計噴射機的時候,讓機翼的後緣可以伸展或彎折,透過這樣的方式讓空氣分子流動,達成特殊目的。如下圖所示請利用本小節的訊息,預測這樣設計的目的,並把假說寫在筆記本裡。

機翼不同構型讓空氣分子流動,達成特殊目的。圖/天才達文西的科學教室

下圖是根據達文西的設計而重建的機械翅膀。翅膀的形狀不像翼型,但是從喇叭似的形狀看來,功能就是壓下空氣分子,以產生向上的升力。這款翅膀有沒有讓你想起某種哺乳動物呢?

根據達文西的設計而重建的機械翅膀。圖/天才達文西的科學教室
根據達文西的設計而重建的機械翅膀很像哺乳動物蝙蝠。圖/天才達文西的科學教室

一起動手玩:創造一個翼型

實驗材料:影印紙、膠帶、30 公分長的直尺、鉛筆(最好是六角鉛筆)、吹風機

實驗步驟

  1. 輕輕彎折紙張,以垂直方向對摺。這時紙張會有淺淺的摺線,並且出現翼型般的曲面。
  2. 把紙張轉成水平方向,曲面朝下。將上半張紙的邊緣往後移 1.27 公分,用膠帶固定。
  3. 把直尺伸到紙張底下,在 5 公分處用膠帶把尺和紙黏在一起;紙張的邊緣也要和直尺黏合。
步驟 1-3 的操作示範。圖/天才達文西的科學教室

4. 把鉛筆放在距離直尺 12.7 公分處,和直尺垂直擺放,並以膠帶黏和。

步驟 4 的操作示範。圖/天才達文西的科學教室

5. 將吹風機設定最小風量模式,待會對著翼型的吹端吹。你認為吹風機啟動後,會發生怎樣的現象?請先寫出假說。

-----廣告,請繼續往下閱讀-----

6. 現在測試你的實驗設計與假說。找個夥伴握住鉛筆兩端,翼型曲面朝向你。這時再啟動吹風機的小風量模式,直尺會怎樣?你感到翼型的升力了嗎?

步驟 5-6 的操作示範。圖/天才達文西的科學教室

實驗背後的科學

如同你所認知,通過翼型上方的空氣,移動的速度比翼型下方的空氣快。翼型下方的空氣分子在較高的壓力下受到擠壓。氣壓較高的空氣分子,向上推擠。翼型下方的高壓及上方的低壓,組合起來造成了升力!

——本文摘自《天才達文西的科學教室:像科學家一樣,發明、創造和製作STEAM科展作品》,2020 年 10 月,快樂文化

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
一直待在家快悶壞啦!嚴格的防疫管制,什麼時候才能放鬆?
寒波_96
・2020/04/29 ・1804字 ・閱讀時間約 3 分鐘 ・SR值 562 ・九年級

COVID-19(武漢肺炎、新冠肺炎)肆虐全球,沒有疫苗之下,各國都實施停航、停班、禁止出門等策略對抗疾病。好消息是,種種防疫措施確實有效,舒緩了疫情的嚴重程度,然而大眾生活也受到影響,疫情輕微的地方如台灣影響較小,災情嚴重的地方如武漢、倫巴底、紐約,卻是天翻地覆。

疫情趨緩後,似乎可以放鬆管制,可是什麼時候該放鬆卻是大學問,假如時機未到卻貿然行事,前面的努力與損失就白費了。

疫情趨緩是否就可放鬆社交隔離?圖/pixel

在台灣這種病例很少的國家,還有將病毒徹底封鎖的一絲可能。但是義大利、西班牙、美國等感染普遍的國家,在沒有疫苗的狀況下,要完全消滅病毒非常困難,不切實際。疫情嚴重的地區,一旦將疫情控制到一個程度,就必需適時放鬆管制,以免副作用大到弊大於利。

-----廣告,請繼續往下閱讀-----

傳染病有個數據叫作「基本傳染數 (R0)」,意思是在沒有防疫措施下,一個人感染後,平均會再傳染給幾個人。而「實際傳染數(R)」則是人為介入後,能再傳給幾個人。疫情至今應該不少人已經知道,實際傳染數超過 1 疫情就會擴大,至少不會減緩;實際傳染數不到 1,疫情則會漸漸退散。

奧地利的疫情感染曲線,當實際傳染數降低到 1 以下,可以考慮放鬆管制。圖/Kai Kupferschmidt@twitter

什麼時候可以放鬆管制?一派學者建議,先用嚴厲的措施把實際傳染數壓低到 1 左右,此時一人感染只會再傳給一人;這時感染人數是已知的,醫療體系也足以負荷,接著就能放鬆管制,讓實際傳染數維持在 1,如此也許能保持

防疫與生活的平衡。

有人或許會質疑,除惡務盡,為什麼要跟病毒妥協?問題在於防疫要付出代價。以深圳的調查為例,只有幾百感染者與上千接觸者的狀況下,靠著監控與隔離,可以將實際傳染數壓低到 0.4,一段時間後徹底終結疫情。

-----廣告,請繼續往下閱讀-----

可是當疫情規模擴大到幾十、幾百萬人的地區,上千萬、上億人的國家以後,要維持一樣的防疫強度,需要投入多少資源,才能維持社會不至於崩潰?

防疫是為了救人,假如防到弊大於利,卻是本末倒置。

資訊有限下,調整防疫管制的輕重,彷彿走在鋼索之上。必需根據監控、檢測取得資訊,再以模型估計,儘量掌握目前疫情的狀況,才能做出當下最適合的選擇。

資訊有限下,調整防疫管制的輕重,彷彿走在鋼索之上。圖/GIPHY

荷蘭的科學家 Jacco Wallinga 在 2004 年時提出一套方法,現在已經被普遍應用。基本概念是,目前偵測到的感染者,一定是前幾天被傳染,所以可以由現在的數字,回推到前幾天的狀況,然後短暫延伸,預測前幾天之後的未來——也就是現在的疫情狀況。

-----廣告,請繼續往下閱讀-----

英國的疫情感染曲線,實際傳染數雖然有下降,仍然超過 1,此時防疫措施不宜放鬆。圖/Kai Kupferschmidt@twitter

還有一項影響因素是免疫力。愈多人免疫,疾病的傳播愈困難,若超過一定比例的人免疫,達到「群體免疫」,就能大幅減緩疫情。不過對於武漢肺炎了解仍然不多,這部分目前暫時缺乏實用價值。

最重要的是,防疫措施必需根據現狀,隨時調整。

例如疫情初期防堵有成的新加坡,一直採取相對寬鬆的防疫措施;前幾天感染人數大增,充滿來路不明的本土社區傳染源後,隨即加強管制。客觀看來,新加坡現在防疫的管制強度,和疫情嚴重的紐約、倫敦已經沒有什麼不同。

這次疫情是全人類的戰爭,目前還在持續。

-----廣告,請繼續往下閱讀-----

延伸閱讀

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1093 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
達文西奇想系列模型夏日限定優惠
PanSci_96
・2014/07/31 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 400 ・四年級

-----廣告,請繼續往下閱讀-----

feature

8 月:擁有達文西 1.2.3.4.5.6.7.8 種天才研究

PanSci 不僅鍵盤上聊科學,也兼倡實作精神!
首度推出達文西系列模型,讓你動手指體會科學巨匠的工程藝術。

無窮盡的好奇心、是藝術家也是科學家,李奧納多.達文西(Leonardo da Vinci)神秘精細的發明手稿,複雜難解超越當代工程技術,只有少數設計在當時能被實現。

藉由現代細膩電腦繪製,只要拼湊簡單的零件模組,就能完成複雜的機械套件。捕捉達文西五百年前描繪腦中靈感的熱情時刻,體驗活躍多變的創作想像!

毋需膠水、不用電池,所有零件均可進行實際動作

-----廣告,請繼續往下閱讀-----

既然是重現大師手稿,當然每套模組都能進行實際機械運作。
每週限定發售兩款工藝,集滿四週八款,微型工藝博物館再度重現!

達文西奇想系列模型

飛行器 槳葉船 時鐘

飛行器

(短片)

槳葉船

(短片)

時鐘

(短片)

自動車 機械鼓 裝甲車

自動車

(短片)

機械鼓

(短片)

裝甲車

(短片)

加農炮 投石器

加農炮

(短片)

投石器

(短片)


PanSci 的有禮貌好康活動

活動A|文西30秒-影片徵件

憋尿對膀胱不好,憋著科學不講對大家不好,達文西的發明研究手稿收藏起來,科技不知道晚進步多少年。希望大家可以一起來分享科學!

活動辦法:
拍攝 30 秒短片並上傳至自己的facebook塗鴉牆,並將連結留言至PanSci粉絲團置頂活動文,即完成影片報名。

影片內容:
以 30 秒以內長度的影片,針對一組達文西系列模型,向其他泛科學讀者們分享相關科學知識,影片呈現方式不限,不一定要使用模型實體,可使用圖片,但所提及的模型一定要出現。

獎項:

  1. 幽默趣味獎 × 1   編輯群笑越久分數越高,最高分者得獎。
  2. 毀人不倦獎 × 1   科學內容深入淺出,編輯群看完頻頻點頭,點越久分數越高,最高分者得獎。
  3. 人氣影片獎 × 1   留言按讚數最高者得獎;若有兩名並列第一,則抽一名得獎。

活動時間:8/20 0:00 起跑,8/28 24:00 截止;9/1 公佈得獎名單。

獎勵: 每位得獎者可得到 8 入組全套

——————

活動B|叫文西來-開賣商品分享活動

時間: 7/31 ~ 8/2 24:00 截止(對!截止囉)

活動辦法:
在PanSci FB專頁置頂活動文下留言「8/5 達文西投石機加農砲矛矛大對決」按讚並分享,就會抽出 2 位幸運者各贈送 1 組開賣商品:投石機&加農砲。

得獎名單將於 8/4 (一) 公布,請密切注意得獎訊息。得獎者請於 8/8 (五) 17:00 前私訊姓名、電話、收件地址,逾期視同放棄。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。