Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

從大數據中看出端倪,瑪莉發現中洋裂谷──《聽見海底的形狀》

貓頭鷹出版社_96
・2018/12/22 ・5046字 ・閱讀時間約 10 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

編按:本文選自《聽見海底的形狀》第十章,講述地質學家瑪莉‧薩普與研究夥伴布魯斯繪製海底地形圖,進而發現中洋裂谷的故事。

研究船來來回回,先拼湊完整大西洋航線

一九五二年九月,瑪莉的辦公室有一落紙箱,紙箱裡是一卷又一卷由博士和他的學生利用亞特蘭提斯號研究船,從一九四七年夏天蒐集至一九五二年九月的聲納紀錄。她另外還有一份記載研究船航線的詳細資料。這五年間,亞特蘭提斯號多次往返美國東岸與歐非兩洲西岸,航線有長有短。每一次的航程路徑──也就是航道(好比動物留下的獸徑足跡)──皆清楚標示在航海圖上。該紀錄亦定期標示經緯度,好讓測得的深度可與測定位置互相吻合。

由於研究船鮮少一出海即一口氣橫越大西洋,因此大部分的航線都經過縝密的編纂規畫。舉例來說,研究船可能從瑪莎葡萄園(麻州島嶼名)沿岸出發,橫越大西洋四分之一的幅度(期間每隔一段距離便使用各種工具進行各式實驗,包括採岩芯、撈取沉積物樣本、測量水溫與鹽度,也許再追加上折射震測),然後返回美國;而另一段航程可能只蒐集「四分之一幅度至大西洋中線」這一段的紀錄。搞不好還有誰搶在所有人之前,一路直奔直布羅陀並蒐集聲納紀錄。因此,瑪莉若想取得從瑪莎葡萄園直達直布羅陀的航道圖,她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。

她得像剪輯三十五釐米底片一樣,利用前述三份資料設法拼湊出來。剪接中的航道區段猶如一張張電影分鏡。圖/pixabay

著手剪接時,瑪莉眼前總共有六份航道圖:最北的一條始於瑪莎葡萄園,終於直布羅陀;最南的一段介於巴西勒西非(Recife)與獅子山共和國自由城(Sierra Leone, Freetown)之間。這些畫在紙上的航道圖如一條條曬衣繩,恣意隨興地垂掛大西洋兩岸;沒有一條完全水平,大多朝海洋中線下垂。把這六條航線加總統計,可見亞特蘭提斯號已航行超過十萬哩,總共產出三千呎長的聲納紀錄紙,也就是堆在瑪莉辦公室角落那疊紙箱裡的紙卷大軍。

點點相連視覺化,繪製海底地形剖面圖

瑪莉後來回憶,她和布魯斯的期望是呈現北大西洋的「完整模樣」,因此他們的下一步是將那三千呎長的聲納紀錄轉譯成圖像──這可是驚世創舉。為了執行這項任務,瑪莉將幾張布紋紙黏接成條,再畫上六幅橫圖;頂端是最北的航道圖,尾端是最南的航道圖,其他四條則依序畫在兩者之間。每一幅圖皆以縱軸標示深度(刻度為一千、兩千、三千及四千噚),橫軸則以五百哩為單位,標示距離。每張圖皆像極了樂譜:五條橫線,線與線之間有固定間隔,標示距離的直線則就像是小節線。

-----廣告,請繼續往下閱讀-----
每張圖皆像極了樂譜。圖/pxhere

接下來,瑪莉在圖上標出每一座高峰與低谷的深度,以垂直水平比「四十比一」的幅度放大海底地形的垂直比例。縱軸的一吋相當於一海里(一八五二公尺),橫軸一吋代表四十哩(六四三七三公尺)。瑪莉和布魯斯刻意選擇誇大垂直比例,如此才能看見極可能在無意間忽視的海底細微變化:放大比例後,山脊變得更高(像太妃軟糖一樣朝海平面被延展拉高);而山谷則顯示往海底深鑿的凹溝。他倆之所以選擇四十比一的比例,理由是最長那段航道需要八七.五吋(近七.五呎)的橫幅寬度。

「當年,我們在製圖這方面還有點天真。」瑪莉說,「所以我們弄了一幅需要好幾張製圖桌才容得下的超大原稿。」要說天真,是因為他們認真做出一份不符雜誌或報紙規格且難以複製翻印的原圖,但亦不失為聰明之舉:正因為原圖超大,他們才能看出那些在「可印刷的尺寸」(瑪莉稱為「正常、可對折的圖紙」)之下,極可能消失不見的細微變化。

海底地形剖面。圖/wikimedia

在紙上標出一個個註記深度、宛如五線譜音符的黑點後,她將點與點連接起來──這部分就需要仔細斟酌詮釋方法了。在深度方面,她標記的刻度為每一吋畫一點,但點與點之間呢?如此豈不像少了好些音符的樂譜?音樂家可運用在和絃行進、和聲或旋律方面的知識,於視譜過程中創出新曲,順利完成演奏;瑪莉的做法也差不多,只不過她並非即興創作,而是在尚無數據之處插入假設數值,再與已知深度的各標定點相連。這可不是隨意亂連,而是基於地質學家的紮實訓練,步步為營。然而,不是每個人都能像瑪莉一樣,嫻熟演繹不同深度間的連結;就像在鋼琴前坐下來嘗試即興演奏的大有人在,但多數送出的僅是噪音,而非音樂。

瑪莉在高高低低的鋸齒線下方點上墨點,成果顯示這六份航道圖呈現的海底剖面實在複雜。六幅海底地形剪影,以墨點標註在看似樂譜的圖表上:大陸棚陡降進入大陸坡,大陸隆堆再緩降進入布魯斯尋尋覓覓的深海平原。百慕達群島浮出海平面。十九世紀晚近,眾海洋學家推敲臆測的寬闊中洋脊也出現了。此外,非深海平原之處亦布滿許多細小如石筍的山脈地貌。這是一項了不起的成就:瑪莉的作品是有史以來最精密詳細的海底地形剖面圖。但她並不滿意,她認為她完全沒發現任何新玩意兒。

-----廣告,請繼續往下閱讀-----
大西洋中央橫亙了一長條中洋脊。圖/wikipedia

慧眼看出 V 型槽口,難道大陸漂移是真的?

說到底,以前也有人製作過這個區域的部分海底剖面圖,其中絕大多數都是一九二五至二七年之間,由德國研究船「流星號」的幾位海洋學家遠征南大西洋時完成的。這些圖在一九三○年代即已公開發表,而全球科學家也早已見過。事實上,布魯斯之所以在把聲納紀錄交給瑪莉時順帶提起深海平原與大陸隆堆,是因為他已經大致看過這些地貌了。但瑪莉反駁他的缺乏想像力。「我覺得這些地貌原本就相當明顯,哪需要這般胡搞瞎搞?」她寫道,「我想找的是更複雜,或者更細微、不易察覺的差異。」以布魯斯的立場來說,她繼續寫道,他想描繪勾勒的是「不曾出現在任何文獻上、值得明確標示出來」的地理特徵;然而,看在她眼裡,這個想法「絲毫不具智能上的挑戰」。她期望能發現更多東西。

瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。圖/pixabay

這項工作初期就耗去她約莫六周時間。夏去秋來,瑪莉日復一日窩在二樓女兒房,持續研究剖面圖。有時,她和共用辦公室的夥伴會在壁爐生火。她常盯著能眺望哈德遜河景的大窗子,凝視良久。她會花好長一段時間細瞧已確認存在的中洋脊,即海床上抬的寬闊隆起。中洋脊在六幅航道剖面圖上皆清晰可見。也就是說,這道隆起不是單一一座山,而是一條山脈。這時發生了一件事:「當我更仔細研究,試圖解讀與拆解其構造細節時,」她說,「我注意到,在每一幅剖面圖中,中洋脊峰頂附近都有一道頗深的 V 型槽口。」深溝、裂谷。這絕對是新發現。她繼續研究,重複確認聲納紀錄,確定她並未標錯深度。最後她確信她的判斷正確,立刻致電布魯斯。

中洋脊頂峰具有凹陷之 V 型槽口。圖/wikipedia

其結果是兩人首度爆發嚴重爭執。雙手來回比畫,執拗與不願妥協的反覆聲明四射:布魯斯輕蔑大笑,咆哮駁斥瑪莉的女人直覺;瑪莉臉繃得跟拳頭一樣緊。白色布紋紙製成的巨大地圖橫亙在兩人之間,布魯斯用手指猛戳某段裂谷。從這個角度看,崎嶇的海底不也像捕獸夾嗎?瑪莉大罵布魯斯冥頑不靈、食古不化,她說,至少她動腦思考,也想了些東西出來;況且他到底在怕什麼?

她非常清楚他在怕什麼。他們倆都曉得,這道裂谷的存在意味著大陸漂移。魏格納的理論在美國普遍遭到駁斥謾罵,卻也因此廣為人知。比方說,瑪莉就是從密西根教授那兒學到的。許多年後,瑪莉在投稿《自然史》(Nature History)的一篇文章中提到:「假如有一種學說叫大陸漂移,那麼就邏輯而言,極可能涉及『中洋裂谷』這類構造。源自地球深處的新物質自裂谷湧出,將中洋脊一分為二、往兩側推離,也因此推動了不同板塊上的大陸。」她開始描述相關效應,但布魯斯不想聽,也肯定不想看見相關證明。他繞著屋子踱步,手支著腰,指控她做白日夢。瑪莉徹底失去耐性。她得使出最大的氣力阻止自己拿釘書機扔他腦袋。她威脅要再度辭職。同辦公室的其他人早已全員疏散。最後,布魯斯手指著裂谷,飆出這一句──女孩子家瞎扯淡。不可能是那種東西。那看起來太像──

-----廣告,請繼續往下閱讀-----

大陸漂移,瑪莉說。

大陸漂移,布魯斯說。

兩人沉默對望。除此之外,你還能怎麼解釋這玩意兒?

連續分布於不同大陸的化石,為大陸飄移的證據。圖/wikipedia

顛覆認知的革命性發現

一九五二年,「大陸漂移」是頗具爭議的字眼。「在當時,」瑪莉在《自然史》文中寫道,布魯斯和「拉蒙居以及全美科學家,幾乎都認為大陸漂移根本不可能發生。」提到「大陸漂移」多半會引起從輕微焦慮至洩氣恐懼等不同反應,這點依個人對自我腦力的信心而定。美國學者不僅認為陸塊不可能漂移,甚至覺得「這幾乎是某種形式的科學異端邪說。」瑪莉寫道,「如果暗示某人相信大陸漂移說,幾乎等同於暗批此人腦袋肯定有問題。」布魯斯對這項假設的反應近乎恐懼,但瑪莉不然;若要說瑪莉曾感到不安的話,唯一的證據不過就是她在告訴布魯斯之前,曾經一而再、再而三不斷檢查而已。

為了解瑪莉何以敢斷定海底有裂谷──正如大陸漂移說所暗示──必須先迅速回顧一下她曾受過的訓練。在地質學家養成過程中,瑪莉學會如何一葉知秋,透過觀察一塊岩石或一片特殊地域,利用其結構、組成與位置等細節,推演其歷史來由,此即岩石的地形學背景資料,解釋岩石何以與如何形成。據瑪莉表示,在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。

在校期間的她「沉迷」、「嗜讀」地形學教科書;不論是學校指定教科書,或是她自己找到的那一本,她皆貪婪飢渴地從第一頁讀至最後一頁。圖/pxhere

她也提到一項地質系學生很難躲掉的習作:「通常,你會拿到一張可能來自世界任一地點的方塊地形圖,然後,你必須根據地形地貌,推測這塊土地的地質史。」這套方法是她從陸地上學來的,現在她將同一套程序應用於海底研究:當她看見海床出現一道裂谷,她自問,這道裂谷為何出現在這裡、為何呈現如此模樣。裂谷即裂縫,而這道裂縫龐大且連續,還跟地震活動扯上關係,於是,她能想到最簡單的答案即是大陸漂移。

-----廣告,請繼續往下閱讀-----
東非大裂谷則是陸地上的裂谷。圖/wikipedia

簡單,卻具革命性:在瑪莉做出重大發現之前,流星號的聲納紀錄已流傳近二十載,卻沒有一個人注意到這道裂谷。除了瑪莉與布魯斯,無人見過大圖版的大西洋中洋脊系統,無人調整比例、壓縮雜訊、凸顯原本不起眼的裂谷,也沒有人將這些黑點和同區域的地震活動連結起來,大膽使用「裂谷」一詞描述其發現。

一九三八年,一位名叫均特.迪里屈(Günter Dietrich)的男子曾於《國際水文評論》(International Hydrographic Review)發表過一篇文章,算是截至當時為止最接近瑪莉與布魯斯的成就。雖然他在一些小海域發現相似的地形模式,迪里屈寫道,不過一旦擴大觀測範圍,「彼此之間是否絕對相關就很難說了。」大西洋中洋脊充滿「一團混亂糾結的峰頂和山谷」。他只看見混亂,瑪莉卻找出模式。誠如布魯斯某次談到的:有人問他,流星號發表那些紀錄時,何以未在科學社群留下深刻印象?布魯斯的答覆是:「沒有人找對方向。直到瑪莉出手才正中紅心。」

當然,布魯斯是後來回顧時才這麼說的。早在一九五二年,他更擔心這道裂谷對於他未來人生的影響;當時他腦中想的是「異端邪說」,而非革命創見。瑪莉將那道裂谷呈現在他眼前,他叫她全部重做一遍。她照辦了。

 

 

本文摘自《聽見海底的形狀:奠定大陸漂移說的女科學家》,2017 年 11 月,貓頭鷹出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

10
3

文字

分享

0
10
3
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

0

1
0

文字

分享

0
1
0
鯨魚為什麼歌唱?它們的歌聲可以用來探測海底地形?——《五感之外的世界》
臉譜出版_96
・2023/09/20 ・2132字 ・閱讀時間約 4 分鐘

一九九○年代,冷戰終於結束,蘇維埃政府在海中布下的潛水艇威脅也隨之消散,於是海軍提供克拉克與其他專家機會,讓他們透過 SOSUS 的水下麥克風觀測、記錄大海裡的各種聲音。透過聲音頻譜——也就是 SOSUS 系統將接收到的聲音轉換為視覺圖像——克拉克無庸置疑地看到了藍鯨正在歌唱的跡象。

光是第一天克拉克就發現,單一個 SOSUS 感測器所記錄下的藍鯨叫聲比過去所有科學文獻所記載的加起來還要多。大海中充斥著鯨魚的歌聲,而這些聲音則來自無比遙遠的彼方。克拉克估算,記錄下他聽見的那股歌聲的感測器,距離聲音的主人有兩千四百公里之遠。藉由位於百慕達的水下麥克風,他竟能夠聽見遠在愛爾蘭的鯨魚歌聲。

鯨魚的歌聲可以傳得很遠,整個大海中都充斥著鯨魚的歌聲。圖/Giphy

於是他說:「當時我心想:『羅傑的想法沒錯。』我們實際上真的可以探測到橫跨整個海洋盆地的鯨魚歌聲。」對於海軍的分析專家來說,這些聲音就是他們每天工作都會遇到的正常現象,而這些聲音與工作內容無關,所以根本不會被標記在聲音頻譜上,也因此就被忽略了。然而對克拉克來說,這卻是令他茅塞頓開的驚人發現。

穩定規律的「歌聲」其實是一種探測手段?

雖然藍鯨與長須鯨的歌聲能夠跨洋越海,卻沒人知道鯨魚是否真的會在如此遙遠的距離下互相溝通;畢竟牠們很有可能只是在用極大的音量對附近的同類示意,只是音波剛好傳到了很遠的地方去而已。不過克拉克又指出,鯨魚會一次又一次地不斷重複同樣的音頻,甚至也會精準維持音與音之間的間隔長度。鯨魚會在浮出水面呼吸時停止歌唱,回到水中繼續歌唱卻也會落在剛剛好的拍子上。他說:「所以牠們唱歌並不是隨興而至的舉動。」這種現象令他想起了火星探測車為了傳送資料回地球所發出的那種重複的連續訊號。假如人類想設計出能夠跨越海洋進行溝通的訊號,大概也會想出類似藍鯨歌聲的形式吧。

-----廣告,請繼續往下閱讀-----

鯨魚歌聲或許也有其他用途。牠們發出的每個音都能持續好幾秒,而其波長更是好比足球場的寬度。克拉克曾問過他在海軍的朋友,假如他有發出這種聲音的能力,可以拿來幹嘛?

「那我就能摸透整個海洋。」他的朋友如此回答道。這話的意思是,他能夠藉此刻畫出深海的地景,透過傳至遠方的次音波回音,他就能辨識出海底山稜與海床的位置。地球物理學家也肯定能運用長須鯨的歌聲來了解各處的地殼密度。那麼,鯨魚到底用這種聲音來做什麼呢?

鯨魚似乎可以透過歌聲的回音辨識出海底山稜與海床的位置。圖/pixabay

克拉克從鯨魚的動作中看出了答案;透過 SOSUS,他發現藍鯨出現在冰島與格陵蘭之間的極地水域中,一路蜂擁直奔——還是該說是鯨擁?——熱帶地區的百慕達,旅途中一路歌唱。他也看過鯨魚在深海的群山間左彎右拐,在幾百英里間的深海地景之中蜿蜒前進。「看到這些動物的移動方式,就會感覺牠們大腦裡似乎有著以音波構成的海洋地圖。」他如此說道。

他也猜測,鯨魚在長長的一輩子裡,會不斷累積大腦中的聲音記憶,隨之擴增儲存在大腦裡的海洋地圖。克拉克也還記得,曾有位資深海軍聲納專家告訴他,大海裡每個地方都有它專屬的聲音。克拉克告訴我:「他們說:『讓我戴上耳機,我不用看就能直接告訴你現在位於拉布拉多還是比斯開灣的海域。』而我就想,假如人類累積了三十年的經驗就能做到這個地步,何況是演化了一千萬年的動物呢?」

-----廣告,請繼續往下閱讀-----

漫長的迴響~不同時間尺度下的認知

不過關於鯨魚聽力的尺度,還是有令人費解之處。鯨魚的叫聲確實可以傳遞到很遠的地方,但卻也很花時間;在海裡,音波一分鐘只能傳五十英里(約八十公里)遠,因此假設一隻鯨魚聽見另一隻鯨魚在一千五百英里(約二四一四公里)之外發出的叫聲,這隻鯨魚得在半小時以後才能聽見對方的歌聲,就像天文學家觀測到的星光其實是恆星在很久很久以前散發出的光芒一樣。假如某隻鯨魚想探測五百英里(約八百零四公里)之外那座山的位置,牠得等上十分鐘才能接收到自己叫聲的回音,這感覺起來似乎有點荒謬。

然而各位想想,藍鯨在水面上的心跳一分鐘約為三十下,潛入水下後卻會下降至一分鐘只跳三次。這麼一想,鯨魚生命中的時間尺度想來一定與人類相當不同吧。倘若斑胸草雀能夠在單一個音裡就聽見以毫秒為單位的美麗音頻,也許藍鯨分辨同樣潛藏在聲音中的祕密訊號的時間尺度則是分或秒。若要想像鯨魚的生活樣貌,「你得發揮想像力,以完全不同的次元思考。」克拉克對我說道。

他認為這兩種體驗的差異應該就像先用玩具望遠鏡注視夜空,再改用美國太空總署架設在太空的哈伯太空望遠鏡一覽星羅棋布的壯麗星辰。一想到鯨魚,他的世界彷彿就變大了,不管是空間還是時間的尺度,都更加遼闊。

——本文摘自《五感之外的世界》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。