0

0
0

文字

分享

0
0
0

哪一年才是食安元年?

葉綠舒
・2014/01/26 ・7001字 ・閱讀時間約 14 分鐘 ・SR值 536 ・七年級

2008年8月,大陸爆發出三聚氰胺(melamine)事件 [1]。當時主要的影響層面在嬰幼兒,造成許多家長擔心、害怕;還記得當時筆者在課堂上問醫技系的學生:為什麼大陸會把三聚氰胺加在奶粉裡,臺灣卻不會?

當時有一位學生很有自信的說:因為臺灣人比較有良心!

當時我笑笑的說,我們今天是上生化,所以我不討論道德的問題。還記得當時那位同學立刻一臉不服氣的樣子。

去年(2013),當我問台下的學生同樣的問題時,學生立刻說:因為在台灣會被抓到!

雖然兩個答案都不對(其實是因為臺灣驗牛奶品質不使用「定氮測量法」,而是驗比重、乳脂肪、蛋白等等 [2],所以加入三聚氰胺是沒有用的。),但是可以由這個簡單的問題,隨著時空不同得到不同的答案,瞭解到臺灣這幾年大家對食品安全的信心的改變。

B01

在2011年3月,因為一位熱心的公務員,在分析益生菌粉末時發現不正常波峰 [3],花了兩週時間分析後發現益生菌粉末含有塑化劑,在那一刻,大家對於台灣製食品的信心,開始崩壞了。當時,連一向被我們嘲笑充滿了黑心商品的大陸,也封殺了858項產品 [4]。我們的政府,也在那一年宣布2011年是「食安元年」,並且著手修改「食品衛生管理法」,將會提高罰則等等措施。

時間很快就過去了,我們從2011年來到2013年。大家都以為食管法早已經通過、立法生效,卻沒想到在2013年的5月,我們忽然發現,我們的粉圓、肉圓裡面有順丁烯二酸(maleic acid) [5];接著在6月,我們發現大黃豆干竟然是用皂黃(metanil yellow)染色的 [6]。

然後,就是10月16日,彰化地檢署會同彰化衛生局等政府機關,查到大統長基食品公司在橄欖油裡面混摻棉籽油、葵花油、銅葉綠素… [7,8]。接著發現許多知名的老牌子、食品大廠也紛紛中箭落馬,就如2011年的塑化劑事件一樣。

事情發生後,筆者的許多友人們,都惶惶然地說,不知道什麼可以吃了。

是啊,飲料可以不喝、粉圓可以不吃,反正這些都不是必需品;但是每天做菜都會用到的食用油出了問題,真的讓人有種天塌了的感覺。

不過,2013年的這些食安主角們真的有這麼可怕嗎?

順丁烯二酸(maleic acid)

圖片來源:維基百科

順丁烯二酸又叫做馬來酸,化學式C4H4O4,在工業上通常由順丁烯二酸酐(maleic anhydride)製成;而順丁烯二酸酐是來自於苯(benzene)或丁烷(butane)氧化的產物 [9]。

順丁烯二酸的毒性極低,在它的物質安全資料表(MSDS)上面 [10],提到它的半數致死劑量(LD50):在大鼠是每公斤708毫克,在兔子是每公斤1560毫克。不具有致癌性,可能對腎與肺有影響。參考這些資料就可以知道,順丁烯二酸的毒性其實相當低。對照DEHP的物質安全資料表 [11]可以發現,DEHP具有致癌性,長期暴露在3000, 6000或12,000ppm下的小鼠跟大鼠都出現了肝癌。

當然,因為長期暴露的效果未知,所以歐盟定了一個每日可耐受量(TDI)是0.5毫克 [5]。在泛科學新聞網上面的一篇文章 [12]提到,除非您吃到的肉圓其中順丁烯二酸的殘留量超過2300mg,對一個60公斤的成人來說,才會超過每日可耐受量。大部分當時查到的產品,裡面順丁烯二酸的殘留量都沒有這麼高。

不過,再怎麼說,加入順丁烯二酸的化製澱粉,並不為食藥署所允許;而當時媒體一面倒的用「毒澱粉」來形容有順丁烯二酸殘留的化製澱粉,甚至說,如果食用殘留量接近2300ppm的肉圓,就有如「服毒」 [13],更在當時製造了許多恐慌。

皂黃(metanil yellow)

跟順丁烯二酸一樣,皂黃也是不為食藥署所允許的添加物。在印度,皂黃也是不合法的食品添加物,在過去曾有不少研究發現皂黃具有肝毒性,長期暴露可導致肝癌 [14],對哺乳動物的神經系統發育也有害處 [15]。

台灣過去幾年也曾經發現有食品(大黃豆干、金針)添加皂黃的情形,所以每年都會抽驗,而且也開發出了簡易試劑;台北市新北市衛生局都有提供民眾索取。

棉籽油(cottonseed oil)

棉籽油在2013年10月被發現添加在大統長基公司出產的橄欖油、花生油等油品中,後來在追蹤大統公司油品、以及進口棉籽油的流向時,發現有更多廠商涉及混油;當時因為棉花內含棉酚(gossypol),而棉酚在過去被發現可以導致男性不孕,因此在媒體強力報導之下造成極大的恐慌。

棉酚。圖片來源:維基百科

其實棉籽油在國外作為食用油,已經有超過150年的歷史 [16]。原先在軋完棉花以後,棉籽就被丟棄,在19世紀時甚至造成環境問題,當時各州政府曾經制訂罰則,要求棉花工廠不可以將棉籽丟棄在河川裡。直到由棉籽壓製棉籽油的技術被發明以後,棉籽才由無用的垃圾轉變為有用的原料。一開始棉籽油是點燈的油,但很快被石油取而代之;後來開始有人嘗試將棉籽油用來烹調,於是棉籽油正式躍上餐桌,甚至成為製造西點用的酥油(Crisco)的主要原料 [17]。

事實上棉籽油並不是壞的食用油,而且因為他的冒煙點相對較高 [18],且價格便宜,在許多加工食品如洋芋片、零嘴等的製作中,都採用了棉籽油。

Cottonseedoil

而棉酚呢?其實早在1968年,就已經知道精煉的棉籽油不含棉酚 [19];事實上,未精煉的棉籽油,會有一股難聞的「臭青味」,不能也不適合食用,當然也無法摻雜在其他油品中不被發現。

但是,在媒體鋪天蓋地的宣傳之下,使得民眾認為棉籽油是壞的食用油,會導致男性不孕,因此許多民眾紛紛將摻雜了棉籽油的食用油拿到賣場要求退貨,而政府由一開始對棉籽油的中立立場,也在一面倒的輿論壓力之下,最後要求業者將所有摻雜棉籽油的產品全數銷毀不得上架。

洪水猛獸與否?先弄清楚TDI(tolerable daily intake)的定義

在順丁烯二酸事件中,有一個數值一再被提起,就是TDI。歐盟對順丁烯二酸的TDI是0.5mg/kg,因此有媒體對順丁烯二酸殘留量超過2000ppm(即每公斤的澱粉製品含有超過2000mg的順丁烯二酸)的澱粉製品,下了「猶如服毒」的標題 [13]。但是,究竟TDI的定義是什麼?

我們來看一下歐盟對TDI的定義

A TDI is an estimate of the amount of a substance in air, food or drinking water that can be taken in daily over a lifetime without appreciable health risk. TDIs are calculated on the basis of laboratory toxicity data to which uncertainty factors are applied.

TDIs are used for substances that do not have a reason to be found in food (as opposed to substances that do, such as additives, pesticide residues or veterinary drugs in foods- see ADI).

就是說,TDI是針對通常應該不會出現在食物裡的物質所定的劑量。在這個劑量下,一個人可以吸收這個物質一輩子而不會有健康的危險。TDI是經由實驗室的毒性測試結果加上能考量到的未知因素所計算出來的。

因此,低於這個數值應該可以說是「絕對安全」的;而高於這個數值,應該也不能稱為「服毒」吧?

皂黃就如DEHP一樣,具有致癌性;因此,在飲食中添加皂黃也是不能允許的。但是棉籽油,就像前面提到的,棉籽油其實在歐美有超過150年以上的食用歷史,而台灣的精煉技術也不會使棉籽油含有棉酚。

當然,這並不代表在食用油中加入棉籽油的廠商就是可以被原諒的,畢竟用低價的食油混入高價的食油中,並以高價賣出,這違背了誠信原則,還是應該要被譴責的;但是把可以吃的食用油當作有毒的油丟掉,這是一種資源的浪費。

銅葉綠素(chlorophyllin)

不過,在這部分,加入了銅葉綠素(chlorophyllin)的油品應該要另外討論。其實銅葉綠素是合法的食用色素 [20],在衛福部食藥署的資料中,總共有銅葉綠素、銅葉綠素鈉、鐵葉綠素三種可以使用,但是都不可以使用在食用油中。因為葉綠素在高溫下會分解,如果有烹飪經驗的讀者應該知道,綠葉菜類過度烹調時顏色會變得黃黃的不好看,那就是葉綠素在高溫下氧化分解的關係。

銅葉綠素。圖片來源:維基百科

銅葉綠素在高溫下會氧化分解,釋放出銅離子,長期食用有健康上的疑慮(但不見得就是「服毒」),因此不被核准加在要加熱的食品中;但是如果不加熱,銅葉綠素其實還有一些抗癌的效果 [21]。但是因為國人食用油品一定是加熱的(而且常常是高溫炒炸),所以加入銅葉綠素的油品其實不去食用是較為安全的,除非要直接淋在生菜沙拉上。

譴責之餘…忘了什麼?

今年這幾件食安事件爆發後,社會大眾紛紛譴責廠商,所用的字眼無非是「黑心」這類帶有道德譴責含意的語詞。當然罔顧社會大眾健康的確是值得被譴責,但是商人本來就是將本求利,如果一味地將道德的大帽子往商人的頭上扣,這似乎也太過沈重。

在2011以及2013這幾件食安事件中,其實塑化劑、皂黃的添加,其嚴重性可比擬多年前的千面人下毒事件;因為塑化劑,不論是DEHP、DINP其實都具有致癌性;而皂黃也已經被證實會導致癌症。這些都是已知具有致癌性質的物質,也從未被允許添加到任何食品中,業者卻為了牟取利益而將他們添加到食品之中。至於順丁烯二酸以及銅葉綠素兩個事件,雖然也從未被核准加入(某些特定的)食品,但是毒性輕微,對大眾的影響較小。至於棉籽油事件,由於精煉過的棉籽油不具棉酚,對健康並無危害,則純粹是誠信問題(在法律上應該可類比為詐欺)。

但是,在譴責廠商無良的同時,大家是否曾想過消費者在這些事件中的角色呢?

就如2011年的塑化劑事件,塑化劑出現在「起雲劑」裡面固然不該,但是為什麼飲料裡面會有「起雲劑」?「起雲劑」的成分又是什麼?

合法起雲劑的成份通常是乳化劑、精製食用棕櫚油、阿拉伯膠(天然植物膠)、變性澱粉等 [22],可以使溶液中的溶質均勻分散,調整液體的密度 [23]。會被加入到果汁裡面,其實一部份的原因是因為消費者希望在「合理」的價錢下,買到「夠濃」的果汁。

一杯果汁到底多少錢才合理?去年年底筆者在超級市場裡面看到來自日本青森縣、使用真空技術壓製的蘋果汁。

筆者攝自花蓮家樂福

一公升這樣的果汁在花蓮是245元,因為筆者對於它的味道實在是太好奇了,便買了一瓶回家嚐新。

喝起來的確有天然蘋果的味道,而不像由濃縮果汁還原的蘋果汁,只有淡淡的蘋果味(與很多的甜味)。但是我忍不住想到,我們在超市買到的蘋果,最便宜的每顆也要9-10元;就算在產地價格只有售價的三分之一到四分之一,那麼也有2-4元左右。而一公升的蘋果汁需要幾顆蘋果呢?我沒有實際上製作過,但我猜想,用最小顆的蘋果,20-30顆蘋果應該跑不了。就算每顆蘋果3元,光是蘋果的成本就要75元,還有玻璃瓶、採摘的人工、壓製與包裝蘋果汁的人工、空運的成本,其實245元實在只能說薄利多銷而已。但是由濃縮果汁還原的蘋果汁,通常一公升的價格是60-80元。

一瓶245元的蘋果汁,在花蓮因為乏人問津,到上週(2014年1月中旬)已經降價到199元;降價就可以看到開始有人購買(當天筆者就看到有人買了兩瓶),但是認真去想相關的成本,其實都是太便宜。但是因為消費者只看到價錢,沒有看到成本,所以「料好實在」的產品常因為價格無法壓低,當「價廉物」(?)的產品出現在市場上時,就會因為不敵(惡性)競爭而黯然退出市場。

就如在《美味陷阱:黑心食品三百年》一書中提到的,因為民眾希望能夠買到「價廉物美」的食品,最後就有廠商發明了似乎是「價廉物美」的食品–這些食品從十九世紀的人造奶油,到現在加了起雲劑的果汁,或是由濃縮果汁還原並加入糖的還原果汁。民眾在這中間從一開始的完全知情,到當廠商看到利用廉價的原料製造出的加工食品所產生的利益有多巨大之後,開始由食物製造者轉為食品發明者,而「人造食品」也由在困苦時期的替代食物,成為餐桌上的常客。到了二十一世紀,許多我們的孩子已經習於人造食物的味道,忘記了真正的食物的滋味了。

當我們失去了對真實食物的味覺

去年(2013)年在一場飲食安全的展演中,我跟我的助教將檸檬酸與豐年果糖(就是高果糖糖漿HFCS90)與水混和後,邀請一群小學生上來品嚐。我跟助教事先已經品嚐過它的味道,知道它很像某些飲料;展演的當天有許多小朋友上來「嘗鮮」,令我們驚訝的是,小朋友對它的評價是:喝起來像橘子汁、葡萄汁、或是檸檬汁。有些小朋友喝得意猶未盡,直說我們太小氣,只給那麼小一杯。

活動結束後,我開始思考這一切。什麼時候我們的孩子已經無法辨別食物的真味?什麼時候我們的孩子再也不願意吃味道看似平淡的白斬雞(我家兒子稱之為「冷雞肉」),寧願去吃可能只有三分之一是雞肉的炸雞塊?

筆者並非美食家,認識我的人都可以同意這件事。當我們失去了對真實食物的味覺,它的嚴重性並不只是在口欲這件事情上面而已;更嚴重的是,人造食物相比於天然食物,它在營養成分上的多樣性降低了,而以大量的人工調味來製造出美味的幻覺。於是我們的後代在(某些)營養過剩的同時也營養不良。

而誠如《美味陷阱:黑心食品三百年》一書中提到的,所有的這些食品添加物,它們的安全性都是「個別」測試的;從來沒有任何一個政府要求食品業者應該把「所有」他打算加在「草莓」蛋糕裡的食品添加物「一起」拿來測試。我們都知道不同的藥物合併使用時,有些會產生交互作用,因此不可混用;但是卻沒有人曾經想過,這些食品添加物–很多是化學物質–同時混用在一種食物裡,會有什麼樣的風險。

由於有巨大的利益作為誘因,廠商們「發明」食品的腳步永遠不會停下來。過去許多以為安全的食品添加物,如高果糖糖漿、食用色素,現在都已經知道長期食用會導致不良的副作用。長期大量食用單糖跟糖尿病、高血壓的關連沒有多少人能否認,而食用色素與兒童過動之間的關係也已經建立。

努力回到真實的味覺,別掉進「自然」一定最好的陷阱

在現代的社會,要完全不吃到任何食品添加物,可能除了「事必躬親」以外沒有良方。但是,有一些方法可以讓我們少吃些食品添加物。

就像前面提到的,人造食品後面含藏著巨大的利益,所以廠商是不可能不繼續「發明」人造食物的;但是聰明的消費者,如果有願意保護她的人民的政府作後盾,的確可以做到減少攝取。

當法令規範不含有某種天然原料的食物,僅能標示為具有某種天然原料風味時,消費者只要稍加留心,就可以避開這些「風味食品」。如即將提前在今年(2014)七月生效的「宣稱含果蔬汁之市售包裝飲料標示規定」,要求不含原汁的產品需標示「無果蔬汁」 [24],屆時消費者便可以經由仔細閱讀標示,來充分瞭解果蔬汁中是否完全不含原汁,從而決定是否購買。

不過,食品添加物也並非萬惡,要求百分之一百天然,有時不僅困難重重,非「事必躬親」不能完成;有時也不一定健康。如蕃茄醬為了不添加防腐劑而加入更多的糖來達成防腐效果 [25],就現代人的眼光來看,多吃糖與食用少量防腐劑對健康的傷害,似乎只是在兩個爛蘋果中間選一個罷了。

當然,政府在保護消費者上也需要擔負一定的責任。就如前面提到的,立法強制標示可以達成一定的保護消費者的效果,而消費者也需要善盡保護自己的責任。例如蔬果汁的標示,其實目前已經有規定需要標示,但是業者總是會把標示放在離開品名較遠的地方,字體也較小而不顯眼,不過,只要消費者稍微用心去找尋,總也可以找到標示的果汁含量;許多「風味食品」其實也並不難在標示上發現,只看我們去不去尋找而已。

當然,如果政府無法擔負這份責任,如「食品衛生管理法」竟然在這次的立院會期未排入議程(26),消息一出,在輿論的壓力下,終於勉強在下週(27、28日)排入臨時會議程 [27],這樣的消息,除了讓去年在食安風暴再度橫掃臺灣時,才知道2011年早該通過的法令竟然還躺在立法院的民眾再度滿地找眼鏡之外,身為消費大眾一員的筆者,也想問問自稱是我們的「父母」的政府:我們到底還要準備多少副眼鏡來掉?

參考資料:

  1. 行政院國家科技委員會 科技大觀園。 三聚氰胺知多少
  2. 台灣生牛乳品質及其監測 – 行政院農業委員會畜產試驗所
  3. 2011.6.17 時代臉譜/埋首檢驗室揪塑毒 楊明玉蒙面女英雄。時報週刊1739期。
  4. 2011.6.5 塑毒風暴 陸封殺我858項產品。旺報。
  5. 2013.5.13 呼籲食品業者應使用經核准之化製澱粉。衛生福利部食品藥物管理署 公告資訊。
  6. 2013.6.8 新莊百年豆干老店 涉用油漆染料製作。自由時報。
  7. 2013.10.16 橄欖油疑不純 檢搜大統長基。中央社。
  8. 2013.10.17 衛局:大統長基有產品沒橄欖油。中央社。
  9. 2013.12.22 Maleic acid. Wikipedia.
  10. 2013.5.21 MSDS for Maleic acid. Science Lab.
  11. MSDS for DEHP.
  12. 2013.5.27. 誰是毒澱粉專家?(1)談順丁烯二酸酐。泛科學新聞網。
  13. 2013.5.29 每一口都在服毒!台中肉圓驗出2159ppm順丁烯二酸。ETtoday東森新聞雲。
  14. 2014.1.22 美國國家圖書館網站搜尋metanil yellow toxicity. NCBI Pubmed.
  15. Nagaraja TN, Desiraju T.1993. Effects of chronic consumption of metanil yellow by developing and adult rats on brain regional levels of noradrenaline, dopamine and serotonin, on acetylcholine esterase activity and on operant conditioning. Food Chemistry Toxicology. 31(1): 41-4.
  16. Nixon HC. 2005. The Rise of the American Cottonseed Oil Industry. Journal of Political Economy 38(1):73-85
  17. 2014.1.2. Crisco. Wikipedia.
  18. 2014.1.14. Cottonseed oil. Wikipedia.
  19. 2013.11.5 周志輝。棉籽油不是劣質油。蘋果日報。
  20. 食品添加物使用範圍及限量暨規格標準。衛生福利部食品藥物管理署網站。
  21. 2013.10.20. Chlorophyllin. Wikipedia.
  22. 2011.6.1. 吞食市場!起雲劑同業賣250元 黑心昱伸賣100元 NOWnews.com 今日新聞網
  23. 2011.5.24. 起雲劑小檔案。自由時報。
  24. 2014.1.22 果蔬汁標示純度 7月實施。中央通訊社。
  25. 2012.2. 美味詐欺:黑心食品三百年。Bee Wilson著,周繼嵐譯。
  26. 2014.1. 「食管法」漂流54天 立院竟沒過。聯合新聞網。
  27. 2014.1.24. 「修食管法傷臺灣形象」政府對立院下指導棋。自立晚報。

 

原刊載於 Miscellaneous999


數感宇宙探索課程,現正募資中!

文章難易度

2

2
4

文字

分享

2
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook