Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

別再誤會鳥類沒有嗅覺了!被錯誤實驗誤導的那些「鳥」事——《你聞到了嗎?》

臉譜出版_96
・2023/02/06 ・1485字 ・閱讀時間約 3 分鐘

鳥類生存仰賴的感官

就在不久以前,如果有一本書裡專闢一個章節談鳥類嗅覺,根本不會有人想看,甚至還會淪為科學界的笑柄。大家都相信鳥類是天生嗅覺缺失的動物——也就是沒有嗅覺;大家普遍認為,鳥類生存仰賴的是視覺與聽覺能力。

各位如果有一大清早被鳥叫聲吵醒的經驗,應該都不會質疑鳥鳴聲對於鳥類生存及繁衍的重要性;最能提醒我們春日到來的,也大概就是那無處不在的鳥聲啁啾了。

而任何人只要目睹過(甚至是只在 YouTube 上看過)遊隼(Peregrine falcon)運用牠銳利的鷹眼精準定位,從高處高速俯衝捕捉獵物,應該都不會質疑視覺精準度對於鳥類的重要性。

大家普遍認為,鳥類生存仰賴的是視覺與聽覺能力。圖/elements

鳥類身上色彩斑斕的明亮鳥羽,顯然就是鳥類擁有絕佳視覺的證明;複雜的鳥叫聲及特別的舞蹈,正是鳥類結合視覺與聽覺來保衛地盤、追求配偶的證據。

-----廣告,請繼續往下閱讀-----

許多人都不相信嗅覺是鳥類提升存活機率的關鍵,但如果鳥類真的沒有嗅覺,似乎又不太符合牠們擁有豐富感官系統的特性。大家為什麼會認為鳥類沒有嗅覺呢?

人類試圖用「錯誤」實驗證明鳥類沒有嗅覺!

這種對鳥類的誤解來自一八五一年逝世的藝術家兼知名鳥類學家約翰.詹姆斯.奧杜邦(John James Audubon),他聲稱有確切證據可以證明,美洲最常見的禿鷹——紅頭美洲鷲(Turkey vultures,學名:Cathartes aura,美國俚語中的Buzzard)完全沒有嗅覺。

飛行中的 turkey vulture (加拿大)。圖/wikipedia

他在這些禿鷹最喜愛的進食地點藏匿豬屍,藉此實驗禿鷹是否有嗅覺。經觀察後發現,如果屍體被濃密的樹叢擋住,禿鷹就無法發現豬屍的存在,忽略藏在樹叢間的美味佳餚;而如果屍體直接擺在沒有視覺遮蔽物的地方,牠們就能順利瞄準食物俯衝而下。奧杜邦根據這些觀察結果認定禿鷹是單靠視覺覓食的動物,這似乎是合理的判斷,不然呢?

大家原本都認定禿鷹這種食腐動物是循著動物死屍的腐臭味覓食,因此奧杜邦發表的研究結果在當時引起許多爭議。許多科學家質疑奧杜邦的研究結果,並開始自己做實驗。

-----廣告,請繼續往下閱讀-----

其中有個很有創意的實驗方法:研究人員在帆布畫上羊屍,並且用亮紅色塗抹當作血汙,讓禿鷹能夠直接看見這片帆布。滑稽的是,禿鷹竟然真的深深著迷於帆布上畫出來的羊屍,不斷啄食直到氣力用盡。即便周遭還藏了真正的動物內臟,禿鷹依然直接衝向帆布,似乎完全只受視覺引導。

研究人員在帆布畫上羊屍,禿鷹直接衝向帆布,似乎完全只受視覺引導。圖/elements

這些實驗由美國查爾斯頓的路德教派(Lutheran)教士兼自然主義者約翰.巴赫曼(John Bachman)主導進行,研究結果似乎支持了奧杜邦的說法。有了這兩項證據,科學家們也就相信了鳥類的確沒有嗅覺、單靠視覺來覓食的結論,導致後來關於鳥類嗅覺的研究少得可憐。直到一個世紀後,才有其他鳥類學家認真質疑奧杜邦的說法,再次展開對鳥類嗅覺的研究。

——本文摘自《你聞到了嗎?:從人類、動植物到機器,看嗅覺與氣味如何影響生物的愛恨、生死與演化》,2023 年 1 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
找出品酒的「底層邏輯」——我們的身體如何品出酒品的獨特感受?
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/27 ・1234字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 財政部國庫署 委託,泛科學企劃執行。

你注意到了嗎?在品酒時,品酒師不會一口乾,而是充分觀察、品嚐後才會下肚。這些動作可不是單純裝模作樣,而是有科學根據的。品酒有五個基本動作:觀察、搖晃、聞、啜飲與漱口、吞嚥,究竟我們的感官跟大腦是怎麼接收酒的訊號呢?

從最簡單的「嗅覺」開始,酒杯湊近口鼻、進入口腔,我們可以聞到「外部」和「內部」的香氣。外部指的就是用鼻子聞到的香氣,是先穿越鼻孔到達嗅上皮組織,形成我們所熟悉的正鼻嗅覺。而內部呢?那些已經在我們嘴巴裡的酒液,會走鼻咽和後鼻孔這條路,最終到達嗅覺粘膜。即使這口酒已經被喝下去,只要輕輕呼口氣,也依然能「聞」到酒味。

圖/giphy

另外,口鼻之間的通道,也就是鼻咽,在吞嚥的過程中會關閉,所以在吞嚥時會有一種「味道好像弱掉了」的錯覺,但其實只是你暫時無法靠鼻間的任何通道呼吸而已。這也是為什麼品酒師會要把酒液含在嘴巴裡漱口,甚至還會打開嘴巴吸一口氣。

-----廣告,請繼續往下閱讀-----

緊接在嗅覺之後的「味覺」,則是重頭戲!食物進到嘴巴,溶解在唾液中,啟動了味覺受器。人類可以透過味蕾的受器感受到「鹹、酸、苦、甜、鮮」五種味道。不過,也有部分的人不喜歡酒的原因,正是因為味覺。美國賓州大學農學院過去研究發現,人體中的苦味受體來自基因 TAS2R13 和 TAS2R38,辣椒素受體則來自基因 TRPV1。因此不同的基因表現,影響著人們對這兩種味道的感受,也決定了他們的攝取喜好。

圖/giphy

講完了嗅覺和味覺,別忘了品酒前的「觀察」。事實上,人們對風味的知覺基礎,來自多重感官的整合。當我們在觀看一杯酒的色澤和濁度時,大腦已經在默默「品嚐」它了。就像是望梅止渴、看到好吃的大餐肚子就先餓了起來。

除上述提到的「身體」感官,其實喝酒的時段、溫度、聲音、順序也會影響我們「心裡」的感受。但話說回來,在品酒前,最重要的應是選擇安全以及衛生的酒品來源,就是要慎選合法的販售業者,並挑選標示內容清晰、完整的酒品。

財政部自 2003 年起委託專業執行機構共同推動「優質酒類認證」制度,從原料、製程、品管、後續追蹤等層層把關,最後通過優質酒類認證技術委員會審查的酒品,才能被授予使用 W 字型認證標誌。因此,選購有 W 認證標誌的優質酒品,可以讓我們在品飲時更加安心!

-----廣告,請繼續往下閱讀-----

 資料來源:財政部國庫署 廣告

-----廣告,請繼續往下閱讀-----

2

11
5

文字

分享

2
11
5
小鳥為什麼不走路要用彈跳的?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/25 ・1493字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

彈跳的鳥類

用雙腳移動時,只有鳥類會使用而人類不會用的動作,那就是彈跳。這種名為彈跳的運動既困難又麻煩,為什麼鳥要這樣子彈跳呢?其實到現在我們還無從得知。

如同前述,彈跳是兩腳幾乎同時一起跳的運動方式。我們常見的鳥,像是麻雀和日菲繡眼這種小鳥就是用彈跳的(圖一),而烏鴉在急的時候也會彈跳。

麻雀是兩腳並用一起跳,但也有兩腳稍微錯開來彈跳的物種。例如巨嘴鴉之類的鳥類身體會微微傾斜,左右腳些微錯開,用「噠噠、噠噠」這樣的節奏來彈跳。這兩種本質上的差異目前還不清楚,不如說彈跳跟跑步的差異也還不清楚,所以步行研究者目前也是束手無策。

圖一、麻雀的彈跳,左右腳微微錯開著地(照片 ③ 中偏差大約是 1/120 秒)

歐亞喜鵲這種鳥同時會彈跳也會跑步,但比較兩者的研究顯示,在跑步與彈跳中,腳的運動方式跟肌肉動作幾乎一樣。彈跳跟跑步一樣,是高速移動的方式,活用肌腱像是彈簧的功能來轉換動能跟彈性位能。然後,兩種的差別只有「雙腳交互動作」或是「幾乎一起動作」而已。

-----廣告,請繼續往下閱讀-----

彈跳和跑步除了腳動的時機以外沒有什麼不同,那為什麼只有一部分的鳥是用彈跳的呢?

這個問題,很遺憾現在的科學還沒有解開,現階段一致贊同的只有:一般認為會彈跳的鳥是相對小型的種類,以及常待樹上的種類。看了許多鳥以後,會發現確實小型的鳥很常彈跳。另外,喜歡待在樹上的鳥則是常用兩腳一起從一根樹枝跳到另一根樹枝上,所以在地上也同樣會用兩腳一起跳躍,這樣說來可能就會覺得可以理解。

但是在樹上彈跳,在地上也還是可以步行不是嗎?不這樣區分移動方式,應該是因為有什麼身體構造或生理學上的理由才對,但這問題至今仍然是謎。

-----廣告,請繼續往下閱讀-----
圖/giphy

另一方面,小型的鳥喜歡彈跳的理由,如果用「彈跳適合用來高速移動」,可以解釋一部分的疑問。比起小型鳥,大型鳥的步幅更大,一般步行速度也比較快。如果小型鳥想跟大型鳥用同樣速度移動的話,就需要走得很快。像是人類,也很常在路上看到小孩要小跑步拚命跟上大人的走路速度。跟那個狀況相同,小型鳥有使用相對身體尺寸的高速進行移動的必要性。

想像看看會啄食掉落在地面的種子的鴿子和麻雀,如果用同樣密度灑餌,鴿子只要數步就能抵達下一個餌也說不定,但小型的麻雀需要移動相對更遠的距離才能拿到餌(圖二)。這樣一來就需要比較急著移動,這麼解釋或許也很合理。

圖二、假設在距離鴿子兩個身體遠的地方放餌,對體型較小的麻雀來說,同距離就需要移動六個身體的長度,不移動更遠的距離就沒辦法拿到餌。

但是彈跳和跑步如果是同樣的運動,那為什麼不能用跑的呢?「小型鳥比較需要快速移動」這種說明,很遺憾地似乎不能完全解釋為什麼要選擇彈跳。

但這麼簡單的問題,21世紀的科學還無法解釋,真是令人驚訝。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2