0

0
0

文字

分享

0
0
0

在台灣,當股價下跌時,有更多人因心理疾病入院

cleo
・2014/02/17 ・1137字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

trader_1975665b

一項新研究指出,下跌的股價與精神疾病相關的入院率有關。

在這項研究中,科學家使用了台灣1998~2009年間,超過4000天的精神疾病相關的入院率資料。研究發現,臺灣加權股價指數下降1000點,因精神疾病入院的人就增加4.71%。股價下跌與大幅上升的精神疾病相關的入院率有關。舉例來說,一天內若股價下跌1%,當天精神疾病相關的入院率就會上升0.36%。

研究人員也發現一連幾天的股價下跌與每日0.32%精神疾病相關的入院率成長有關。在連續五天的股價下跌後,第五日的入院率增加了1.6%。

-----廣告,請繼續往下閱讀-----

根據研究人員所示,股價下跌對兩性都有顯著影響。然而,不論是單日或連續的股價下跌對男性的心理健康影響更劇。

此研究也發現低股價及單日股價波動對35~54歲人士的住院率有較大的影響,而多日的股價波動則是對45~54歲的族群較有影響。

根據東華大學的林忠樑博士及台北大學的陳欽賢博士所主持的研究,股市對中年男性的心理健康可能有劇烈影響-當股市低靡時,精神疾病相關的入院率相對較高。

研究人員分析股市波動象徵經濟情勢的改變,並加入臺灣國家衛生研究院的全民健康保險研究資料庫,來評斷經濟現象與精神疾病的關連。「股市是最常用來評斷經濟蕭條的指標」,林博士表示。「股價下跌常常表示財富的減少及商業衰退與接踵而來減薪、裁員的加乘效應。因此,人們懼怕未來是合理的,而這些恐懼常常又被媒體報導大幅強化。」

-----廣告,請繼續往下閱讀-----

「衰退的股市因此造成投資者及大眾情緒、心理及經濟的問題,這些問題又嚴重影響到他們的心理健康。根據我們的研究結果,我們建議壓力過大、有憂鬱傾向或有精神疾病的人別去關注股市,特別是那些承受來自工作不安定性、家庭及投資方面壓力的中年人士。」

研究人員也指出,此研究有幾點限制,包括其中精神疾病診斷的資料是來自醫生或醫院,比起以個體為單位進行的診斷較不準確。

此外,研究人員也無從分析社經條件及行為因素的影響,如教育程度、就業狀態、有無吸煙對精神疾病相關的入院率的影響。

此研究刊登於Health Policy and Planning期刊。

-----廣告,請繼續往下閱讀-----

原文來源:PSYCH CENTRAL- When Stocks Fall, Hospitals Fill With Mentally Ill「15  FEBRUARY 2014]

資料來源:牛津大學出版社- Do stock prices drive people crazy?

—————————–

延伸科學再發現@科技大觀園

-----廣告,請繼續往下閱讀-----

更多內容也可以上科技大觀園搜尋「情緒」,或每週六上午8點收看民視53台科學再發現

-----廣告,請繼續往下閱讀-----
文章難易度
cleo
49 篇文章 ・ 1 位粉絲
是個標準的文科生,最喜歡讀的卻是科學雜誌。一天可以問上十萬個為什麼。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

6

20
2

文字

分享

6
20
2
阿茲海默風暴:通訊作者的辯駁與責任
胡中行_96
・2022/07/28 ・3231字 ・閱讀時間約 6 分鐘

「關於《科學》…控訴我的前同事 Sylvain Lesné 博士可能篡改影像,我不予置評,畢竟後者正在接受明尼蘇達大學的正式調查。然而,文中的科學陳述我有意見,因為針對我的學理描述並不正確。」[1] 2022 年 7 月 21 日,知名期刊《科學》的新聞專題,指出影響深遠的 2006 年阿茲海默症論文造假,向全球醫療圈投下震撼彈。[2] 隔天當事人之一,明尼蘇達大學的 Karen Hsiao Ashe 教授親上火線,在阿茲海默症新聞論壇 Alzforum 上,發出嚴正聲明,同時引發學界熱烈討論。[1]

《自然》期刊 2022 年 7 月 14 日的(黃色底線)編按,提到正在調查遭質疑的圖像。
圖/參考資料 3(Screenshot used as fair dealing for news report.)

《科學》期刊報導,去年 8 月,二名希望 Cassava Sciences 製藥公司股票下跌,以從中獲利的投資人,[註] 透過律師聘雇時年 37 歲的范德比大學神經科學家 Matthew Schrag 。他們付了美金 1 萬 8 千元,要求調查該公司的阿茲海默症實驗藥物 Simufilam 。執行任務的過程中, Schrag 發現一篇 2006 年刊登於《自然》期刊的論文,十分可疑。[2] 該研究的第一作者是 Sylvain Lesné ,而 Karen Hsiao Ashe 則是通訊作者。[3]

明尼蘇達大學 Karen Hsiao Ashe 教授。圖/University of Minnesota(Image used as fair dealing for news report.)

Karen H. Ashe 教授是中國裔美國人,本姓蕭,但冠上第二任丈夫的姓氏 Ashe 。[4] 母親為生化學家袁昭穎(Joyce C.Y. Yuan),曾任諾貝爾得主 Alexander Todd 實驗室的訪問學者;[5] 父親則是明尼蘇達大學航太工程榮譽教授蕭之㑺(Chih Chun Hsiao),於兩次國共內戰之間移民美國,後來曾受邀赴共產中國教書,並致力於中美交流。[4, 6, 7] 不枉其家學淵源, Ashe 教授 3 歲立志當科學家, 17 歲跳級進入哈佛大學二年級就讀, 27 歲時不僅已經唸完哈佛大學醫學系,還取得麻省理工的博士學位。她曾追隨諾貝爾得主 Stanley Prusiner 教授進行腦部研究;後來在自己領導的團隊中,和法國科學家 Sylvain Lesné 合作阿茲海默症相關主題,[4] 還因此獲得重要獎項。[2] 2012 年明尼蘇達的世紀老報《明星論壇》,在專訪中更描述她多才多藝,且具有謙遜的中國傳統美德。[4]

明尼蘇達大學 Sylvain Lesné 副教授。
圖/University of Minnesota
(Image used as fair dealing for news report.)

在 2006 年《自然》期刊關鍵性的論文中, Lesné 和 Ashe 表示注射到腦袋裡的 Aβ*56 ,會令年輕小鼠失智,並認為此發現將有助未來的阿茲海默症研究。[2, 3] Aβ*56 唸作「 amyloid beta star 56 」,是一種 β 澱粉類蛋白(amyloid beta,縮寫成Aβ)。[2]如何減少 Aβ 的累積,至今仍是阿茲海默症研究的方向之一;[2, 8, 9] 而 Cassava Sciences 的 Simufilam ,則是以預防 Aβ 與特定受器結合,來達此效果[10, 11]

范德比大學神經科學家 Matthew Schrag 。
圖/Vanderbilt University Medical Center
(Image used as fair dealing for news report.)

這次新聞事件的吹哨者 Matthew Schrag ,此前就曾公開批評美國食品藥管理局,不該核准另一款抗 Aβ 藥物;而他自己的研究也與 Cassava Sciences 的主張相悖,認定 Simufilam 對受試者有弊無利。當 Schrag 開始懷疑 Lesné 不只是在 2006 年《自然》刊載的影像上動手腳,《科學》期刊請來 George Perry 和 John Forsayeth 等頂尖專家協助鑑定。他們均認同 Schrag 的看法,也就是對 Lesné 發表於超過 70 篇論文中的上百張影像存疑。[2]

-----廣告,請繼續往下閱讀-----

這把燒毀阿茲海默症重要研究根基的熊熊烈火,一發不可收拾,向四面八方蔓延開來。美國國家衛生研究院、《自然》、《神經科學期刊》、《PLOS ONE》,以及與《科學》同屬美國科學促進會的《科學信號》等單位,通通重新審視 Lesné 參與的論文,而且其中部份已遭撤回。 Schrag 批評這些錯誤資訊,不單浪費國家衛生研究院為數可觀的贊助經費,還被引用數千次,「因此誤導了整個學界。」另外,他也揪出 34 篇由其他作者撰寫,跟 Cassava Sciences 直接相關的問題論文,並上報國家衛生研究院。[2] 因此,那斯達克股票交易所警告投資人, Cassava Sciences (股票代號: SAVA )的情況岌岌可危。如果未來美國食品藥物管理局不批准 Simufilam ,其股價或許會慘跌至個位數字。[12]

儘管事件主要聚焦在 Lesné 上,就學術倫理來說,身為 2006 年那篇論文的通訊作者, Ashe 教授也得為研究品質負責。[13-15]面對「誤導整個學界」的指控,她在 Alzforum 上以自己過去發表的研究,說明 Aβ 分為第一型與第二型。當年害小鼠失智的 Aβ*56 ,屬於第一型;而第二型則是在類澱粉蛋白斑塊(amyloid plaques)中找到的。「後者是藥物研發者屢戰屢敗的目標。」Ashe 教授寫道:「從來就沒有臨床試驗針對第一型,但那才是我在研究中點出的失智關聯。」[1]

阿茲海默新聞論壇 Alzforum 上,Karen H. Ashe 教授和其他學者,對此事件公開表態。
圖/參考資料1(Screenshot used as fair dealing for news report.)

在 Ashe 教授的辯駁下方,有幾名學者留言強調學界不該以偏概全,為了一則新聞報導,抹滅相關研究的重要性。[1] 此外,目前仍在進行中的 Simufilam 臨床試驗,也與 Aβ*56 無關。他們當初挑選受試者的條件,包含某種蛋白質跟 Aβ42 的比例(CSF tau/Aβ42 ratio ≥ 0.28);[16] 所發表的論文,也是在分析是否能抑制 Aβ42 的負面影響。[10]

這是本文未提及,但也是針對 Aβ 的研究。由左至右: Aβ 逐漸累積成塊,右上為接受免疫療法的(灰色)神經元,右下則缺乏治療。
圖/Esang M and Gupta M. (2021) ’Aducanumab as a Novel Treatment for Alzheimer’s Disease: A Decade of Hope, Controversies, and the Future.’ Cureus, 13, 8, e17591. (CC BY 4.0)

然而,就因為阿茲海默症的藥物臨床試驗,都不是和 Aβ*56 直接相關,[11, 16] Ashe 教授便責無旁貸了嗎?美國軍醫學校的 David Brody 博士在 Alzforum 的討論串中提到,他的團隊以前試圖重複 Aβ *56 的研究,花了約一整年的時間,卻徒勞無功。[11] 《科學》也提及不少實驗室,遇到一樣的情形。[2] 這些想要以經典為基石向前邁進的人,都被謊言所羈絆,而使得醫學的進展停滯不前。失敗的研究當然不太有論文發表,[2] 更甭論人體臨床試驗。害大家耗費精力走冤枉路,難道不是對阿茲海默症研究的嚴重傷害?

「你可以靠作弊發表論文,獲取學位,贏得補助」, Schrag 對《科學》的記者說:「但你不能用欺騙來治癒疾病」。[2] 諷刺的是,十年前《明星論壇》也記錄了 Ashe 教授類似的談話。她當時鼓勵人們要勇於挑戰她,因為錯誤的理論「不會迎來解藥」。[4]

-----廣告,請繼續往下閱讀-----

  

備註

根據美國第一證券的解釋,「賣空」(short selling)的投資人會將非己有的股票售出,計劃未來以較低的股價買回。[17] (筆者完全沒聽懂為何這樣能獲利,還請會玩股票的讀者不吝指教,謝謝。)

參考資料

  1. Sylvain Lesné, Who Found Aβ*56, Accused of Image Manipulation (Alzforum, 2022)
  2. Charles Piller. (2022) ‘Blots On A Field?’ Science, 377, 6604.
  3. Lesné, S., Koh, M., Kotilinek, L. et al. (2006) ‘A specific amyloid-β protein assembly in the brain impairs memory’. Nature, 440, pp. 352–357.
  4. Dr. Karen Ashe: Stalking Alzheimer’s (Star Tribune, 2012)
  5. MCFGS ADVISORS (明州中国友好花园协会,accessed on 26 JUL 2022)
  6. CC Hsiao Memorial (The University of Minnesota Digital Conservancy, 2009)
  7. Changsha Garden History (明州中国友好花园协会,accessed on 26 JUL 2022)
  8. Multiple Dose Study of Aducanumab (BIIB037) (Recombinant, Fully Human Anti-Aβ IgG1 mAb) in Participants With Prodromal or Mild Alzheimer’s Disease (PRIME) (ClinicalTrials.gov, 2020)
  9. An Extension Study of V203-AD Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of UB-311 (ClinicalTrials.gov, 2021)
  10. Wang HY, Bakshi K, Frankfurt M, et al. (2012) ‘Reducing Amyloid-Related Alzheimer’s Disease Pathogenesis by a Small Molecule Targeting Filamin A’. Journal of Neuroscience, 32, 29, pp. 9773-9784.
  11. Simufilam (Alzforum, 2022)
  12. 7 Meme Stocks Trading at a Massive Discount Right Now (Nasdaq, 2022)
  13. 想一想:共同作者是誰(臺灣學術倫理教育資源中心,accessed on 26 JUL 2022)
  14. 科技部對研究人員學術倫理規範(科技部,2017)
  15. Corresponding author defined (Springer, 2020)
  16. Simufilam (PTI-125), 100 mg, for Mild-to-moderate Alzheimer’s Disease Patients (ClinicalTrials.gov, 2021)
  17. 投資辭彙(FirstTrade,accessed on 28 JUL 2022)
-----廣告,請繼續往下閱讀-----
所有討論 6
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。