1

0
0

文字

分享

1
0
0

小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls

Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

10
2

文字

分享

2
10
2
素養不是知識,是讓孩子像科學家一樣思考——LIS 創辦人嚴天浩專訪
PanSci_96
・2021/09/24 ・2101字 ・閱讀時間約 4 分鐘

近年來,在新課綱推行之下,「素養」這個詞成為熱門關鍵字,「對我來說,素養就是面對世界的行為模式,在面臨問題時,一個人會抱著什麼樣的態度去解決問題。而科學素養就是『像科學家一樣思考』」LIS 科學情境教材(台灣線上教育發展協會)創辦人嚴天浩這麼說。

嚴天浩在大學時開始製作教學影片,最初的動機來自上大學後體會到城鄉差距、資源落差,想藉由線上教材擴大影響力,然而觀看次數卻不如預期。

2013 年起,嚴天浩和夥伴到台東,向「孩子的書屋」負責人陳爸(陳俊朗)請益,並長期蹲點接觸孩子,發現學生們面臨最大的問題不在於「學什麼」,而在於「為什麼要學」,因此意識到若要改變孩子的學習狀態,不能只是單方面灌輸「老師想教的」,而要從學生的需求出發,了解「孩子想學什麼」。

七年來,LIS 拍攝超過 100 支線上科學影片,包括將科學家的思想歷程、時代背景融入角色劇情的科學史,以及結合時事、生活情境的科學實驗,目前已經超過 250 萬觀看人次,也成為全台許多中小學的教材。

這次,LIS 歷時三年研發出一套科學實境解謎遊戲,不只在玩遊戲的過程中學科學,也引導孩子練習「像科學家一樣思考」。

什麼是「像科學家一樣思考」?

過去,我們在國中課本裡學到的科學方法「觀察、提出假說、進行實驗、得到結論」,然而許多學生能對步驟琅琅上口,卻不見得理解背後的邏輯。LIS 分析百位科學家的思考歷程以及參考教育學者的理論,設計出適合培養國小學生科學思維的「科學推理階梯」,共有四個步驟,包括「發現問題」、「聯想原因」、「大膽假設」、「實際驗證」。

-----廣告,請繼續往下閱讀-----

嚴天浩坦言,對於國小的孩子來說,他認為最難的在於——第一步「發現問題」,這取決於孩子過去是否累積足夠的觀察經驗,因此,如何訓練孩子觀察是培養探究學習的重點。然而,在沒有老師的引導下,要怎麼讓孩子能聚焦在實驗的現象上,成為開發遊戲過程中的一大考驗,後來,團隊想出了運用 RPG 中的角色對話,設計句子讓玩家將注意力集中在現象上的差異,「當孩子觀察到的與他原本的認知有所不同,產生衝突時才會進而發現問題。」嚴天浩說。

有適當的引導,才能從問題中學習

在發現問題之後,還須激發玩家思索問題的意願,因此在遊戲中便成為一個個解謎關卡,玩家為了破關、練等會主動尋找答案,在玩完遊戲後得到的成就感,會讓孩子對科學產生動機,在未來有自信用這樣的方式去思考、面對問題。

嚴天浩說:「大學時我修過教育學的課,設計課程的第一步往往是『引起動機』,但我們認為應該從遊戲開始到結束的每一個動作,都需要一個『引起動機』,目前玩過這套遊戲的孩子有持續玩過兩個小時以上,玩得越久代表引起的學習動機越強烈。」

了解背後的意義才是學科學

然而,有時在做完實驗後,學生只會記得當時看到的實驗結果或現象,卻沒有把背後的邏輯和原理帶走,關於這部分,嚴天浩分享,「玩實驗」和「學科學」最大的差別在於,是否了解每個步驟的意義,如同以往「食譜式實驗」,照著課本一步一步做,卻不知道為什麼這麼做。

因此,他們把演示型實驗設計成遊戲,將探究歷程拆分成關卡,透過與 NPC 對話帶領玩家思考,並預想玩家可能卡關的地方,就像是在蓋房子時的鷹架,一層層建構、支持,逐漸將學習的責任放回孩子身上,傳統課堂中搭鷹架的角色可能是老師,而在這個遊戲裡,是精心設計過的關卡提示。

讀到這裡,或許你會想問,在探究式的學習中,真的能夠學會「像科學家一樣思考」嗎?

「我認為探究學習中,知識其實只是附帶的。」嚴天浩解釋:「我們想告訴孩子的是,科學家最厲害的並不是他成功發現了什麼,而是他在失敗了那麼多次之後,還是願意繼續努力。」

-----廣告,請繼續往下閱讀-----

如果現在的台灣是二十年前教育的結果,那麼 LIS 正在改變的是二十年後的台灣,那時的每個人在面對問題時都能有邏輯地看待、抱著自信的態度去解決,這是 LIS 的憧憬,也是我們對於台灣未來世代的期盼。


-----廣告,請繼續往下閱讀-----
所有討論 2
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
0

文字

分享

0
9
0
不只能「透視海底」還可判釋水稻田!淺談福衛五號的影像多元應用
科技大觀園_96
・2021/08/23 ・2533字 ・閱讀時間約 5 分鐘

福衛五號幫助研究人員算出海底地形、找出稻田分布。圖/fatcat11 繪

「透視」海底,用福五影像逆推東沙環礁水底地形

中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約 20 公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

-----廣告,請繼續往下閱讀-----
福衛五號衛星於 2018 年 3 月 2 日所攝得東沙環礁影像。圖/國家太空中心提供

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星 WorldView2 的影像反演水深,比較兩者成果。福五反演的水深成果精度達 1.62 公尺,雖略遜於 WorldView2 的 1.26 公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。

-----廣告,請繼續往下閱讀-----
東沙環礁水底地形。圖/研究團隊提供

雙衛星搭檔,提高水稻田判釋精度!

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達 92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配 22 組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的 90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

-----廣告,請繼續往下閱讀-----

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在 11 月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成 1,000 公斤或 4,000 公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。

福衛五號的自然彩色影像,綠色標記為水稻;黃色標記為非水稻。圖/研究團隊提供

掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至 60 公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於 60 公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

-----廣告,請繼續往下閱讀-----

梅樹是另個成功案例,它在 12 月下旬會落葉,隔年 2 月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。

-----廣告,請繼續往下閱讀-----
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

1

0
0

文字

分享

1
0
0
小透鏡們的魔術- 由模糊而生的清晰 ! Engraved panel casts image on walls
Scimage
・2011/05/31 ・515字 ・閱讀時間約 1 分鐘 ・SR值 498 ・六年級

家裡有方格玻璃門的朋友都知道,光通過那種玻璃門會變成像是光斑,如果再離遠一點就變成均勻的光。這樣的設計是為要讓光被打亂,所以外面的人看不到裡面,可是光又進的去。不過這樣的模糊特性不是絕對的,經由數學計算,其實清晰的影像可以從這樣的光斑來產生。

影片中的小板子上有很多非等向性的小透鏡,打上光之後,如果離螢幕很近,就只會產生光斑,不過把這小板子慢慢拿遠以後,照出來的光斑慢慢變成聚合成的美女跟愛因斯坦的影像了( 做影像展示的好像很喜歡用愛因斯坦,像之前介紹過的用細菌照相也是!)。

這樣的技術是透過把影像的深淺強度用橢圓的高斯分布來展開,用很多可控制位置的模糊影像來合成清晰影像,最後將可對應造成光斑的小透鏡做成表面的起伏就完成了。以往這樣的系統常常是在傅立葉轉換平面,利用控制光的波前相位分布來達成,不過那樣的技術需要特殊的調變元件,也會損失光強(發光強度)。這影片提出的方式比較直觀跟容易設計,也有可能大規模利用塑膠材質來達成,或許可以用在一些特定的照明場合上~!

學術文獻

-----廣告,請繼續往下閱讀-----

本文原發表於科學影像Scimage[2011-05-30]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!