1

0
0

文字

分享

1
0
0

小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls

Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

10
2

文字

分享

2
10
2
素養不是知識,是讓孩子像科學家一樣思考——LIS 創辦人嚴天浩專訪
PanSci_96
・2021/09/24 ・2101字 ・閱讀時間約 4 分鐘

近年來,在新課綱推行之下,「素養」這個詞成為熱門關鍵字,「對我來說,素養就是面對世界的行為模式,在面臨問題時,一個人會抱著什麼樣的態度去解決問題。而科學素養就是『像科學家一樣思考』」LIS 科學情境教材(台灣線上教育發展協會)創辦人嚴天浩這麼說。

嚴天浩在大學時開始製作教學影片,最初的動機來自上大學後體會到城鄉差距、資源落差,想藉由線上教材擴大影響力,然而觀看次數卻不如預期。

2013 年起,嚴天浩和夥伴到台東,向「孩子的書屋」負責人陳爸(陳俊朗)請益,並長期蹲點接觸孩子,發現學生們面臨最大的問題不在於「學什麼」,而在於「為什麼要學」,因此意識到若要改變孩子的學習狀態,不能只是單方面灌輸「老師想教的」,而要從學生的需求出發,了解「孩子想學什麼」。

七年來,LIS 拍攝超過 100 支線上科學影片,包括將科學家的思想歷程、時代背景融入角色劇情的科學史,以及結合時事、生活情境的科學實驗,目前已經超過 250 萬觀看人次,也成為全台許多中小學的教材。

這次,LIS 歷時三年研發出一套科學實境解謎遊戲,不只在玩遊戲的過程中學科學,也引導孩子練習「像科學家一樣思考」。

什麼是「像科學家一樣思考」?

過去,我們在國中課本裡學到的科學方法「觀察、提出假說、進行實驗、得到結論」,然而許多學生能對步驟琅琅上口,卻不見得理解背後的邏輯。LIS 分析百位科學家的思考歷程以及參考教育學者的理論,設計出適合培養國小學生科學思維的「科學推理階梯」,共有四個步驟,包括「發現問題」、「聯想原因」、「大膽假設」、「實際驗證」。

-----廣告,請繼續往下閱讀-----

嚴天浩坦言,對於國小的孩子來說,他認為最難的在於——第一步「發現問題」,這取決於孩子過去是否累積足夠的觀察經驗,因此,如何訓練孩子觀察是培養探究學習的重點。然而,在沒有老師的引導下,要怎麼讓孩子能聚焦在實驗的現象上,成為開發遊戲過程中的一大考驗,後來,團隊想出了運用 RPG 中的角色對話,設計句子讓玩家將注意力集中在現象上的差異,「當孩子觀察到的與他原本的認知有所不同,產生衝突時才會進而發現問題。」嚴天浩說。

有適當的引導,才能從問題中學習

在發現問題之後,還須激發玩家思索問題的意願,因此在遊戲中便成為一個個解謎關卡,玩家為了破關、練等會主動尋找答案,在玩完遊戲後得到的成就感,會讓孩子對科學產生動機,在未來有自信用這樣的方式去思考、面對問題。

嚴天浩說:「大學時我修過教育學的課,設計課程的第一步往往是『引起動機』,但我們認為應該從遊戲開始到結束的每一個動作,都需要一個『引起動機』,目前玩過這套遊戲的孩子有持續玩過兩個小時以上,玩得越久代表引起的學習動機越強烈。」

了解背後的意義才是學科學

然而,有時在做完實驗後,學生只會記得當時看到的實驗結果或現象,卻沒有把背後的邏輯和原理帶走,關於這部分,嚴天浩分享,「玩實驗」和「學科學」最大的差別在於,是否了解每個步驟的意義,如同以往「食譜式實驗」,照著課本一步一步做,卻不知道為什麼這麼做。

因此,他們把演示型實驗設計成遊戲,將探究歷程拆分成關卡,透過與 NPC 對話帶領玩家思考,並預想玩家可能卡關的地方,就像是在蓋房子時的鷹架,一層層建構、支持,逐漸將學習的責任放回孩子身上,傳統課堂中搭鷹架的角色可能是老師,而在這個遊戲裡,是精心設計過的關卡提示。

讀到這裡,或許你會想問,在探究式的學習中,真的能夠學會「像科學家一樣思考」嗎?

「我認為探究學習中,知識其實只是附帶的。」嚴天浩解釋:「我們想告訴孩子的是,科學家最厲害的並不是他成功發現了什麼,而是他在失敗了那麼多次之後,還是願意繼續努力。」

-----廣告,請繼續往下閱讀-----

如果現在的台灣是二十年前教育的結果,那麼 LIS 正在改變的是二十年後的台灣,那時的每個人在面對問題時都能有邏輯地看待、抱著自信的態度去解決,這是 LIS 的憧憬,也是我們對於台灣未來世代的期盼。


-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1255 篇文章 ・ 2382 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
0

文字

分享

0
9
0
不只能「透視海底」還可判釋水稻田!淺談福衛五號的影像多元應用
科技大觀園_96
・2021/08/23 ・2533字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

福衛五號幫助研究人員算出海底地形、找出稻田分布。圖/fatcat11 繪

「透視」海底,用福五影像逆推東沙環礁水底地形

中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約 20 公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

-----廣告,請繼續往下閱讀-----
福衛五號衛星於 2018 年 3 月 2 日所攝得東沙環礁影像。圖/國家太空中心提供

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星 WorldView2 的影像反演水深,比較兩者成果。福五反演的水深成果精度達 1.62 公尺,雖略遜於 WorldView2 的 1.26 公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。

-----廣告,請繼續往下閱讀-----
東沙環礁水底地形。圖/研究團隊提供

雙衛星搭檔,提高水稻田判釋精度!

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達 92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配 22 組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的 90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

-----廣告,請繼續往下閱讀-----

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在 11 月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成 1,000 公斤或 4,000 公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。

福衛五號的自然彩色影像,綠色標記為水稻;黃色標記為非水稻。圖/研究團隊提供

掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至 60 公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於 60 公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

-----廣告,請繼續往下閱讀-----

梅樹是另個成功案例,它在 12 月下旬會落葉,隔年 2 月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。

-----廣告,請繼續往下閱讀-----
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。