Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

全球暖化的速度在北極加快一倍

葉綠舒
・2013/08/07 ・559字 ・閱讀時間約 1 分鐘 ・SR值 611 ・十年級

圖片來源:Science Now
圖片來源:Science Now

全球研究人員,包括來自52個國家的384名科學家,連續23年同心協力編製了全球氣候的成績單:而今年的成績並不理想。科學家們使用衛星數據,浮標,以及世界各地的氣象觀測站,看著氣溫,降水,海冰和溫室氣體濃度等等的趨勢。

根據研究人員在美國氣象學會公報(Bulletin of the American Meteorological Society)上提出的數據顯示,使地球變暖的主要溫室氣體的二氧化碳,在大氣中的濃度在2012年達到了創紀錄的392.6ppm。科學家們還估計了去年的二氧化碳排放量(包括估計的9.7億公噸的碳),主要造成吸熱效應的氣體,包括二氧化碳,甲烷和一氧化二氮(自1990年以來增長32%),以及海平面上昇的程度(自1993年以來全球海平面平均上升68毫米)。

研究人員注意到,北極變暖的速度大約比全世界快兩倍,造成的相應的影響尤為突出。在9月,北極海冰覆蓋的區域(圖像)達到了一個新的低點:340萬平方千米,約為阿拉斯加的兩倍大小,比起在2007年創下的新低紀錄還少了18%。

在北極地區陸地的六月積雪面積(下降速度比海冰快得多)在2012年也達到了一個新的低點,而在阿拉斯加最北端的永凍土層溫度也達到了新的高點。總體而言,2012年是有記錄以來10個最熱的年份之一,還好去年沒有聖嬰現象,否則還會更熱。

-----廣告,請繼續往下閱讀-----

參考文獻:

ScienceShot: Arctic Warming Twice as Fast as Rest of World | Science/AAAS | News

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
0

文字

分享

0
5
0
雪橇宅急便,白喉終結者:百年名犬的基因組
寒波_96
・2023/06/22 ・3697字 ・閱讀時間約 7 分鐘

公元 2023 年 4 月 28 日 Science 期刊發表專題「Zoonomia 計畫」,包含多篇定序、分析大量哺乳類的論文。其中一篇論文的分析尺度最小,研究對象的知名度卻最高,那就是一百年前名犬「巴圖(Balto)」的古代基因組。

先來緬懷巴圖的事蹟:他在 1925 年 2 月 1 日頂著低於零下 30 度的氣溫,駕駛雪橇 7.5 個小時,穿越 85 公里,與同儕成功將白喉血清送到目的地,拯救許多人命。

巴圖本尊,位於克利夫蘭博物館,毛色比活跳跳時褪色一些。圖/參考資料2

白雪季節,白喉來襲

巴圖的飼主 Leonhard Seppala 於挪威成長,後來搬到阿拉斯加,是駕駛雪橇以及培育雪橇犬的專家。巴圖 1919 年在阿拉斯加出生,從小與眾多同儕一起訓練,成為優秀的雪橇犬。

阿拉斯加西部的小鎮諾姆(Nome)在 1924 年底約三千居民,只有一位醫師 Curtis Welch 和四位護士。1925 年一月中,醫師確認恐懼的事正在發生,白喉已經入侵,人類開始死亡。

-----廣告,請繼續往下閱讀-----

幾年前 H1N1 大流感(西班牙流感)襲擊諾姆,在醫療資源有限的當地造成重傷害。如果不及時阻止,白喉恐怕也將導致大災難。那時已經有白喉抗毒素(antitoxin)可以對付白喉桿菌,醫師緊急請求支援,也得到回應。

然而,地點、時節都很尷尬。諾姆離海港較近,可是時值嚴冬,被凍結的港口無法水運。那個年代已經有飛機,評估空運的成功機率卻不高。陸路是有鐵路,但是距離也相當遙遠。

陸海空方案中,陸路機會最高。最終人們下了艱難的決策:交給傳統技藝「雪橇宅急便」。當局緊急招募多位老經驗的雪橇駕駛人,與精銳雪橇犬組隊,一隊接力一隊,將白喉抗毒素血清送往諾姆。

1925 年雪橇宅急便的路線。圖/維基百科「1925 serum run to Nome」

一千公里的雪橇宅急便

任務極為困難,路途遙遠、氣候惡劣以外,血清預計只能維持 6 天。那時兩地郵件寄送預計為一個月,意思是要把本來普通天候下的一個月,縮短為酷寒下的 6 天時程。

-----廣告,請繼續往下閱讀-----

最後擬定的計畫相當精密,貨物先由鐵路送到最近的尼納納(Nenana)。接著雪橇隊將從兩端同時出發,一邊從尼納納向前狂奔,送到努拉托(Nulato);另一邊從諾姆出發,各隊依序就位,到努拉托收件,接著往回狂奔。

用台灣類比,像是把東西從台北送往高雄,一邊從台北經由桃園、新竹、苗栗、向台中前進,另一邊從高雄先向台中,沿路在台南、嘉義、彰化就位,再往回走。

從台北到高雄,國道一號的路程約為 350 公里,尼納納到諾姆則超過 1000 公里。大部分隊伍頂著零下 30 到 50 度的氣溫,前進 40 到 80 公里的距離。最後在 20 位雪橇駕駛員及 150 位雪橇犬日夜不停接力下,只花 5 天半就將血清送到諾姆。

開路先鋒 Bill Shannon 的 84 公里過程最凶險,他與 9 狗在零下 40 到 52 度的風雪中趕路,半路 3 狗不敵酷寒,不幸犧牲(三狗名為 Cub、Jack、Jet),人臉也嚴重凍傷,所幸隊伍依然完成任務。

-----廣告,請繼續往下閱讀-----
完成任務後,Leonhard Seppala 與他最信任的狗狗們留影,圖哥在最左邊。圖/維基百科「1925 serum run to Nome」

貢獻最大的人是倒數第三棒,也就是巴圖的飼主 Leonhard Seppala。他帶領 20 狗,讓最信任的「圖哥(Togo)」與 Fritz 領隊,先從諾姆向東前進 270 公里就位,收件後又狂飆 146 公里,成為里程最長的隊伍。

圖哥也成為這趟任務中,貢獻最大的狗狗。他生於 1913 年,雪橇宅急便時 12 歲,後來活到 1929 年,16 歲去世。

英雄旅程,以及英雄的餘生

巴圖的飼主不特別看重他,所以沒有帶他同行,而是交給同樣來自挪威,在阿拉斯加工作的 Gunnar Kaasen。巴圖和同儕 Fox 是最後一棒共 13 狗的領隊,他們原本預計是倒數第二棒,負責從 Bluff 到 Safety 的 40 公里。

不過凌晨 2 點多抵達交棒地點時,預計接手的 Ed Rohn 判斷暴風雪會延誤行程,正在睡覺。Gunnar Kaasen 決定自己繼續趕路,最後累積 85 公里,在 2 月 1 日 5 點 30 分抵達諾姆。

-----廣告,請繼續往下閱讀-----

及時獲得支援的 Curtis Welch 醫師,與手下成功控制白喉疫情,將傷害減到最輕。Alaskan Lives Matter!

當時雪橇宅急便是全美國關注的新聞,廣大民眾都很緊張是否能成。雪橇犬、駕駛人都被視為英雄,成為焦點話題。巴圖的貢獻應該算第二名,不過最後是他將血清送到目的地,這位 6 歲的狗狗也獲得最大的名聲。

完成任務不久後,巴圖與駕駛猿 Gunnar Kaasen 的留影。圖/參考資料1

熱潮過去後,巴圖被賣到洛杉磯,成為展示動物。1927 年,拳擊手轉職商人的 George Kimble 在洛杉磯見到巴圖,覺得這位英雄的待遇有夠爛,便運作讓巴圖與 6 位同儕搬到他的家鄉克利夫蘭。

巴圖抵達克利夫蘭時,受到遊行熱烈歡迎。他在動物園度過餘生,1933 年 3 月 14 日去世,享年 13 歲。接著化身為標本,成為克利夫蘭博物館的一員陪伴大家,直到 90 年後的現在。

-----廣告,請繼續往下閱讀-----

遺傳一極棒,卻已經消逝的狗群

2023 年發表的論文由巴圖的皮膚取得 DNA,平均覆蓋率 40,品質相當好。歷史記載看他是西伯利亞哈士奇(Siberian husky),但是要等到他出生後 11 年, 1930 年這個品系才被美國犬業俱樂部(American Kennel Club)認證。

和現代品系相比,巴圖合計有 68% 血緣與多款北極狗一致。西伯利亞哈士奇只有 39%,格陵蘭雪橇犬 18%。有趣的是還配備 24% 的亞洲狗狗血緣,而且毫無任何狼的成分。

根據 DNA 預測巴圖的外貌特徵,都正確。圖/參考資料1

巴圖所屬的狗群,依照歷史記載源自西伯利亞,由於體型小、速度快、適合雪橇,所以被帶到阿拉斯加培育。和如今所有的品系狗比較,他配備的潛在有害變異較少,DNA 多樣性較高,遺傳上更加健康。

和一百年前的巴圖相比,如今的北極狗近親繁殖更嚴重,有害變異更多。巴圖 6 個月大便已絕育,沒有後代。他所屬遺傳更多元的族群,也已經消逝了。

-----廣告,請繼續往下閱讀-----

根據 DNA 變異能預測古狗的形貌,只是以前都不知道準不準。巴圖有照片也有標本,可以精確比較。預測他有雙層狗毛、大部分黑毛加上少量白毛、肩高 55 公分,都符合實況。現今西伯利亞哈士奇的肩高介於 53 到 60 公分,巴圖算是範圍內略矮的。

另外有意思的是澱粉。遺傳上,狼、北極狗消化澱粉的能力最差,其餘狗從好一點到好很多。巴圖看來比其餘北極狗好一點,但是離多數狗差一截,符合他大量北極、少量亞洲血緣的遺傳背景。

狗狗們。圖/參考資料1

他們都是英雄

巴圖的飼主 Leonhard Seppala 沒有將其選進自己的小隊,加上臨時更動計畫,反倒使得巴圖成名。其實知道多一點歷史就會覺得,歷史上最不意外的,就是發生意外。

Leonhard Seppala 事後曾經抱怨,他的難波萬愛犬圖哥應該享有的鋒芒,被巴圖獲得。歷來也不缺少貶抑巴圖的好事之徒,指控他不是隊長等等(巴圖也許不是唯一的隊長,但是反駁他擔任隊長的證據都弱弱的)。

-----廣告,請繼續往下閱讀-----

可是稍微想想就知道,比圖哥年輕 6 歲的巴圖,當然不是弱雞。運送血清的漫長過程,只要一次失誤便前功盡棄,能參與的肯定都是精英。而巴圖也不辱使命,證實飼主調教有方。

重要的是,1925 年的雪橇宅急便及白喉保衛戰中,不論每一位有什麼貢獻,所有的狗與人都冒著巨大的風險工作,拯救許多人。他們都是英雄,我們懷念他們。

延伸閱讀

參考資料

  1. Moon, K. L., Huson, H. J., Morrill, K., Wang, M. S., Li, X., Srikanth, K., … & Shapiro, B. (2023). ​ Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. Science, 380(6643), eabn5887.
  2. Genome of famed sled dog Balto reveals genetic adaptations of working dogs
  3. Hidden details of world’s most famous sled dog revealed in massive genomics project

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
全球暖化的速度在北極加快一倍
葉綠舒
・2013/08/07 ・559字 ・閱讀時間約 1 分鐘 ・SR值 611 ・十年級

圖片來源:Science Now
圖片來源:Science Now

全球研究人員,包括來自52個國家的384名科學家,連續23年同心協力編製了全球氣候的成績單:而今年的成績並不理想。科學家們使用衛星數據,浮標,以及世界各地的氣象觀測站,看著氣溫,降水,海冰和溫室氣體濃度等等的趨勢。

根據研究人員在美國氣象學會公報(Bulletin of the American Meteorological Society)上提出的數據顯示,使地球變暖的主要溫室氣體的二氧化碳,在大氣中的濃度在2012年達到了創紀錄的392.6ppm。科學家們還估計了去年的二氧化碳排放量(包括估計的9.7億公噸的碳),主要造成吸熱效應的氣體,包括二氧化碳,甲烷和一氧化二氮(自1990年以來增長32%),以及海平面上昇的程度(自1993年以來全球海平面平均上升68毫米)。

研究人員注意到,北極變暖的速度大約比全世界快兩倍,造成的相應的影響尤為突出。在9月,北極海冰覆蓋的區域(圖像)達到了一個新的低點:340萬平方千米,約為阿拉斯加的兩倍大小,比起在2007年創下的新低紀錄還少了18%。

-----廣告,請繼續往下閱讀-----

在北極地區陸地的六月積雪面積(下降速度比海冰快得多)在2012年也達到了一個新的低點,而在阿拉斯加最北端的永凍土層溫度也達到了新的高點。總體而言,2012年是有記錄以來10個最熱的年份之一,還好去年沒有聖嬰現象,否則還會更熱。

參考文獻:

ScienceShot: Arctic Warming Twice as Fast as Rest of World | Science/AAAS | News

-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

2
3

文字

分享

0
2
3
極端氣候的問題就在眼前,我們可能面臨什麼樣的未來?——《圖解全球碳年鑑》
商業周刊
・2022/10/04 ・5452字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

沒有比現在更急迫需要預測未來。上千名氣候科學家和經濟學家共同建立並測試嚴謹的電腦模型,來估計地球在一、兩個世代後的樣貌。

政府間氣候變化專門委員會(IPCC),由世界各地的志工科學家組成,他們評估目前關於氣候變遷的科學知識——過去、現在和未來的風險與可能性——從而找出共識。

他們發表一系列報告,為 2050 年及其後的世界,做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。

做出 5 個可能的結果,這些情況是根據複雜的運算,測量溫室氣體排放、土地使用和空氣汙染對氣候的影響。圖/Pixabay
圖/商業週刊

經濟成長、人口以及溫室氣體排放的未來軌跡,預期將使地球的平均溫度上升。情況的名稱是根據共享社經路徑(Shared Socioeconomic Pathways, SSP), 依照 1 到 5 編號,每個編號有個比過去更負面的結果。

-----廣告,請繼續往下閱讀-----

5 個未來會面對的暖化問題

5 種情況的暖化程度,在以下幾個方面存在顯著差異:

  • 氣候的激烈程度
  • 海平面上升
  • 熱浪
  • 降雪和降冰的減少
  • 未來的行動和政策

這些情況說明問題如何隨時間加劇,以及改變目前的做法對未來可能的巨大影響。

IPCC 過去的估計已經證實太過樂觀,因此最近 IPCC 的報告預測,全球地表溫度將提早 10 年升溫超過 1.5° C,儘管如此,自從出版那份報告以來所收集的資料,顯示近期的暖化程度要比過去所做的大膽估計更加嚴重。

二氧化碳排放量。圖/商業週刊
情況升高攝氏 /華氏說明
1. 極低排放量(SSP1-1.9)1.4° C /2.5° F2050 年前後,全球二氧化碳排放減到淨零,符合巴黎公約(Paris Agreement)中,維持全球暖化(最多)高於工業前溫度1.5° C,而後穩定在1.4° C 直到2100 年。永續作法被即刻採行,改變經濟成長和投資,人們感受的氣候變遷效應,相較其他情況顯著較輕微,速度也較慢。
2. 低排放量(SSP 1-2.6)1.8° C /3.2° F全球二氧化碳排放大幅降低,但不足以在2050 年以前達到淨零排放。2100年結束時,升溫穩定保持在大約1.8° C。
3. 中排放量(SSP2-4.5)2.7° C /4.9° F邁向實踐永續的進展緩慢,與歷史趨勢相近。二氧化碳排放量維持在目前水準,本世紀結束前達不到淨零。2100 年前溫度上升2.7° C。
4. 高排放量(SSP3-7.0)3.6° C /6.5° F排放量和溫度穩定上升,大約是目前的兩倍,各國趨向彼此競爭,要求更多糧食供給的保障,且提高對糧食供給的警覺。2100 年以前平均溫度已經上升3.6° C。
5. 極高排放量(SSP 5-8.5)4.4° C /7.9° F2050 年以前二氧化碳的排放將加倍,能源消耗增加以及過度使用化石燃料加速經濟成長,但是……2100 年以前全球平均溫度將升高4.4° C。
表/商業週刊
IPCC 假設的情況。圖/商業週刊

了解 IPCC 勾勒出未來的 5 種情況

想像集體行動的後果,是前進的必要的一步,政府間氣候變化專門委員會(IPCC)的 5 種情況,清楚勾勒未來的樣貌。

-----廣告,請繼續往下閱讀-----

他們的報告顯示,人類具備科學的理解、技術的能量和金融手段,將碳排放量限制在 1.5° C,但也清楚說明勇敢行動和政治意志極為重要。

溫度上升 0.5° C,差別就很大

情況 1——正負 1.5° C

這是唯一符合《巴黎公約》,維持全球溫度比工業化前溫度高 1.5° C 目標的情況。

在這情況中,極端氣候比較常見,但世界避免了氣候變遷的最糟衝擊。依然會有健康風險以及氣候改變的風險,但嚴重度會比其他情況好很多。不過,將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,作出前所未見的轉變。

-----廣告,請繼續往下閱讀-----

將升溫限制在 1.5° C,將需要能源、土地、基礎建設、交通運輸、工業系統等,做出前所未見的轉變。

情況 2——正負 2° C

在低碳排放的情況,世界在 2030 年後不久就會違反 1.5° C 的公約,但還是設法達到巴黎公約中,2100 年以前將溫度上升維持在比工業化前水準高 2°C 以內。

全球二氧化碳和非二氧化碳溫室氣體的排放,如同在「情況 1」中被大幅削減,但不如「情況 1」快速,2050 年之後才達到淨零排放。如同「情況 1」,也需要透過造林、碳捕捉等方法,移除大氣的二氧化碳。

溫度上升 0.5 度或許看似差別不大,但是 IPCC 的報告清楚指出,每增加 0.5 度,對人類和自然系統的負面影響將顯著提高。

-----廣告,請繼續往下閱讀-----

舉例來說,極度高溫的天氣事件,如熱浪、火燒、洪水和乾旱,將會愈來愈激烈且頻繁,有時會同時發生,加上海平面上升和海水酸鹼度提高,不僅使人類等物種失去居住和棲息的地方,也會因為作物產出下降和漁獲量減少,而導致糧食不足。IPCC 估計,這個情況會比「情況 1」多出高達數億人受到氣候相關風險的負面影響。

關注的區域情況1情況2差異
全球暖化全球意味地表溫度相對工業化前的水準上升1.5° C2° C0.5° C 以上
嚴重的熱浪每5 年全球人口至少一次暴露在嚴重熱浪中14%37%糟2.6 倍以上
海平面上升2100 年以前,全球人口每年都有海平面上升的風險6,900 萬7,900 萬多1,000 萬
海冰平面北極海夏季無冰的頻繁度每100 年至少一次每10 年至少一次糟10 倍
失去生物多樣性脊椎動物失去至少一半地理範圍的脊椎動物4%8%糟2 倍
生物多樣性昆蟲):失去至少一半地理範圍的昆蟲6%18%糟3 倍
生態系統轉變受生態系統轉變影響的全球陸地區域7%13%糟1.9 倍
失去珊瑚礁與目前相比,形成礁的珊瑚減少70-90%99%糟1.2 倍
農作物產出下降暴露在作物產出下降的全球人口數3,500 萬3.62 億糟10.3 倍
表/商業週刊

情況 3——政治和經濟的力量沒辦法短期內做出決定

這是假設政治和經濟的力量,使得難以在短期內採取明快的大動作。

由於累積的二氧化碳排放量與全球地表溫度上升之間有接近線性的關係,因此升溫 1.5° C 的上限有可能在 2030 年代初就被超越,距離本年鑑出版不到 10 年。

-----廣告,請繼續往下閱讀-----

在這情況中,溫室氣體排放到 2050 年都沒有降低,預期本世紀末的升溫將大約 2.7° C。上一次氣溫高於工業化前的水準 2.5° C,估計是在 3 百多萬年前。

暖化會呈現地區性差異,平均而言陸地的暖化將比海洋嚴重,北半球緯度愈高的暖化會比南半球嚴重,北極對暖化的敏感度高於南極,自從工業化年代以來,北極的暖化速度比世界其他地方快了 2 倍。

降雨量會增加。在所有全球暖化超過 1.5° C 的情況中,預期降雨量將會增加,特別是陸地。全球地表平均溫度每上升 1°C,中數降雨量將增加 1% 至 3%(全球和年皆然)。

儘管整體的降雨量增加,但會因緯度而有地區性差異。高緯度和潮濕的熱帶地區,降雨量會增加,但是乾旱地區,包括部分的亞熱帶如地中海、南非、部分的澳洲和南美洲,降雨量會減少。

-----廣告,請繼續往下閱讀-----

高緯度和潮濕的熱帶地區,

降雨量會增加,

但是乾旱地區,降雨量會減少。

凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。圖/Pixabay

北極海冰會融化。凡是升溫超過 1.5° C 的情形,到本世紀結束前,9 月將更有可能沒有北極海冰,當暖化到達 2° C 時,這個可能性幾乎是確定發生。全球地表溫度上升,將使冰河和大冰原的面積更大幅度縮小,導致全球海平面中數(global mean sea levels,GMSL)上升,在前面 3 種情況中,預期在整個 21 世紀將加速,海洋在這些情況下也會變得更酸,這是因為排放量增加使海洋吸收更多碳的緣故。有些系統將會永遠地被改變,持續的全球暖化將可能永久造成:

  • 海平面上升
  • 大冰原喪失
  • 永凍土的碳排出

情況 4——只顧國家利益,沒有同心協力

這個情況是,隨著全球氣候變遷惡化,國際的協調將受挫。各國沒有同心協力來解決問題,反而只顧國家利益,而以關於能源與糧食保障為主。

由於高度仰賴化石燃料來解決燃眉之急,導致溫室氣體排放穩定成長。到 2100 年前,二氧化碳排出幾近加倍,每年超過 800 億公噸,空氣汙染控制不力,加上非二氧化碳的排出量持續增加,導致地球暖化惡化。

-----廣告,請繼續往下閱讀-----

溫度遽升。由於各國達不到氣候誓約,21 世紀的溫度可能上升 2° C,不到 10 年可能跨越 1.5° C 的門檻。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。

降雨和乾旱的區域擴大。在全球暖化超過 2° C 的情況(情況 4 和情況 5),全球平均降雨量將比 1995-2014 年間增加 2.6%。圖/Pixabay

海洋改變。到本世紀末,全球海面溫度上升 2.2° C,上升的海洋溫度可能影響大西洋經向翻轉環流(Atlantic Meridional Overturning Circulation,AMOC),這是最大的洋流系統,如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。海洋溫度上升導致 GMSL 上升,主要是因為熱擴散,凡是升溫跨越 2° C標記的情況,就會提高南極大冰原崩解的可能,也造成 GMSL 在 2100 年前後上升至少 1 公尺,有些預測認為會超過 2 公尺。

如果 AMOC 停止將造成廣泛影響,例如季風轉變和歐洲與北美州的降雨減少,AMOC 可能永久停止。

情況 5——二氧化碳的年排放加倍

面對氣候緊急事件惡化下,化石燃料的開發和能源使用勢必更積極,導致溫室氣體排放大幅增加。2050 年以前,二氧化碳的年排放加倍,在本世紀前超過 1,200 億公噸。

再生能源技術的進步加上人們的接受度上升,使這情況不太可能發生。但是碳循環回饋可能影響大氣濃度,從而製造地球反應的循環而導致這種情況,此外基於全球地表溫度升溫在 10 年內預期將跨越 1.5° C,而短期的暖化現象比估計的還要嚴重,因此即使可能性較低也不容忽視。

在這情況中,溫度上升 1.5° C 被認為在近期內很可能發生,大約是 2027 年前後。幾十年內升溫可能來到 2° C,本世紀末之前無法想像的升溫 4.4° C 可能發生。人類從未曾生活在如此氣候狀況下。

這個情況與其他不同的,在於假設強度的空汙控制,以及預測中長期除了甲烷以外「臭氧前兆」的下降,預測甲烷將上升到 2070 年。

跟其他情況相同的是,較大程度的暖化,預期會擴大區域性暖化趨勢的差異。例如相較 1995 至 2014 年的溫度範圍,部分亞馬遜或其他熱帶陸地將升溫 8° C,其他熱帶陸地區域可能升溫 6° C。

降雨量急遽上升,在暖化程度較大的情況下,預期高低降雨量的差異將擴大,冰原將消失,海平面和溫度將上升,世界失去格陵蘭和南極最大冰原,將導致海平面上升與冰河消失。由於冰原的成長緩慢但融化快速,失去任何面積可能無法逆轉。

海洋吸收愈來愈多熱,變得愈來愈暖,於是水往外擴。海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。

海平面上升近 1 公尺可能影響居住在海岸區、島嶼以及容易遭到洪水肆虐的近 10 億人生計。圖/Pixabay

海平面上升近 1 公尺

可能影響居住在海岸區、島嶼

以及容易遭到洪水肆虐的近 10 億人生計。

我們沒有丟掉任何東西,

只是把我們的問題變成別人的問題。

⸺賽門.西奈克(Simon Sinek),暢銷作家

上網搜尋,種一棵樹

安裝一個簡單的應用程式,

就可以在你每次上網搜尋時種一棵樹。

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商業周刊
12 篇文章 ・ 3 位粉絲