0

0
1

文字

分享

0
0
1

從大數據中看出端倪,瑪莉發現中洋裂谷──《聽見海底的形狀》

貓頭鷹出版社_96
・2018/12/22 ・5046字 ・閱讀時間約 10 分鐘 ・SR值 555 ・八年級

編按:本文選自《聽見海底的形狀》第十章,講述地質學家瑪莉‧薩普與研究夥伴布魯斯繪製海底地形圖,進而發現中洋裂谷的故事。

研究船來來回回,先拼湊完整大西洋航線

一九五二年九月,瑪莉的辦公室有一落紙箱,紙箱裡是一卷又一卷由博士和他的學生利用亞特蘭提斯號研究船,從一九四七年夏天蒐集至一九五二年九月的聲納紀錄。她另外還有一份記載研究船航線的詳細資料。這五年間,亞特蘭提斯號多次往返美國東岸與歐非兩洲西岸,航線有長有短。每一次的航程路徑──也就是航道(好比動物留下的獸徑足跡)──皆清楚標示在航海圖上。該紀錄亦定期標示經緯度,好讓測得的深度可與測定位置互相吻合。

由於研究船鮮少一出海即一口氣橫越大西洋,因此大部分的航線都經過縝密的編纂規畫。舉例來說,研究船可能從瑪莎葡萄園(麻州島嶼名)沿岸出發,橫越大西洋四分之一的幅度(期間每隔一段距離便使用各種工具進行各式實驗,包括採岩芯、撈取沉積物樣本、測量水溫與鹽度,也許再追加上折射震測),然後返回美國;而另一段航程可能只蒐集「四分之一幅度至大西洋中線」這一段的紀錄。搞不好還有誰搶在所有人之前,一路直奔直布羅陀並蒐集聲納紀錄。因此,瑪莉若想取得從瑪莎葡萄園直達直布羅陀的航道圖,她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。

她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。圖/pixabay

著手剪接時,瑪莉眼前總共有六份航道圖:最北的一條始於瑪莎葡萄園,終於直布羅陀;最南的一段介於巴西勒西非(Recife)與獅子山共和國自由城(Sierra Leone, Freetown)之間。這些畫在紙上的航道圖如一條條曬衣繩,恣意隨興地垂掛大西洋兩岸;沒有一條完全水平,大多朝海洋中線下垂。把這六條航線加總統計,可見亞特蘭提斯號已航行超過十萬哩,總共產出三千呎長的聲納紀錄紙,也就是堆在瑪莉辦公室角落那疊紙箱裡的紙卷大軍。

點點相連視覺化,繪製海底地形剖面圖

瑪莉後來回憶,她和布魯斯的期望是呈現北大西洋的「完整模樣」,因此他們的下一步是將那三千呎長的聲納紀錄轉譯成圖像──這可是驚世創舉。為了執行這項任務,瑪莉將幾張布紋紙黏接成條,再畫上六幅橫圖;頂端是最北的航道圖,尾端是最南的航道圖,其他四條則依序畫在兩者之間。每一幅圖皆以縱軸標示深度(刻度為一千、兩千、三千及四千噚),橫軸則以五百哩為單位,標示距離。每張圖皆像極了樂譜:五條橫線,線與線之間有固定間隔,標示距離的直線則就像是小節線。

-----廣告,請繼續往下閱讀-----
每張圖皆像極了樂譜。圖/pxhere

接下來,瑪莉在圖上標出每一座高峰與低谷的深度,以垂直水平比「四十比一」的幅度放大海底地形的垂直比例。縱軸的一吋相當於一海里(一八五二公尺),橫軸一吋代表四十哩(六四三七三公尺)。瑪莉和布魯斯刻意選擇誇大垂直比例,如此才能看見極可能在無意間忽視的海底細微變化:放大比例後,山脊變得更高(像太妃軟糖一樣朝海平面被延展拉高);而山谷則顯示往海底深鑿的凹溝。他倆之所以選擇四十比一的比例,理由是最長那段航道需要八七.五吋(近七.五呎)的橫幅寬度。

「當年,我們在製圖這方面還有點天真。」瑪莉說,「所以我們弄了一幅需要好幾張製圖桌才容得下的超大原稿。」要說天真,是因為他們認真做出一份不符雜誌或報紙規格且難以複製翻印的原圖,但亦不失為聰明之舉:正因為原圖超大,他們才能看出那些在「可印刷的尺寸」(瑪莉稱為「正常、可對折的圖紙」)之下,極可能消失不見的細微變化。

海底地形剖面。圖/wikimedia

在紙上標出一個個註記深度、宛如五線譜音符的黑點後,她將點與點連接起來──這部分就需要仔細斟酌詮釋方法了。在深度方面,她標記的刻度為每一吋畫一點,但點與點之間呢?如此豈不像少了好些音符的樂譜?音樂家可運用在和絃行進、和聲或旋律方面的知識,於視譜過程中創出新曲,順利完成演奏;瑪莉的做法也差不多,只不過她並非即興創作,而是在尚無數據之處插入假設數值,再與已知深度的各標定點相連。這可不是隨意亂連,而是基於地質學家的紮實訓練,步步為營。然而,不是每個人都能像瑪莉一樣,嫻熟演繹不同深度間的連結;就像在鋼琴前坐下來嘗試即興演奏的大有人在,但多數送出的僅是噪音,而非音樂。

瑪莉在高高低低的鋸齒線下方點上墨點,成果顯示這六份航道圖呈現的海底剖面實在複雜。六幅海底地形剪影,以墨點標註在看似樂譜的圖表上:大陸棚陡降進入大陸坡,大陸隆堆再緩降進入布魯斯尋尋覓覓的深海平原。百慕達群島浮出海平面。十九世紀晚近,眾海洋學家推敲臆測的寬闊中洋脊也出現了。此外,非深海平原之處亦布滿許多細小如石筍的山脈地貌。這是一項了不起的成就:瑪莉的作品是有史以來最精密詳細的海底地形剖面圖。但她並不滿意,她認為她完全沒發現任何新玩意兒。

-----廣告,請繼續往下閱讀-----
大西洋中央橫亙了一長條中洋脊。圖/wikipedia

慧眼看出 V 型槽口,難道大陸漂移是真的?

說到底,以前也有人製作過這個區域的部分海底剖面圖,其中絕大多數都是一九二五至二七年之間,由德國研究船「流星號」的幾位海洋學家遠征南大西洋時完成的。這些圖在一九三○年代即已公開發表,而全球科學家也早已見過。事實上,布魯斯之所以在把聲納紀錄交給瑪莉時順帶提起深海平原與大陸隆堆,是因為他已經大致看過這些地貌了。但瑪莉反駁他的缺乏想像力。「我覺得這些地貌原本就相當明顯,哪需要這般胡搞瞎搞?」她寫道,「我想找的是更複雜,或者更細微、不易察覺的差異。」以布魯斯的立場來說,她繼續寫道,他想描繪勾勒的是「不曾出現在任何文獻上、值得明確標示出來」的地理特徵;然而,看在她眼裡,這個想法「絲毫不具智能上的挑戰」。她期望能發現更多東西。

瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。圖/pixabay

這項工作初期就耗去她約莫六周時間。夏去秋來,瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。有時,她和共用辦公室的夥伴會在壁爐生火。她常盯著能眺望哈德遜河景的大窗子,凝視良久。她會花好長一段時間細瞧已確認存在的中洋脊,即海床上抬的寬闊隆起。中洋脊在六幅航道剖面圖上皆清晰可見。也就是說,這道隆起不是單一一座山,而是一條山脈。這時發生了一件事:「當我更仔細研究,試圖解讀與拆解其構造細節時,」她說,「我注意到,在每一幅剖面圖中,中洋脊峰頂附近都有一道頗深的 V 型槽口。」深溝、裂谷。這絕對是新發現。她繼續研究,重複確認聲納紀錄,確定她並未標錯深度。最後她確信她的判斷正確,立刻致電布魯斯。

中洋脊頂峰具有凹陷之 V 型槽口。圖/wikipedia

其結果是兩人首度爆發嚴重爭執。雙手來回比畫,執拗與不願妥協的反覆聲明四射:布魯斯輕蔑大笑,咆哮駁斥瑪莉的女人直覺;瑪莉臉繃得跟拳頭一樣緊。白色布紋紙製成的巨大地圖橫亙在兩人之間,布魯斯用手指猛戳某段裂谷。從這個角度看,崎嶇的海底不也像捕獸夾嗎?瑪莉大罵布魯斯冥頑不靈、食古不化,她說,至少她動腦思考,也想了些東西出來;況且他到底在怕什麼?

她非常清楚他在怕什麼。他們倆都曉得,這道裂谷的存在意味著大陸漂移。魏格納的理論在美國普遍遭到駁斥謾罵,卻也因此廣為人知。比方說,瑪莉就是從密西根教授那兒學到的。許多年後,瑪莉在投稿《自然史》(Nature History)的一篇文章中提到:「假如有一種學說叫大陸漂移,那麼就邏輯而言,極可能涉及『中洋裂谷』這類構造。源自地球深處的新物質自裂谷湧出,將中洋脊一分為二、往兩側推離,也因此推動了不同板塊上的大陸。」她開始描述相關效應,但布魯斯不想聽,也肯定不想看見相關證明。他繞著屋子踱步,手支著腰,指控她做白日夢。瑪莉徹底失去耐性。她得使出最大的氣力阻止自己拿釘書機扔他腦袋。她威脅要再度辭職。同辦公室的其他人早已全員疏散。最後,布魯斯手指著裂谷,飆出這一句──女孩子家瞎扯淡。不可能是那種東西。那看起來太像──

-----廣告,請繼續往下閱讀-----

大陸漂移,瑪莉說。

大陸漂移,布魯斯說。

兩人沉默對望。除此之外,你還能怎麼解釋這玩意兒?

連續分布於不同大陸的化石,為大陸飄移的證據。圖/wikipedia

顛覆認知的革命性發現

一九五二年,「大陸漂移」是頗具爭議的字眼。「在當時,」瑪莉在《自然史》文中寫道,布魯斯和「拉蒙居以及全美科學家,幾乎都認為大陸漂移根本不可能發生。」提到「大陸漂移」多半會引起從輕微焦慮至洩氣恐懼等不同反應,這點依個人對自我腦力的信心而定。美國學者不僅認為陸塊不可能漂移,甚至覺得「這幾乎是某種形式的科學異端邪說。」瑪莉寫道,「如果暗示某人相信大陸漂移說,幾乎等同於暗批此人腦袋肯定有問題。」布魯斯對這項假設的反應近乎恐懼,但瑪莉不然;若要說瑪莉曾感到不安的話,唯一的證據不過就是她在告訴布魯斯之前,曾經一而再、再而三不斷檢查而已。

為了解瑪莉何以敢斷定海底有裂谷──正如大陸漂移說所暗示──必須先迅速回顧一下她曾受過的訓練。在地質學家養成過程中,瑪莉學會如何一葉知秋,透過觀察一塊岩石或一片特殊地域,利用其結構、組成與位置等細節,推演其歷史來由,此即岩石的地形學背景資料,解釋岩石何以與如何形成。據瑪莉表示,在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。

在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。圖/pxhere

她也提到一項地質系學生很難躲掉的習作:「通常,你會拿到一張可能來自世界任一地點的方塊地形圖,然後,你必須根據地形地貌,推測這塊土地的地質史。」這套方法是她從陸地上學來的,現在她將同一套程序應用於海底研究:當她看見海床出現一道裂谷,她自問,這道裂谷為何出現在這裡、為何呈現如此模樣。裂谷即裂縫,而這道裂縫龐大且連續,還跟地震活動扯上關係,於是,她能想到最簡單的答案即是大陸漂移。

-----廣告,請繼續往下閱讀-----
東非大裂谷則是陸地上的裂谷。圖/wikipedia

簡單,卻具革命性:在瑪莉做出重大發現之前,流星號的聲納紀錄已流傳近二十載,卻沒有一個人注意到這道裂谷。除了瑪莉與布魯斯,無人見過大圖版的大西洋中洋脊系統,無人調整比例、壓縮雜訊、凸顯原本不起眼的裂谷,也沒有人將這些黑點和同區域的地震活動連結起來,大膽使用「裂谷」一詞描述其發現。

一九三八年,一位名叫均特.迪里屈(Günter Dietrich)的男子曾於《國際水文評論》(International Hydrographic Review)發表過一篇文章,算是截至當時為止最接近瑪莉與布魯斯的成就。雖然他在一些小海域發現相似的地形模式,迪里屈寫道,不過一旦擴大觀測範圍,「彼此之間是否絕對相關就很難說了。」大西洋中洋脊充滿「一團混亂糾結的峰頂和山谷」。他只看見混亂,瑪莉卻找出模式。誠如布魯斯某次談到的:有人問他,流星號發表那些紀錄時,何以未在科學社群留下深刻印象?布魯斯的答覆是:「沒有人找對方向。直到瑪莉出手才正中紅心。」

當然,布魯斯是後來回顧時才這麼說的。早在一九五二年,他更擔心這道裂谷對於他未來人生的影響;當時他腦中想的是「異端邪說」,而非革命創見。瑪莉將那道裂谷呈現在他眼前,他叫她全部重做一遍。她照辦了。

 

 

本文摘自《聽見海底的形狀:奠定大陸漂移說的女科學家》,2017 年 11 月,貓頭鷹出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

10
3

文字

分享

0
10
3
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----