網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

2

3
2

文字

分享

2
3
2

精準預測氣象的「掩星技術」,讓你知道颱風放不放假!

科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

文章難易度
所有討論 2
科技大觀園_96
72 篇文章 ・ 886 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


0

4
0

文字

分享

0
4
0

如何從茫茫大海中,找到戰爭遺留的深水炸彈?——海底掃雷行動

Else Production
・2022/01/19 ・2597字 ・閱讀時間約 5 分鐘

對於年輕人來說,我相信「深水炸彈」一詞並不會陌生,因為這近乎是每一個狂歡派對裡的必需品。但對於埋藏在深海裡的炸彈,大家又有沒有想過我們如何找出來?

這些未爆炸的軍備,我們稱之為 Unexploded Ordnance(簡稱 UXO),有可能是水雷,有可能是深水炸彈,也有可能是導彈。它們多數是第一次或第二次世界大戰遺留下來的產品,受到多年來沉積(即水流在流速減慢時,所挾帶的砂石、塵土等沉淀堆積起來)的影響,令它們埋藏在海床以下的地方。跟據 Euronews 的估計,單單在波羅的海亦有超過 30 萬的 UXO 埋在那裡。

二戰期間,桑德蘭水上飛機掛載的深水炸彈,圖/維基百科

你也許會問,既然都已經埋藏了,何況我們仍然要處理他們?這是因為我們會在海底裡鋪設電欖、水管、天然氣輸送管等輸送系統,假如鑽探過程中不小心觸碰了它們已產生意外,或是在完成工程某一天突然爆炸而令輸電系統中斷,後果可真是不堪設想。因此,最理想的方法便是把他們全部找出來並繞道而行,或是安排專家把他們處理。

真正的大海撈針:用磁場把 UXO 吸出來!

要找到這些 UXO,最容易的方法便是使用金屬探測的方法,但由於普遍的金屬探測器的探測範圍是不超過 2 公尺的,我們很難把探測器貼近凹凸不平的水底前行(這大大增加了磨損探測器的風險),因此我們會選擇較間接的方法:磁強計(Magnetometer)。由於大部份的彈藥外層是用鐵形成的,而鐵是對磁非常敏感的,因此我們能夠在較遠的範圍便能察覺他們的存在。當在外勤工作,我們會以兩個磁強計為一組去作探測,令我們更準備知道其實際位置及大小。讓我們看看以下例子:

圖 1:磁強計的探測結果

在圖 1 裡,假設我們知道標記「1」是一個 UXO 的位置,上圖的平行線為磁強計由左至右的移動路線,下圖為磁場沿路的變化。我們可以看見,當若果沒有任何金屬物件存在的話,兩個磁強計量度的數是相近的,亦即是該環境本身的磁場。但在 UXO 的附近,我們可以看到明顯的變化。藍色線代表航行路線的左方磁強計的量度值,燈色線代表右方,由於磁場強度會隨著距離而減少,因此很明顯這一個 UXO 的位置更接近藍色線,亦即是航線的上方。

我們可以透過兩者的差距估計其位置及大小,但為了確保其真實性,我們亦會在附近再次航行,假如也有磁場變異,這便是一個不會移動的金屬物品(撇除了船、飄浮中的海洋垃圾等的可能性)。

排除法:用側掃聲納窺探看不見的海底!

正如上文提要,磁場變異所告訴我們的,只是金屬物品的位置,但它亦有可能不是炸彈,也有可能不是埋在海床下,因此我們也會使用其他科學方法去驗證。其中一個便是側掃聲納(Side Scan Sonar) ,透過聲波反射的原理,我們可以看到海床的影像。假如海床是乾淨的,聲波傳送及接收的時間是一樣的,因此我們可以看到連續的晝面。但假如有異物在水中間或海床上,聲波便會被折射而形成黑影。讓我們看看以下例子:

圖2: 側掃聲納 圖片,紅色箭咀範圍代表沒有反射的區域,綠色箭頭範圖代表船與海底的距離 (圖片來源:Grothues et al., 2017)

看看圖 2。燈色的部份是海床的晝面,中間白色的部份是船的航道,亦是側掃聲納的盲點,而黑色的部份則是有物件在海床上方而形成的聲波折射,讓我們能夠清楚看見它們的形狀。有時候我們亦會看到一些海洋垃圾,如車胎、單車等,而在上圖的左上方,我們相信是一些棄置的工業廢料。

當然你也可以爭論,在圖左上方的物件有機會不是死物,而是一種未知海洋生物,因此我們也會進行多次的側掃聲納,如果在同一位置並不能再看到它,那麼這是生物的機率便很高。假如在磁場異變的位置側掃聲納沒有探測到任何物件,這進一步證明其 UXO 的可能性。但假如有黑影在上方,我們也會透過黑影分析其大小是否吻合,並會憑經驗分析該物品會否存在金屬。

此外,在看側掃聲納,我們也很重視在磁場異變的位置附近有沒有刮痕,因為形成刮痕的原因多數是船上作業頻繁的地方,有機會是漁船拖網的地點,也有機會是大船拋錨起錨的地方,而這些動作均有機會接觸或移動了這些潛在的 UXO,產生危機。因此,這些地方都會是我們首要處理的地方。

筆者按:假如大家想看看其他用側掃聲納發現的東西,如沉船、飛機等,可以到這裡觀看

萬無一失:Mission Completed !

當然,在取得數據時,我們也要儘可能減低人為因素而形成的影響。舉個例子,我們要確保磁強計遠離測量船,以免船上的儀器影響了磁強計。因此,我們並不會把磁強計綁在船底,而是把它們用纜索綁在船尾數十米以外的地方拖行。

另外,我們也要確保測量船要以均速航行,以確保所有數據都是一致的。最後,我們也要確保船上的 GPS 系統準確無誤,否則所有有可能是 UXO 的位置都是錯誤的。

完成以上的工序後,我們便會製作磁梯度圖(Magnetic Gradient Map),把剩餘下來的磁場變置點用其強度及大小表示出來,正如圖 3,再交給拆彈專家們處理。他們便會跟據他們的專業知識,加上該海岸的戰爭歷史,對比當時有可能參戰的國家、使用的武器及其金屬含量以找出存在的炸彈來處理。

要知道這些 UXO,單單在 2015 年在世界各地亦奪去了超過 6000 人的性命,因此這個科學命題可真是不容忽視!

圖 3:磁梯度圖。左邊是潛在 UXO 的位置而右邊則是它們的磁場強度的改變。(圖片來源:Salem et al., 2005)

延伸閱讀:

參考資料:

  1. Salem, A., Hamada, T., Asahina, J. K., & Ushijima, K. (2005). Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data. Exploration Geophysics, 36(1), 97–103.  
  2. Han, S., Rong, X., Bian, L., Zhong, M., & Zhang, L. (2019). The application of magnetometers and electromagnetic induction sensors in UXO detection. E3S Web of Conferences, 131, 01045.
  3. Image scans gallery. EdgeTech. (n.d.). Retrieved January 5, 2022, from https://www.edgetech.com/underwater-technology-gallery/ 
  4. Grothues, T. M., Newhall, A. E., Lynch, J. F., Vogel, K. S., & Gawarkiewicz, G. G. (2017). High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles. Canadian Journal of Fisheries and Aquatic Sciences, 74(2), 240–255.

本文亦刊載於作者部落格 Else Production ,歡迎查閱及留言

Else Production
2 篇文章 ・ 2 位粉絲
馬朗生,見習地球物理工程師,英國材料與礦冶學會成員,主力擔任海上測量工作,包括海床勘探、泥土分析、聲波探測等。