3

4
4

文字

分享

3
4
4

當 AI 遇上公衛,是如虎添翼,還是充滿危機?

研之有物│中央研究院_96
・2021/07/19 ・5796字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪|黃曉君   
  • 撰文|周玉文、劉芝吟
  • 美術設計|林洵安

健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。

「天網」恢恢,公衛醫療的新利器

自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。

2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。

隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。

-----廣告,請繼續往下閱讀-----

國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?

中研院歐美所副研究員何之行認為,原因之一是,

《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。

健保資料庫爭議:誰能再利用我們的病歷資料?

來看看曾喧騰一時的「健保資料庫訴訟案」。

2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。

-----廣告,請繼續往下閱讀-----

民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。

但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。

種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。

我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?

-----廣告,請繼續往下閱讀-----
「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。圖/研之有物

去識別化爭點:個資應該「馬賽克」到什麼程度?

何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。

「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。

2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。

回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?

-----廣告,請繼續往下閱讀-----

何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。

現行法令留下了模糊空間,那麼他山之石是否能提供參考?

以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。

退出權:保留人民 say NO 的權利

另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。

-----廣告,請繼續往下閱讀-----

何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。

近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。

參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。

歐盟 GDPR 個資保護的四大原則

健保資料庫只是案例之一, 當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。

因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。圖/研之有物

歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則

-----廣告,請繼續往下閱讀-----

其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。

然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!

大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。

「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。

芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。圖/研之有物

這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。

-----廣告,請繼續往下閱讀-----

科技防疫:無所遁形的日常與數位足跡

當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。

2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!

挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。圖/Smittestopp

為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。

首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。

此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。

最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?

換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。

「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:

數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。

當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!

AI 時代需要新法規與管理者

不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。

例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」

另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,

如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。

綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」

過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」

「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。

疫病恐懼讓人民會迫切期待政府雷厲風行,但何之行強調,疫情終將趨緩,重新反思法治社會的原則:法律保留、授權明確、正當程序與最小侵害,是民主社會在後疫情時代的重要課題。圖/研之有物
中研院集結近 20 位人文社會學者參與的科研計畫,推出數位網站,從歷史、經濟、法政、社會學、文學等不同視角,對瘟疫下的社會衝擊提出深刻討論,7 月將出版實體書籍。網站中,何之行也透過人權、法律與歷史的跨向度對話,省思科技防疫下的界線權衡。圖/COVID-19 的人文社會省思網站,中研院數位文化中心

延伸閱讀

  • 何之行,〈人權?法治?防疫下如何權衡?一個哲學、歷史與科技防疫的反思〉, COVID-19 的人文社會省思網站
  • 何之行*、廖貞,〈AI 個資爭議在英國與歐盟之經驗— 以 Google DeepMind 一案為例〉,《月旦法學雜誌》, 第 302 期,2020
  • Chih-hsing Ho,〈Challenges of the EU General Data Protection Regulation for Biobanking and Scientific Research〉,《Journal of Law, Information and Science》,2018
  • 樓一琳、何之行*,〈個人資料保護於雲端運算時代之法律爭議初探暨比較法分析: 以健保資料為例〉,《臺大法學論叢》,第 46 卷第 2 期,2017
  • 何之行個人網頁
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
研之有物│中央研究院_96
296 篇文章 ・ 3869 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
人工智慧的極限
賴昭正_96
・2026/01/15 ・5792字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

在發現的道路上,智慧(intellect)作用不大。意識(consciousness)━你可以稱之為直覺或其它任何你想用的詞━會發生一次飛躍,答案會突然出現在你面前,而你卻不知道它是如何或為什麼出現的。

-愛因斯坦(1879-1955),1921年諾貝爾物理獎

2025 年 10 月 13 日在參加建國中學高三 6 班畢業 66 週年的同學旅遊後,希望能瞭解一下投稿多年、從未謀面之《泛科學》的作業情形及發展計畫等,我決定到「泛科創新股份有限公司」參觀一下:沒想到知識長鄭國威竟然邀請我錄了一集「思想實驗室」。當被問及有關人工智慧(artificial intelligence,AI)的看法時,我突然冒出「因為科學的發現很多都是意外的,因此AI無法像人類一樣具有創造性」。沒想到這句話似乎成為這次訪問的主題,也引起比較熱烈的討論,因此我想在這裡補充一下。

AI(人工智慧)是否能青出於藍、更勝於藍地超越我們?這事實上也是專家爭論最多的話題。我不是專家,雖然知道「我思故我在」,但完全不知人類如何思想、大腦如何運作,更不瞭解上面愛因斯坦所提到之意識(consciousness)如何飛躍!但是已經被國威推上了這個平台,因此只好在這裡野人獻曝,依我所知的科學史提出懷疑。

回歸正題,上面問題的直覺反應答案是:人製造出來的怎麼可能比人聰明呢?但相信很多人都知道:人類所製造出來的圍棋軟體 AlphaGo 已經戰勝了所有的人類!其主人谷歌(Google)謂:它能戰勝人類是因為它利用策略網絡來推薦有希望的走法,並利用價值網絡來評估在給定局面下獲勝的機率,從而大幅縮小搜尋空間,使得它能夠「預想」數百萬步棋,並透過自身的對弈不斷學習,最終超越人類的層次。從這段話看來,我覺得 AlphaGo 能戰勝人類是基於高速地使用人類所設計出來之有路可循、亦有跡可尋的「邏輯策略」!

同樣地,如果我們給 AI 一含所有物質之性質的資料庫,然後告訴它如何尋找「規律」(pattern),相信它會非常勝任地發現許多具有某種特性的「新物質」、「新藥物」、甚或告訴我們如何製造它們(有機合成的資料庫)。但是 AI 雖然知道哈密瓜的所有性質(資料庫),可是它會想到哈密瓜含有能大量分泌青黴素的菌株、即時在第二次世界大戰中拯救了上百萬士兵的生命嗎(見後)?我覺得後者不是邏輯的問題,是沒辦法訓練的,因此 AI 不能「真正創造」不是依靠邏輯的發現。這正是本文所要談的:許多科學大突破都不是靠訓練或邏輯分析的!

-----廣告,請繼續往下閱讀-----

視眾人所見視,思眾人所未思

牛頓的傳記《艾薩克·牛頓爵士生平回憶錄》(Memoirs of Sir Isaac Newton’s Life)於1752年出版;作者斯圖克利(William Stukeley)在書中轉述:「晚餐後,天氣溫暖,我們去了花園,在幾棵蘋果樹的樹蔭下喝茶……他(牛頓)告訴我,他當時的處境和以前一樣,剛剛想到萬有引力的概念。當他正沉思時,一個蘋果掉了下來。他心想:『為什麼蘋果總是垂直落到地上,永遠不會向上或向一側掉落呢?……』,這使他得出結論:地球一定具有『引力』,從而發展出他的萬有引力理論。」

早在西元前 4 世紀左右,亞里斯多德(Aristotle)及歐幾里德(Euclid)等希臘哲學家就為自然哲學和邏輯奠定了基礎。樹上的水果都是往地面掉,這是任何小孩都知道的「常識」,但為什麼卻等了 1700 年才引起牛頓的注意?我們不知道為何牛頓會想到這個問題,但 AI 也會注意到這個現象嗎?如果會,它會先想到萬有引力或是直接跳到更精確的愛因斯坦廣義相對論(見後)呢? 

發現世上第一個抗生素的弗萊明(Alexander Fleming)度假回來後發現培養皿因未加蓋而發霉(見後),一般的研究者大多會將這些被黴菌孢子污染的培養皿丟掉;但弗萊明這次卻心血來潮……。他回憶說:

「基於先前「溶菌酶」的經驗,也像許多細菌學家那樣,我應該會把污染的培養皿丟掉,……某些細菌學家也有可能(早就)注意到我(那時)看到的相似變化,……但是在對天然產生的抗菌物質沒有任何興趣的情況下,都會順手地將培養物丟棄。……但(這次)我沒有找個藉口丟掉受污染的培養液;相反地,我做了進一步的探討。」

如果AI也能做實驗,它會像許多細菌學家那樣「順手地」丟棄培養物嗎?機會總是降臨在那些做好準備的「人」身上。

-----廣告,請繼續往下閱讀-----

幸運的靈感/直覺

一位正在自由下落的人不會感覺到自己的重量,那不是等於漂浮在沒有任何重力的外太空空間嗎?如果加速度可以抵消重力,那麼在沒有重力的情況下,加速度本身不是可以模擬重力,產生與真實重力沒有區別的人造重力嗎?愛因斯坦稱上面這一發現為「等效原理」(Equivalence Principle):我們雖然不知道重力是什麼,但其現象可以用加速度來模擬!這一想法啟動了愛因斯坦嘗試改變牛頓重力論的八年艱苦抗戰,於 1915 年 11 月完成了人類有史以來最美麗的物理理論━「廣義相對論」(General Theory of Relativity)。100 多年後的今天,愛因斯坦這一透過想像力來推測的理論仍然在指引著物理學家們去瞭解宇宙的基本特徵!怪不得愛因斯坦後來大膽地稱它為「我一生中最幸運的靈感」。

德國理論物理學家普朗克 (Max Planck) 謂他是靠「幸運的直覺 (lucky intuition) 」而意外地敲響了量子力學革命之鐘聲!在 1918 年諾貝爾獎頒獎典禮上,普朗克回憶說:

「然而,即使(我推導出來的)輻射公式絕對準確,它仍然只是一個幸運猜測(lucky guess)了正確插值公式的結果,其價值是非常有限的。因為這個原因,從那時起,我就忙著… 想闡明此公式的真實物理特性,這導致我考慮連接熵和概率之間的波茲曼(Boltzmann)關係。在經過我生命中最艱苦的幾個星期之工作後,光明終於驅除了黑暗,一個新的、從未夢想到的的觀點在我面前展開了。」

這普朗克從未夢想到的觀點是什麼呢? 就是「能量量化」的觀念,違反了當時「能量是連續」的共識!因之此後的十幾年,普朗克便一直在努力地想使他的量子觀念能容於古典力學裡;可是每次嘗試的結果,似乎均使自己失望得想收回那革命性的「大膽假設」而已。

錯誤的假設

好吧,就假設 AI 像愛因斯坦一樣也有「最幸運的靈感」,發現了廣義相對論。可是後來物理學家瞭解到了愛因斯坦的「等效定理」事實上不完全正確,是有限制的,也就是說它只是一種近似的基本定律,只適用於一個局部、無限小的時空區域內。哈,如果AI比人類聰明,怎麼會在邏輯上犯下這個錯誤呢?如果不犯這個錯誤,它能發現廣義相對論呢?

-----廣告,請繼續往下閱讀-----

又如 1905 年,愛因斯坦在題為「關於運動物體的電動力學」的(狹義相對論)論文引言裡,開宗明義地謂「不要爭辯」光速了:

「我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與前者不調和(irreconcilable)的公設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c。 這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。」

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?愛因斯坦在其時鐘「同步程序」的假想實驗裡魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!完全忽略了當時幾乎所有物理學家都相信光是在「以太」中傳播的理論。

1924 年,一位名不見經傳,任教於東巴基斯坦的講師波思 (Styendra Bose) 在一篇 1500 字的論文裡做了一個誤打誤撞、連他自己本人都不知道、在整篇論文中隻字未提的重要及創新性假設:光量子是不可分辨的!在當時,所有的物理學家都認為光量子像銅板一樣是可以分辨的(我們可以分辨哪個是 A 銅板、哪個是 B 銅板、…),因此兩個銅板出現「一正及一反」的或然率是 2/4;但如果它們不能分辨呢?則出現「一正及一反」的或然率將變成 1/3。沒想到這一「錯誤」的假設後來竟成為打開量子統計力學的鑰匙!超強邏輯的AI會犯這種錯誤嗎?

愛因斯坦1915年完成他的廣義相對論後,發現他的方程式所預測的宇宙只能膨脹或收縮,與當時大部分科學家所認為的靜態宇宙觀相衝突!沒想到推翻了深植物理學家心中達兩百多年之牛頓時空觀念的革命壯士,竟然在這裡屈服了:為了符合當時的想法,愛因斯坦於1917年強行地於其廣義相對論導出之宇宙觀中加入一「常數」來平衡萬有引力,使他的宇宙能保持靜態!沒想到1929年後,新數據顯示宇宙不是靜態,而是在膨脹中;愛因斯坦因而後悔當初為何不相信自己的推論,稱那強行加入人為常數━「宇宙論常數」(cosmological constant)━為他一生中所犯之「最大錯誤」。AI會犯這種錯誤嗎?

-----廣告,請繼續往下閱讀-----

只有萬有引力的宇宙膨脹速率在一段時間後應該慢慢減小;但90年代末期,新的發現顯示現在宇宙膨脹速率不是隨時間減小、而是在加大!沒想到那錯誤的「宇宙論常數」現在竟然成為提供瞭解釋膨脹速率加快所需之排斥力來源─雖然我們還不知道那是啥!當然,我們也不知道愛因斯坦在天之靈是否還認為「宇宙論常數」是他一生中所犯的最大錯誤?而AI如果當初未犯那「最大錯誤」,現在是否反而會後悔呢?

老天的幫忙

硝化甘油為液體,非常不穩定,一不小心就爆炸;因此諾貝爾 (Alfred Nobel)一直在尋找取代物,但久而不得。傳說有一天儲存的硝化甘油意外泄漏,與用來包裝儲存鐵桶之板狀矽藻土混合但未爆炸,使他想到了試用此板狀矽藻土。經實驗後,他發現兩者相混之固體不但安全可靠,而且還可保持原有之爆炸威力─這不正是他夢寐以求、研究甚久而未能找到的「穩定炸藥」嗎?他因此發了大財,設定了今日大家所知道的諾貝爾獎。

在「發現能治療糖尿病的胰島素—胰島素與生技產業的誕生(上)」一文裡,我提到了「….將狗的胰臟割除,發現這隻可憐狗整天口渴及隨地小便。數日後,一位助手覺得實驗室內的蒼蠅好像突然多了起來,尤其是在狗小便過的地板。分析狗尿及其血液後,梅倫(Joseph von Mering)及明考斯基(Oskar Minkowski)很驚奇地發現裡面充滿了糖份。」顯然地,胰腺具有調解體內糖代謝的功能,它一旦受損將導致糖尿病。就這樣,法國兩位外科手術醫生無意中發現了「困擾」人類三千多年之糖尿病的病源━胰臟分泌物「胰島素」失調!這不是透過邏輯分析得到的結果,AI能做到嗎? 

前面所提到之蘇格蘭醫生兼微生物學家弗萊明是一位粗心的實驗室技術員。1928 年夏在研究葡萄球菌的某一天,他忘了將含有葡萄球菌培養物的培養皿放在培養箱中,留在實驗室工作台上就匆匆忙忙地離開實驗室去度假。命運就是這樣作弄人:那時室內的溫度及濕度均適合霉菌(mold,或譯「黴菌」)的生長;因此兩個禮拜回來後,弗萊明發現在敞開窗戶旁的培養皿因未加蓋而發霉。經細心觀察及研究後,弗萊明發現抑制或預防細菌生長的不是黴菌本身,而是黴菌產生的「黴汁」。就這樣,弗萊明發現了世上第一個抗生素「盤尼西林」(Penicillin,又稱為「青黴素」)!被《時代》雜誌評選為20世紀的100位最重要人物!

-----廣告,請繼續往下閱讀-----

1943年的某一天,在伊利諾州皮奧里亞 (Peoria) 的農業部北部區域研究實驗室 (NRRL) 工作的亨特 (Mary Hunt) ,無意中在一雜貨店裡發現了一顆表皮長滿漂亮及金色青黴的哈密瓜。將它帶回實驗室,篩選出能大量分泌青黴素的菌株後,她發現該菌株產生的青黴素數量是notatum的200倍━她因之贏得「發霉瑪麗 (Moldy Mary)」的綽號。在許多研究團隊紛紛加入菌種及製造方法的改良後,青黴素產量由1943年只能醫治不到1000人,一下子跳到1944年時,已有足夠的青黴素來治療每位需要的士兵,為第二次世界大戰提供了功不可沒的貢獻!也啓動了尋找其它抗生素的研究,開創了醫學的新紀元。

結論

上面我們提到科學家意外地發現了穩定的炸藥、控制血糖的胰島素、及治療特定細菌感染的抗生素。這些化合物都已經存在自然界中,但絕對不是邏輯分析可以發現其功能的,因此如果不是「老天的幫忙」,我實在很難理解AI怎麼會想到?事實上靠「老天幫忙」所發現的化學物是非常之多的。不需要靠老天幫忙的理論物理呢?

在討論牛頓「思眾人所未思」地發現萬有引力、開創了古典物理後,我們其它的討論都是針對全面改變我們日常生活之近代物理━量子力學及相對論━的發現史。希望讀完本文後,讀者能體會到科學進步不但鮮少一帆風順,相反地是一條充滿了意想不到之彎路和迷茫時刻的曲折蜿蜒旅程:這正是我在訪談中所提到的要多看「課外書」,鑑古知今瞭解理論背後歷史有助於瞭解理論本身。也希望讀完本文後,讀者能感受到科學上的突破幾乎全不是源自邏輯分析,而是出自無法捕捉的「靈感」、「直覺」、「錯誤假設」,「老天幫忙」、以及挑戰既有認知的「勇氣」。AI具有這些人性「缺點」嗎?

最後讓我們在此以公認為最偉大之兩位物理學家的話來結束。牛頓說:「沒有大膽的猜測,就沒有偉大的發現」;愛因斯坦謂:「我從未通過理性思考的過程取得任何發現」。

-----廣告,請繼續往下閱讀-----

致謝

謹在此感謝《泛科學》鄭國威、曹盛威、謝富丞、廖儀瑄、王喆宣等同仁的招待及讓我有機會當了一次近代科技 Podcast 的明星。Podcast 的出現造就了許多不需要經過好萊塢的影視明星以及網紅,是我首次接觸到之近代日常生活典範的另一個重大轉變,真是活到老學到老。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

1
1

文字

分享

0
1
1
晚期肝癌口服標靶藥物,健保申請彈性便利高
careonline_96
・2025/10/28 ・2498字 ・閱讀時間約 5 分鐘

數十年來,肝癌一直都是台灣重要的癌症死因,對國人健康造成重大威脅。嘉義長庚醫院胃腸肝膽科張德生主任指出,由於肝癌早期沒有明顯症狀,必須透過檢查才能夠發現,所以許多患者會在較嚴重時才確定診斷。根據 111 年癌症登記報告,約有三成患者在確診肝癌時已為晚期,大多無法接受手術,僅能以藥物治療為主。晚期肝癌患者若沒有接受適當治療,病程進展可能相當迅速。

晚期肝癌治療持續突破!口服標靶藥物、免疫藥物健保皆有給付

在過去沒有特別治療的時代,晚期肝癌患者通常很難存活超過一年。如果肝硬化的狀況較嚴重,存活期甚至可能小於半年。張德生醫師表示,近年來晚期肝癌的治療藥物持續進展,顯著提升治療成效。如果積極接受正規治療,存活期中位數有機會達到兩年半。

晚期肝癌需要採用全身性治療,例如標靶治療、免疫治療等。張德生醫師說,標靶治療是針對特定靶點發揮作用,抑制腫瘤生長。免疫治療是利用免疫檢查點抑制劑,讓受到抑制的免疫細胞重新發揮作用。根據美國癌症治療指引,晚期肝癌一線建議藥物分別為口服標靶藥物及免疫治療,目前這兩類藥物皆已納入健保給付。然而,健保給付的標靶治療與免疫治療是互斥的,也就是說,一旦選擇某一種藥物,健保僅給付該藥物,無法在治療過程中更換另一種藥物。

張德生醫師補充說明,由於只能擇一使用,因此病人在選擇治療方式前,需與醫師充分討論,審慎考量自身病情、身體狀況及治療目標,選擇適合的藥物。而目前標靶藥物、免疫藥物的給付條件略有不同;免疫治療在健保初次使用與續用上,需符合一定審核標準,若病情未顯著改善,續用申請有可能不被核准;而口服標靶藥物在健保申請條件上相對具彈性,臨床上亦常見很多符合條件的晚期肝癌病人,得以穩定使用多年。

-----廣告,請繼續往下閱讀-----

把握時間及時用藥!原行動不便的晚期肝癌八旬老翁,自行走入門診

「根據臨床經驗,標靶藥物若有效,通常能在短時間內產生反應,可能很快就能看到療效。」張德生醫師說,「對於腫瘤較大、病情進展迅速的晚期肝癌患者而言,標靶治療可望迅速發揮作用,避免病情惡化。」

對此,張德生醫師也分享一個印象深刻的案例,指出曾經遇過一位 85 歲的老先生,確診肝癌時,因腫瘤已經非常巨大,嚴重影響身體機能,導致活動能力大幅下降而必須坐輪椅才能來到門診看診。張德生表示,考量到病情狀況,希望盡快用藥並縮小腫瘤,因此與患者討論後,決定選擇接受口服標靶藥物治療。而令人印象深刻的是,經過一週的治療後,老先生在回診時竟然是自行走進診間,與初診時的狀況相比,有非常顯著的改善。

用藥時間、用藥方式皆須考量!醫:過往經驗,口服標靶藥物申請相對快速

對此,張德生醫師補充說明,以個人經驗來看,口服標靶藥物的申請流程相對快速,約一至兩週即可完成審核,也因此在臨床與患者討論用藥時,也會將時間一併評估。除了用藥時間外,治療對生活的影響,也是一項須考量的因素。張德生醫師指出,標靶藥物採用口服,病人可在家自行服用,每日一到兩次,便利性高,對生活與工作的影響較小。而免疫治療採靜脈注射,病人必須定期回醫院接受治療。這些,也是臨床上在與患者討論用藥時,可能會評估的面向,也提醒病人積極與自己的主治醫師討論,找尋最適合自己的用藥。

最後,張德生醫師也提醒,近年來肝癌的治療藥物已有長足進步,提醒高風險族群,如:具有 B 型肝炎、C 型肝炎、肝硬化、飲酒過量、脂肪肝、家族病史等危險因子等,應定期回診,檢測胎兒蛋白 AFP、追蹤腹部超音波。即使確診為晚期肝癌,也不必過度灰心,請與醫療團隊積極配合,根據個人臨床狀況制定合適的治療方案,便有機會獲得良好的治療成效。

-----廣告,請繼續往下閱讀-----

筆記重點整理

  • 肝癌早期沒有明顯症狀,必須透過檢查才能夠發現,所以許多患者會在較嚴重時才確定診斷。根據111年癌症登記報告,約有三成患者在確診肝癌時已為晚期,大多無法接受手術,僅能以藥物治療為主。晚期肝癌患者若沒有接受適當治療,病程進展可能相當迅速。
  • 在過去沒有特別治療的時代,晚期肝癌患者通常很難存活超過一年。如果肝硬化的狀況較嚴重,存活期甚至可能小於半年。近年來晚期肝癌的治療藥物持續進展,顯著提升治療成效。如果積極接受正規治療,存活期中位數有機會達到兩年半。
  • 晚期肝癌需要採用全身性治療,例如標靶治療、免疫治療等。目前這兩類藥物皆已納入健保給付,不過給付條件略有不同,免疫治療的給付限制較為嚴格,而且如果後續治療成效不符合續用條件,健保便不再給付。
  • 標靶藥物採用口服,病人可在家自行服用,每日一到兩次,便利性高,對生活與工作的影響較小。免疫治療採靜脈注射,病人必須定期回醫院接受治療。由於只能擇一使用,因此病人在選擇治療方式前,需與醫師充分討論,審慎考量自身病情、身體狀況及治療目標,選擇適合的藥物。

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。