Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

咖啡漬圈環有道理

科景_96
・2011/02/10 ・670字 ・閱讀時間約 1 分鐘 ・SR值 589 ・九年級
相關標籤: 咖啡 (28)

-----廣告,請繼續往下閱讀-----

[Original publish date:Nov 28, 2010]

編輯 HCC 報導

平常可見的咖啡漬圈環狀沉積物,其物理現象對工業塗料、電子業與醫藥技術提供了新點子。

溢出的咖啡在桌上會留下明顯的環狀沉積物,稱之為coffee ring effect。在物理學上,coffee ring[咖啡漬環圈]是指一灘帶著微粒的液體在蒸發之後所遺留的環狀型態,例如紅酒從杯中濺出也會留下環狀紅酒漬。

Coffee ring effect 首由芝加哥大學Robert D. Deegan提出物理解釋,並以“Capillary flow as the cause of ring stains from dried liquid drops”於1997年發表於Nature。Deegan認為滴落在桌上的液滴,由於裏外不同的蒸發率引致毛細管滲流,邊緣的蒸發液體會由液滴內的液體加以補充,其所產生的向外液流幾乎能將全部的液體推向液滴邊緣,造成環狀構型。Deegan的文獻廣受引用,coffee ring effect也應用在印刷、表面塗裝與醫檢技術上。

-----廣告,請繼續往下閱讀-----

布朗大學Shreyas Mandre等人更進一步使用掃描式電子顯微鏡與數學模型對coffee ring進行詳細研究,認為微粒的圖案化沉積,能以蒸發與表面張力等物理參數控制。研究人員發現於環狀物沉積階段,如果濃度超過某個界線,就會沉積一層均勻厚度的微粒層,低於此界線,沉積物形成非均勻條紋[non-uniform bands]。由於邊緣的固液介面蒸發率較液滴由內而外的流動補充率為高,會讓微粒留在邊緣、乾固而且沉積。

Mandre認為,控制環型沉積物有助於創造新型微觀物理工具,適用於微粒無法被鑷子或其他傳統工具移動的場景,液體蒸發[evaporation]與流動補充[replenishment]率的相競是微工具的控制過程關鍵所在,其潛在應用包括印刷、工業噴塗、製造電子產品以及新藥設計。

Mandre的研究報告“Coffee ring deposition in bands”於11月23日發表American Physical Society Division of Fluid Dynamics meeting in Long Beach, CA。

參考來源:

-----廣告,請繼續往下閱讀-----

相關連結:

-----廣告,請繼續往下閱讀-----
文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
睡眠不足來杯咖啡?小心!這可能是個惡性循環——《人類文明》
天下文化_96
・2024/06/19 ・2251字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

咖啡因對大腦的影響

咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。

然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。

植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。

研究顯示,咖啡因是蜜蜂的興奮劑,可以讓他們願意不斷嗡嗡嗡上工。圖/envato

咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。

-----廣告,請繼續往下閱讀-----

在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。

〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕

咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。圖/envato

所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。

如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。

然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。

-----廣告,請繼續往下閱讀-----

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
1

文字

分享

0
0
1
翡冷萃咖啡的祕密(下):手機也能測咖啡濃度!
活躍星系核_96
・2020/01/14 ・3453字 ・閱讀時間約 7 分鐘 ・SR值 566 ・九年級

-----廣告,請繼續往下閱讀-----

圖/Pexels by Ylanite Koppens

上集,我們利用輸送現象,並建立模型,解釋了市售冷萃咖啡為什麼可能不是冷萃的原因。理論與模型終究是紙上談兵,複雜的現實情況必然無法用我們的簡單理論完美描述。

「一個好的模型,是帶來出乎意料成功的非現實簡化。1

本集,我們就要透過實驗,來檢視簡化模型預測的咖啡濃度差是否跟實驗結果相似。這個實驗不需要任何實驗室儀器,只需要手機鏡頭跟圖片編輯軟體就能辦到!

利用「比色法」辨別濃度

若要辨認咖啡的濃度,在使用同一種咖啡豆的情況下,我們一般會很直觀的認為顏色深的咖啡比較濃,顏色淺的咖啡比較淡吧2!如果我們知道什麼濃度的咖啡會有什麼樣的顏色,當我們沖出一杯咖啡時,就能以顏色判別濃度,這就是「比色法」的概念。咖啡濃度與顏色之間的關係,從「檢量線」可看出來 。可想而知,檢量線如果準確,實驗結果就會比較準。因此,如何建立檢量線就很重要了!

-----廣告,請繼續往下閱讀-----

要建立檢量線,我們可以透過「連續稀釋法」,先取得數個已知濃度的咖啡樣品。首先,我們以正常方式用 80℃ 熱水沖一杯咖啡,設定這個濃度為 1.0,也就是標準濃度。接著,取出一部分的咖啡與等量的水混合,稀釋後的咖啡濃度就是原本的一半,也就是 0.5。再將稀釋後的咖啡取出一部分與等量水混合,得到 0.25 濃度的咖啡,依此類推。

圖一、利用連續稀釋法製作咖啡樣品,用來建立檢量線。圖/作者

小畫家就能量化顏色

有了咖啡樣品,接著需要找到量化咖啡顏色的方式。相信大家都有使用小畫家的經驗吧!若用小畫家開啟一張照片,使用「顏色滴管(color picker)」就可以知道某個特定顏色的 RGB 值,也就將顏色量化了。

所以,我們可以將咖啡樣品用相同規格的透明容器裝起來,在相同的光源、背景、角度下用手機拍照,傳到電腦再用小畫家開啟,就能知道這些咖啡顏色的 RGB 值了。

-----廣告,請繼續往下閱讀-----

不過,再仔細想想,你會發現幾個問題:

  1. RGB 值有三個數字,哪一個數字或什麼樣的組合才代表濃度呢?
  2. 用小畫家一次只能得到一個點的數值,也就是滑鼠鼠標對應位置的 RGB 值,不利統計。

圖二、用小畫家擷取照片中咖啡的 RGB 值。圖/作者

為了解決第一個問題,我們可以使用灰階照片。假設顏色深淺是濃度對應的指標,那麼將彩色照片轉為灰階就可以讓 RGB 三個數字一致,又不失顏色深淺的特徵。

至於第二個問題,我們可以使用數學界四大軟體之一的「Matlab」。軟體中的 Image Viewer 可以一次獲得指定範圍內每一像素的 RGB 值,對這些數字取眾數,就可以獲得比較具代表性的 RGB 數值了。

-----廣告,請繼續往下閱讀-----

圖三、用手機鏡頭與 Matlab 數值軟體估算咖啡濃度的方法:先拍照、調成灰階,用軟體取得指定範圍內的 RGB 值,最後再取眾數。圖/作者

將樣本濃度與灰階後的 RGB 值3 繪於一張圖上,就得到了檢量線。

圖四、以 80℃ 熱水沖泡咖啡得到的檢量線。繪圖/作者

簡化模型真的能成功嗎?

既然我們已經有了估測咖啡濃度的方法,現在就可以用不同溫度的水沖泡咖啡,來驗證實驗結果是否與模型相同。

-----廣告,請繼續往下閱讀-----

首先,用 87.5℃4、80℃、25℃ 的水沖泡咖啡,並分別將咖啡拍照,轉灰階。接著用 Matlab 取得 RGB 值後,利用檢量線對應出相對濃度。最後,跟模型計算的數值比對。

圖五、以不同水溫沖泡的咖啡 RGB 值與對應濃度。繪圖/作者

T(℃) 模型預測 實驗值
87.5 1.676 1.780
80 1.000 1.000
25 0.119 0.196

表一、模型能合理預測不同水溫下的咖啡濃度。製表/作者

由表一可見,模型可以合理估算出實際沖泡的咖啡濃度,也再次強調,一個好的模型:是帶來出乎意料成功的非現實簡化!

-----廣告,請繼續往下閱讀-----

比色法的缺點

看到這裡,或許你會覺得比色法實在太好用啦!是不是以後都不需要高階實驗儀器與方法,只要用比色法就能替所有化學物質定量了呢?當然不!

其實在這個簡易咖啡實驗中,我們能發現幾個顯而易見的問題:

1. 若要講究比色法的嚴謹定量,就只能使用在內插的範圍,絕不可用來解釋外插才能得到的數據5。舉例來說,圖五中 25℃ 水沖泡的咖啡落在檢量線的兩個數值之間,能夠對應出相對的濃度,這樣稱為內插。但是,87.5℃ 熱水沖泡的咖啡濃度定量,是由最後一段檢量線向外延伸到 87.5℃ 咖啡對應的 RGB 值,再向左對應出相對濃度。這樣的對應稱為外插。

這是相當不嚴謹的估算,因為我們無法確保 RGB 值與相對濃度的關係在這段範圍裡依舊會跟相對濃度 1.0 與 0.5 的直線相同。

圖六、比色法不宜外插,因為外插假設檢量線為橘色虛線,但實際情況可能偏離甚遠(例如圖中兩條紫色虛線),對應出來的濃度會有極大差異。繪圖/作者

-----廣告,請繼續往下閱讀-----

2. 雖說上集介紹的模型可以套用在每一種化學物質,但我們的計算都是以咖啡因為基準(詳見上集的註解1)。但是,咖啡因溶於水是無色透明的,所以用比色法討論咖啡因或其他沒有顏色的物質並不合適。

不過,儘管有這些問題,若僅是要簡易估算各物質平均在咖啡中擴散的模型與實驗,從表一的結果來看依舊是可行的。

工程思維:效率與品質可以兼顧

合理簡化一個複雜問題,不一定會失去正確性。

在這次的實驗中, 質量傳遞模型有許多簡化跟假設,實驗用到的比色法也有許多假設,甚至還有小範圍的外插。我們當然可針對這些簡化,用更高深困難的理論與數學,例如考慮熱水在沖泡過程中冷卻、濾袋的幾何結構、捨棄等效水道長的概念而用顆粒床的公式計算等,結合程式編碼,模擬出更符合真實情況的計算。

可是,模型的建立會因此更困難,計算難度也高出許多,結果卻可能沒有顯著差異。相對的,簡化模型與比色法實驗的相符,替「出乎意料成功的非現實簡化」提供了最好的例子。總而言之,一個模型怎樣才算過度簡化,往往還是需要與實驗、經驗比對,才會知道。

-----廣告,請繼續往下閱讀-----

雖然如此,這也不代表工程師不注重基礎理論。近年的化工研究發展大多高度要求物理、化學、生物理論的應用,諸如材料開發(分子設計)、藥物研究(像是標靶治療、奈米反應器、輸送治療蛋白質等)、能源工程(例如天然氣水合物性質研究、生質能轉換效率如何提高)、奈米製程(觸媒開發、晶圓製造等)。

對我來說,討論化工與化學、物理的差異,也不應停留在理論的複雜程度,而是著眼的系統跟尺度不同。舉例來說,化工藉物理、化學觀念來描述工廠的管線輸送、反應爐、蒸餾塔等設計,並用相同方法描述人體內的血液輸送以研究標靶治療與中風解方等;相對的,有些物理與化學領域專門研究分子、原子或更小層級7,意在關注物質與能量如何組成。

因此,區分化工與物理、化學領域的並不是使用理論的難易度,而是關注的應用不同,可別搞錯了喔!

註解

  1. 節自 Dill and Bromberg 在《Molecular Driving Force》一書中對統計力學的描述 “To borrow a quote, statistical thermodynamics has a history of what might be called the unreasonable effectiveness of unrealistic simplifications.”
  2. 通常淺焙咖啡的顏色比深焙淡,然而,這不必然表示淺焙咖啡中每一種化學物質的濃度都比深焙咖啡的還要低。所以此處強調要使用同一種咖啡豆才能比較。
  3. 因為黑色的 RGB 值是(0, 0, 0),白色為(255, 255, 255),如果直接使用,高濃度咖啡的 RGB 值較小,低濃度咖啡的 RGB 值較高,數值較不直觀。因此,我們使用經過轉換的 RGB 值來建立檢量線:Adopted RGB = 255 – Measured RGB。
  4. 熱水壺中的水溫原本是 95℃,但在沖咖啡的過程中,熱水會顯著的降溫。因此,模型預測時的參數是用熱水的初溫與末溫平均值來帶入計算,也就是 87.5℃。
  5. 內插的範圍是檢量線的最低與最高數值之間:RGB 值 77 到 211 之間。226.6 的 RGB 值不在此範圍間,屬於外插。
  6. 顆粒床(granular bed):在化工通常指布滿用以吸收、萃取之顆粒的長管。流體會由上而下或由下而上的在管中流動,以讓流體與顆粒可以盡量充分反應。但是要注意,顆粒床通常用來描述管內顆粒沒有被流體沖散而流動的情況,與之相對的是流體化床(fluidized bed)。
  7. 化工涉足這種微小尺度也行之有年,例如運用分子模擬開發材料、量化計算探討分子結構等。此部分的研究確實與化學、物理關心的領域重疊,但最終研究目的總會與工程應用連結。
  • 責任編輯/竹蜻蜓
-----廣告,請繼續往下閱讀-----
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia