1

0
0

文字

分享

1
0
0

小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls

Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

10
2

文字

分享

2
10
2
素養不是知識,是讓孩子像科學家一樣思考——LIS 創辦人嚴天浩專訪
PanSci_96
・2021/09/24 ・2101字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

近年來,在新課綱推行之下,「素養」這個詞成為熱門關鍵字,「對我來說,素養就是面對世界的行為模式,在面臨問題時,一個人會抱著什麼樣的態度去解決問題。而科學素養就是『像科學家一樣思考』」LIS 科學情境教材(台灣線上教育發展協會)創辦人嚴天浩這麼說。

嚴天浩在大學時開始製作教學影片,最初的動機來自上大學後體會到城鄉差距、資源落差,想藉由線上教材擴大影響力,然而觀看次數卻不如預期。

2013 年起,嚴天浩和夥伴到台東,向「孩子的書屋」負責人陳爸(陳俊朗)請益,並長期蹲點接觸孩子,發現學生們面臨最大的問題不在於「學什麼」,而在於「為什麼要學」,因此意識到若要改變孩子的學習狀態,不能只是單方面灌輸「老師想教的」,而要從學生的需求出發,了解「孩子想學什麼」。

七年來,LIS 拍攝超過 100 支線上科學影片,包括將科學家的思想歷程、時代背景融入角色劇情的科學史,以及結合時事、生活情境的科學實驗,目前已經超過 250 萬觀看人次,也成為全台許多中小學的教材。

這次,LIS 歷時三年研發出一套科學實境解謎遊戲,不只在玩遊戲的過程中學科學,也引導孩子練習「像科學家一樣思考」。

什麼是「像科學家一樣思考」?

過去,我們在國中課本裡學到的科學方法「觀察、提出假說、進行實驗、得到結論」,然而許多學生能對步驟琅琅上口,卻不見得理解背後的邏輯。LIS 分析百位科學家的思考歷程以及參考教育學者的理論,設計出適合培養國小學生科學思維的「科學推理階梯」,共有四個步驟,包括「發現問題」、「聯想原因」、「大膽假設」、「實際驗證」。

-----廣告,請繼續往下閱讀-----

嚴天浩坦言,對於國小的孩子來說,他認為最難的在於——第一步「發現問題」,這取決於孩子過去是否累積足夠的觀察經驗,因此,如何訓練孩子觀察是培養探究學習的重點。然而,在沒有老師的引導下,要怎麼讓孩子能聚焦在實驗的現象上,成為開發遊戲過程中的一大考驗,後來,團隊想出了運用 RPG 中的角色對話,設計句子讓玩家將注意力集中在現象上的差異,「當孩子觀察到的與他原本的認知有所不同,產生衝突時才會進而發現問題。」嚴天浩說。

有適當的引導,才能從問題中學習

在發現問題之後,還須激發玩家思索問題的意願,因此在遊戲中便成為一個個解謎關卡,玩家為了破關、練等會主動尋找答案,在玩完遊戲後得到的成就感,會讓孩子對科學產生動機,在未來有自信用這樣的方式去思考、面對問題。

嚴天浩說:「大學時我修過教育學的課,設計課程的第一步往往是『引起動機』,但我們認為應該從遊戲開始到結束的每一個動作,都需要一個『引起動機』,目前玩過這套遊戲的孩子有持續玩過兩個小時以上,玩得越久代表引起的學習動機越強烈。」

了解背後的意義才是學科學

然而,有時在做完實驗後,學生只會記得當時看到的實驗結果或現象,卻沒有把背後的邏輯和原理帶走,關於這部分,嚴天浩分享,「玩實驗」和「學科學」最大的差別在於,是否了解每個步驟的意義,如同以往「食譜式實驗」,照著課本一步一步做,卻不知道為什麼這麼做。

因此,他們把演示型實驗設計成遊戲,將探究歷程拆分成關卡,透過與 NPC 對話帶領玩家思考,並預想玩家可能卡關的地方,就像是在蓋房子時的鷹架,一層層建構、支持,逐漸將學習的責任放回孩子身上,傳統課堂中搭鷹架的角色可能是老師,而在這個遊戲裡,是精心設計過的關卡提示。

讀到這裡,或許你會想問,在探究式的學習中,真的能夠學會「像科學家一樣思考」嗎?

「我認為探究學習中,知識其實只是附帶的。」嚴天浩解釋:「我們想告訴孩子的是,科學家最厲害的並不是他成功發現了什麼,而是他在失敗了那麼多次之後,還是願意繼續努力。」

-----廣告,請繼續往下閱讀-----

如果現在的台灣是二十年前教育的結果,那麼 LIS 正在改變的是二十年後的台灣,那時的每個人在面對問題時都能有邏輯地看待、抱著自信的態度去解決,這是 LIS 的憧憬,也是我們對於台灣未來世代的期盼。


所有討論 2
PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

0
0

文字

分享

1
0
0
小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls
Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

9
0

文字

分享

0
9
0
不只能「透視海底」還可判釋水稻田!淺談福衛五號的影像多元應用
科技大觀園_96
・2021/08/23 ・2533字 ・閱讀時間約 5 分鐘

福衛五號幫助研究人員算出海底地形、找出稻田分布。圖/fatcat11 繪

「透視」海底,用福五影像逆推東沙環礁水底地形

中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約 20 公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

-----廣告,請繼續往下閱讀-----
福衛五號衛星於 2018 年 3 月 2 日所攝得東沙環礁影像。圖/國家太空中心提供

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星 WorldView2 的影像反演水深,比較兩者成果。福五反演的水深成果精度達 1.62 公尺,雖略遜於 WorldView2 的 1.26 公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。

-----廣告,請繼續往下閱讀-----
東沙環礁水底地形。圖/研究團隊提供

雙衛星搭檔,提高水稻田判釋精度!

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達 92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配 22 組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的 90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

-----廣告,請繼續往下閱讀-----

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在 11 月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成 1,000 公斤或 4,000 公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。

福衛五號的自然彩色影像,綠色標記為水稻;黃色標記為非水稻。圖/研究團隊提供

掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至 60 公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於 60 公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

-----廣告,請繼續往下閱讀-----

梅樹是另個成功案例,它在 12 月下旬會落葉,隔年 2 月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。