3

4
3

文字

分享

3
4
3

當 AI 遇上公衛,是如虎添翼,還是充滿危機?

研之有物│中央研究院_96
・2021/07/19 ・5788字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪|黃曉君   
  • 撰文|周玉文、劉芝吟
  • 美術設計|林洵安

健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。

「天網」恢恢,公衛醫療的新利器

自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。

2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。

隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。

-----廣告,請繼續往下閱讀-----

國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?

中研院歐美所副研究員何之行認為,原因之一是,

《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。

健保資料庫爭議:誰能再利用我們的病歷資料?

來看看曾喧騰一時的「健保資料庫訴訟案」。

2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。

-----廣告,請繼續往下閱讀-----

民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。

但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。

種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。

我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?

-----廣告,請繼續往下閱讀-----
「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。圖/研之有物

去識別化爭點:個資應該「馬賽克」到什麼程度?

何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。

「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。

2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。

回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?

-----廣告,請繼續往下閱讀-----

何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。

現行法令留下了模糊空間,那麼他山之石是否能提供參考?

以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。

退出權:保留人民 say NO 的權利

另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。

-----廣告,請繼續往下閱讀-----

何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。

近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。

參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。

歐盟 GDPR 個資保護的四大原則

健保資料庫只是案例之一, 當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。

因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。圖/研之有物

歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則

-----廣告,請繼續往下閱讀-----

其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。

然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!

大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。

「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。

芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。圖/研之有物

這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。

-----廣告,請繼續往下閱讀-----

科技防疫:無所遁形的日常與數位足跡

當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。

2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!

挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。圖/Smittestopp

為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。

首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。

此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。

最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?

換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。

「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:

數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。

當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!

AI 時代需要新法規與管理者

不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。

例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」

另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,

如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。

綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」

過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」

「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。

疫病恐懼讓人民會迫切期待政府雷厲風行,但何之行強調,疫情終將趨緩,重新反思法治社會的原則:法律保留、授權明確、正當程序與最小侵害,是民主社會在後疫情時代的重要課題。圖/研之有物
中研院集結近 20 位人文社會學者參與的科研計畫,推出數位網站,從歷史、經濟、法政、社會學、文學等不同視角,對瘟疫下的社會衝擊提出深刻討論,7 月將出版實體書籍。網站中,何之行也透過人權、法律與歷史的跨向度對話,省思科技防疫下的界線權衡。圖/COVID-19 的人文社會省思網站,中研院數位文化中心

延伸閱讀

  • 何之行,〈人權?法治?防疫下如何權衡?一個哲學、歷史與科技防疫的反思〉, COVID-19 的人文社會省思網站
  • 何之行*、廖貞,〈AI 個資爭議在英國與歐盟之經驗— 以 Google DeepMind 一案為例〉,《月旦法學雜誌》, 第 302 期,2020
  • Chih-hsing Ho,〈Challenges of the EU General Data Protection Regulation for Biobanking and Scientific Research〉,《Journal of Law, Information and Science》,2018
  • 樓一琳、何之行*,〈個人資料保護於雲端運算時代之法律爭議初探暨比較法分析: 以健保資料為例〉,《臺大法學論叢》,第 46 卷第 2 期,2017
  • 何之行個人網頁
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
打破絕望!肝癌晚期的突破性治療新趨勢,五大關鍵解析
careonline_96
・2024/10/18 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

圖/照護線上

肝癌晚期一直以來面臨低存活率的挑戰。隨著醫學進展,免疫治療加上抗血管新生標靶藥物的出現,才讓肝癌晚期有新的希望。為了讓大家了解肝癌晚期治療的最新發展,照護線上邀請台灣大學醫學院內科臨床副教授暨台大癌醫中心醫院腫瘤內科部的林宗哲醫師,來解答 5 個關鍵問題。

第 1 問:肝癌晚期在傳統治療上面臨的困境為何?大多數患者是否沒機會進行根除性手術?

肝癌是台灣常見的癌症之一,由於早期沒有症狀,直到出現黃疸、腹脹等症狀時,已進展為肝癌晚期。此時,因腫瘤較大,甚至侵犯血管或轉移至其他器官,大多數患者診斷時已無法進行手術根除腫瘤。林宗哲醫師表示,早年晚期肝癌的治療選擇有限,治療成效也不甚理想。雖然十多年前開始有口服標靶藥物的出現,稍微改善了患者的存活期,但其腫瘤反應率仍不到 10%,並未大幅改變治療結果。

第 2 問:肝癌晚期第一線治療有漸漸轉變為免疫治療合抗血管新生標靶的趨勢嗎?這樣的組合治療效果如何?

林宗哲醫師表示,在缺乏有效標靶或免疫治療藥物的年代,晚期肝癌患者的存活期僅有 3 到 4 個月。之後開始使用單一標靶藥物治療,存活期雖然可達到 6 個月至 1 年,但是整體療效進展仍然比較不顯著。而如今,免疫治療合併抗血管新生標靶的出現,讓晚期肝癌患者的存活期達到近 20 個月,而且死亡風險下降了約 30% 到 35%,對於肝癌晚期的臨床治療來說,是突破性的發展。

肝癌晚期治療演進
圖/照護線上

隨著大規模臨床試驗發現,免疫治療加上抗血管新生標靶藥物能顯著提升治療反應率達 30%。林宗哲醫師指出,目前國際上已有共識,國際權威 NCCN 肝癌治療指引也建議將免疫合併標靶治療納入肝癌晚期的第一線治療。

-----廣告,請繼續往下閱讀-----

第 3 問:免疫治療合併抗血管新生標靶的機轉為何?為何能大幅提升反應率?

免疫藥物為免疫檢查點抑制劑(PD-L1 抑制劑)。林宗哲醫師解釋,人體的免疫系統中,T 細胞可辨識並殺死癌細胞。然而,當肝癌細胞表面的 PD-L1 與 T 細胞表面的 PD-1 接合時,就像給 T 細胞踩了剎車,使 T 細胞受到抑制無法辨認且攻擊癌細胞。PD-L1 抑制劑可以阻斷 T 細胞與癌細胞接合,喚醒 T 細胞活性,得以再度辨識並殺死癌細胞。

免疫治療合併抗血管新生標靶的機轉為何?
圖/照護線上

研究顯示,PD-L1 抑制劑結合抗血管新生標靶藥物後,治療效果大幅提升。林宗哲醫師推測,這可能是因為抗血管新生標靶藥物,除了抑制血管新生,阻止腫瘤變大,還能改變腫瘤周圍的免疫環境,大幅增加腫瘤微環境被活化的T細胞數量,從而增強對肝癌細胞的殺傷效果。

第4問:免疫治療合併抗血管新生標靶對肝癌晚期患者帶來的優勢為何?

肝癌晚期治療需要權衡療效與副作用。免疫治療合併抗血管新生標靶可以提高反應率、縮小腫瘤,進而延長患者的整體存活時間和腫瘤無進展存活時間,並降低死亡風險與疾病惡化風險。林宗哲醫師說,如果腫瘤縮小到可以開刀的程度,便有機會接受手術,甚至有痊癒的可能。

免疫合併抗血管新生標靶顯著提升反應率
圖/照護線上

相比傳統化療,免疫治療合併抗血管新生標靶的副作用較少,且患者更易承受,治療期間生活品質也較佳。

-----廣告,請繼續往下閱讀-----

第 5 問:免疫合併抗血管新生標靶有納入健保給付了嗎?第一線肝癌晚期患者就能申請嗎?

免疫合併抗血管新生標靶治療已於 2023 年 8 月納入肝癌晚期第一線治療的健保給付範圍,病患可主動與醫師討論是否符合申請條件。林宗哲醫師說,適用條件為未曾接受過全身性治療的轉移性或無法手術切除且不適合局部治療或局部治療失敗的 Child-Pugh A class 晚期肝癌患者。

林宗哲醫師分享了肝癌晚期的案例,三年前,一位中年男性患者在健保尚未給付的情況下,接受免疫合併抗血管新生標靶治療。經過一年的治療,腫瘤顯著縮小,達到可以手術切除的程度。手術後保持電腦斷層和核磁共振檢查不到腫瘤,持續接受治療一年才停止治療並持續追蹤。停藥後已保持超過一年以上無疾病復發。

林宗哲醫師最後提醒,免疫治療合併抗血管新生標靶讓肝癌晚期的治療成效大幅提升,而且健保也有給付,減少治療所需的經濟負擔,患者應與醫師詳細討論與密切配合,爭取最佳的治療效果和存活預後。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1619字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。