Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

片面的「調查」報導無法解決台灣的人猴衝突

鄭國威 Portnoy_96
・2013/06/06 ・4273字 ・閱讀時間約 8 分鐘 ・SR值 546 ・八年級

圖片擷取自蘋果日報網站

昨天蘋果日報有篇報導 蘋果調查 60萬獼猴 「比天災恐怖」在網路上被廣傳。其實「猴害」的報導三不五時會出現,近年的確越來越多(猴抓妹不算)。這些報導都有特定框架,包括:

  • 強調人猴衝突越演越烈,罪魁禍首是獼猴侵犯人類領域。
  • 過度保育獼猴造成數量大增,應該把獼猴降級、撤除保育。
  • 農作物或其他人類的生命財產遭受獼猴威脅。
  • 受害的人類礙於獼猴受保育甚麼都不能做,保育人士或學者還在強調保育是不食人間煙火,再次強化對立。
  • 「主管單位為何甚麼都不做?」「你們在睡嗎?」(例如這篇

很遺憾,這樣的報導對於解決問題是沒有幫助的,甚至會讓許多正在進行的努力打折扣。首先,我們要以蘋果這篇報導為例,檢視一下其中的問題。

「地方中心/ 綜合報導」?:是的,我要再次強調,只要一篇報導沒有記者署名,就請先對報導內容的品質打一個很大很大很大的折扣。不代表內容一定不對,只是請保持高度質疑。

「猴群屠殺百隻土雞事件」?:標題雖說是「蘋果調查」,但其實並沒有調查,只是把2006年報導過的事件拿出來講。然而整篇報導只有農人的說法。林務局野生物保育科科長林國彰認為這更可能是野狗所為。如果蘋果要搞調查報導,建議真的拿現場物證去化驗。而不是追逐聳動的說詞。

-----廣告,請繼續往下閱讀-----

「獼猴數量10年翻倍為60萬隻」?:這句話可看成是蘋果日報不具名的記者自行臆測,請見這篇環境資訊中心的特稿

目前並沒有任何科學數據支持獼猴的族群增加。蘇秀慧說,2001年之後就未再進行全面性的族群調查,林務局保育組長管立豪推估全台族群數為25萬,但未經比較。即使證明數量增加,也無法說明是人為餵食的後果,亦或自然結果。

蘇秀慧表示,民眾認為台灣獼猴的族群數增加,印象來自於媒體報導。當媒體報導某地的獼猴造成的搶食或農損,觀眾並不會認知是局部現象,而誤以為台灣獼猴數量增加。這些報導卻凸顯出人與猴的互動次數增加,或這些互動的經驗被放大。

而且台灣獼猴雖然獲得保育,但人類對自然棲地的破壞可從來沒停過,例如經典雜誌的這篇報導

不論是「十四萬」或是「三十八萬」,台灣獼猴似乎已擺脫族群覆滅的危機,但也有人並不這麼樂觀。林金福指出,根據他的觀察,這幾年壽山、觀音山(高雄)、旗尾山的獼猴數量一直在減少。徐芝敏的先生摩悌是位外籍學者,曾在世界各地從事靈長類動物研究的他,更拿出了國際自然保育聯盟(The World Conservation Union)於二○○○年出版的紅皮書佐證,書上寫著來自國際自然保育聯盟的警告:「台灣獼猴雖然沒有立即絕種的危險,但因為棲地破壞和人為干預,中長期而言,仍將面臨絕種的高度風險。」

近年來,台灣獼猴被認為是野生動物復育成功的範例,人們的樂觀態度讓一些研究獼猴的學者更加憂心忡忡。徐芝敏就指出,獵捕壓力始終存在,據她了解,農民其實一直在私下「處理」侵入果園的獼猴,他們不只是驅趕獼猴,有些還會設陷阱、下毒藥或直接加以射殺,農委會對此也是睜一隻眼、閉一隻眼。此外,她還透露,這幾年南壽山的公猴大量失蹤,最近甚至還有人假冒高雄市政府人員,在柴山上公然獵捕獼猴。

上述兩則報導當然也值得再深入求證,但我想指出的是,蘋果的報導顯然都刻意忽略了這些面向。

接著蘋果則是連續祭出三則過往「獼猴公害」的回顧,不過這也不是甚麼調查,只是一樣把過去報導資料庫中的淺薄報導用更淺薄的方式摘要了一次。這三次案例的代表性在哪裡呢?蘋果到底調查了甚麼?如果要強調的是問題越來越嚴重,那請提出數據,進行分析,而不是三個故事。

-----廣告,請繼續往下閱讀-----

接著是小標「只能驅離不可殺」,斷章取義地要強調保育官員不懂民生疾苦。然而事實是,根據野生動物保育法第21條第一項規定,野生動物(包括保育類)有危害農作物、人身安全時,可以獵捕或宰殺,但是必須先報請主管機關。林國彰科長認為「雖說猴子危害不好防治,但採取必要措施卻是合法的,向縣府反映就可以就近協助。但許多狀況是林地違規或超限利用種植農作物、果樹,政府當然不可花公帑來協助違法地區趕猴,或補助非法使用者防治。」我們不排除有地方公務員怠慢行事的可能,但這是另外的議題,絕不是「只能驅離不能殺」。而且在殺之前,其實有很多方法可以嘗試(林國彰科長提供):

(一)轉作:在有猴群出沒的森林邊緣,種植獼猴較不喜歡或不善處理的作物,如梅子、柚子、麻竹、青椒等等,雖不免因猴群在附近出入、玩耍而有些農作物損傷,但受害情形通常很少。
(二)套袋:在竹筍或水果上套袋,能降低被吃的比率。不過若獼猴已學會拆除套袋,則單憑此法的防治效果將大打折扣,最好在尚未失效前,同時配合其他方法,減緩猴群學習的速度。
(三)施放鞭炮:人在農園中時可施放沖天炮直接驚嚇猴群,以達到立即震撼的效果。當人不在時,可用大型能點4~5小時以上的香,綁上10~20粒鞭炮,利用香燃燒速率一定的原理,定時引爆鞭炮,每小時可引爆3~4次。這種防治方法需在天微明即開始使用,直至天全黑才能停止。必須有遮雨裝置以防熄火,而在乾季時則要提防火災,人在農地時可將香暫時熄滅。設置地點最好是在猴群進入農園的路徑上,並隔一段時間就換位置,或設置兩組以上,以阻擋猴群進入農園,避免猴群找到閃躲入園的角落。此法的優點是花費不多,缺點則需是耗費不少人力。
(四)瓦斯音爆器:國外進口產品,以定時燃爆瓦斯的聲音驚嚇猴群。聲音與效果類似鞭炮,較省人力,但花費相對較高。設置方式如同香綁鞭炮,要防猴群習慣炮聲,最好能常變換位置。
(五)收音機:如同香綁鞭炮嚇阻的效果,可加裝喇叭擴大音量,在天微明時即開始放音,直至天黑時關閉。此法可輔以假人,並不時加上人力驅趕。同理,時常變換位置會有較佳之效果。
(六)人力驅趕:於農作物採收季及農作成熟期前加強人力巡邏,必要時輔以鞭炮、彈弓或漆彈等器具,必須要讓猴群有害怕的效果,且驅趕猴群至較遠距離,以防猴群躲在隔鄰樹林中,人一離開即又入園取食。防治者需不定時前往農園,以免猴群摸清楚人類出現的規律性,而學會伺機入侵農墾地。在日本,以無線電發報器掛在猴群的母猴身上,然後農友組織排班巡邏,當無線電接收器偵測到猴群靠近農園時,即出動人力驅趕,如此就能在獼猴到達農園前即加以阻攔,有效減少農作物的受害。
(七)養狗驅趕:狗對獼猴有驅趕的作用,故養狗是替人看守農園的良好替代措施。運用此法必須能讓狗在農園中自由活動,若被固定綁著,猴群漸漸會熟悉狀況而繞過狗的位置再上樹取食。若狗能經過訓練更佳,可讓其自由行動且固守農園擔起驅猴的任務,或用柵欄將狗圍在農園中,或養更多的狗把守猴群進入農園的所有路徑,或以活動線讓狗能穿越較大的範圍,同時增加農園與樹林間的距離,讓狗能在農園四週巡邏,截斷猴群由樹林進入農園的機會。
(八)架設通電圍籬(電網):利用架設高電壓低電流之電線圍籬圍繞農園,使獼猴試圖進入時遭到電擊而受到阻攔,同時電擊造成的痛苦反應有驚嚇其他猴子的功能。這是目前在日本相當有效的防治方式,不過缺點是造價偏高,若是種植高接梨、蘋果或甜柿等高價位的農產品,則會是個有效且花費可接受的方式。
(九)獵捕:可向地方政府申請同意以捕獸鋏、捕獸籠、陷阱、獵槍或其他方法捕捉或獵殺,一方面可直接移除部分危害農作物的猴子,減少獼猴的數量;另一方面亦有殺雞儆猴的效果,讓其餘猴子害怕,產生警覺心而降低進入農園取食的意願。在施用技術上,捕獸用具的效果受施放的地點與技術影響,如能請教經驗豐富的專業人士,或請人代勞,方能得到較佳效果。使用獵槍則須先向當地管區警局申請許可,以免觸犯槍砲彈藥刀械管制條例。使用這個方法時,重要的是讓猴子怕人,覺得進入農園採摘農作物是很危險的事,才能有效嚇阻獼猴。否則猴群會自然成長,被移除的數量很快就會補充回來,就算是整群被移除,鄰近的猴群也會填補原本猴群的活動區域,使得農園旁又出現猴群,再次造成農作物的受害。
(十)族群管理:將捕獸籠捕獲的獼猴,施以內視鏡結紮或長效型避孕藥劑方式,減緩獼猴族群數量增長,降低危害程度。

如果我們真的把獼猴降級為一般類,就可以一次解決人猴衝突嗎?林國彰科長認為,應該是針對不同問題脈絡來分別提出對應方案:

  1. 針對人為不當餵食獼猴,造成族群快速擴張及搶食騷擾民眾情形,最終解決辦法應訂定罰則禁止餵食行為,如高雄市所訂定「高雄市野生動物保育自治條例」即有規範,其他有發生因人為不當餵食獼猴造成衝突地區之縣市政府應儘速仿效訂定。
  2. 獼猴造成危害農林作物,依據野生動物保育法第21條第1項第2款規定,野生動物有危害農林作物、家禽、家畜或水產養殖者。得予以獵捕或宰殺。但保育類野生動物除情況緊急外,應先報請主管機關處理。倘將臺灣獼猴評估分類為一般類野生動物僅簡化申請程序,由應先報請主管機關處理(情況緊急除外)變為無須申請。惟目前除有少數申請因危害農作物撲殺臺灣獼猴外,絕大部分案件並未申請,其原因為臺灣農民生性善良,普遍有宗教信仰,要其移除長得很像人的獼猴,實在有困難。就算評估為一般類野生動物,也不會自已去撲殺,還是會要求政府捕捉收容或撲殺。
  3. 靈長目於國際均為保育類野生動物,降級恐招異議。臺灣獼猴為台灣特有種,林務局97年依據「野生動物評估分類作業要點」召開專家分類討論,根據現有科學證據,將臺灣獼猴由珍貴稀有野生動物評估後已降級為其他應予保育之野生動物,若以國際保育標準,已是最低的保育等級。
  4. 後續民眾飼養之管理問題將造成嚴重行政負擔。處理民眾飼養脫逃之脫序獼猴已是保育部門棘手問題,倘將其評估分類為一般類野生動物,飼養並無罰則,因獼猴幼體非常可愛,一般民眾勢必利用各種方法取得飼養,引發不當飼養潮。待其成年後失去可愛面貌,常發生棄養或逃脫,保育機關將疲於奔命處理,後續收容亦是另一壓力。

蘋果日報的結論小標是「學者:仍要保育」,但是只給一小段,缺乏建設性建議。綜觀整篇文章的寫法,顯然是要突顯學者只會嘴炮,只顧獼猴不顧人類。(事實上,下方留言也就很快有人說這些學者只會嘴炮,可見蘋果編輯多麼聰明,設甚麼陷阱就是有人跳下去)。我相信這上頭的辦法都有缺點跟實施上的成本,但是不該灌輸讀者「除了大開殺戒毫無其他辦法」的片面思維。如何改善這些作法、降低成本、或是取締非法的林地使用者,這些才是一篇自譽為調查報導的文章該提出來的,不是嗎?

-----廣告,請繼續往下閱讀-----

以上,希望這篇文章能夠被比蘋果日報那篇報導更多人看見(開玩笑 XD),畢竟片面與錯誤的報導,對獼猴或人類來說,都比天災更恐怖。

-----廣告,請繼續往下閱讀-----
文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1300 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
找回擁有食物的主導權?從零開始「菇類採集」!——《真菌大未來》
積木文化
・2024/02/25 ・4266字 ・閱讀時間約 8 分鐘

菇類採集

在新冠肺炎(COVID-19)大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。對食物的焦慮點燃人們大腦中所有生存意志,於是大家開始恐慌性地購買,讓原本就已經脆弱、易受攻擊的現代糧食系統更岌岌可危。

值得慶幸的是,我們的祖先以前就經歷過這一切,留下來的經驗值得借鏡。菇類採集的興趣在艱難時期達到顛峰,這反映了人類本能上對未來產生的恐懼。1 無論是否有意,我們意識到需要找回擁有食物的主導權,循著古老能力的引導來找尋、準備我們自己的食物,如此才能應付食物短缺所產生的焦慮。

在新冠肺炎大流行後,馬斯洛「需求層次理論」裡的食品與安全在眾目睽睽下被抽離出來,變成後疫情時代最重要的兩個元素。圖/pexels

我們看見越來越多人以城市採集者的身分對野生菇類有了新的品味,進而找到安全感並與大自然建立起連結。這並不是說菇類採集將成為主要的生存方式,而是找回重新獲得自給自足能力的安全感。此外,菇類採集的快感就足以讓任何人不斷回歸嘗試。

在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。我們早已遺忘,身體和本能,就是遺傳自世世代代與自然和諧相處的菇類採集者。走出現代牢籠、進入大自然從而獲得的心理和心靈滋養不容小不容小覷。森林和其他自然空間提醒著我們,這裡還存在另一個宇宙,且和那些由金錢、商業、政治與媒體統治的宇宙同樣重要(或更重要)。

-----廣告,請繼續往下閱讀-----
在這個數位時代,菇類採集是讓我們能與自然重新連結的獨特活動。圖/unsplash

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。一趟森林之旅能讓人與廣大的生態系統重新建立連結,另一方面也提醒我們,自己永遠屬於生命之網的一部分,從未被排除在外。

腐爛的樹幹不再讓人看了難受,而是一個充滿機遇的地方:多孔菌(Bracket Fungi)──這個外觀看起來像貨架的木材分解者,就在腐爛的樹幹上茁壯成長,規模雖小卻很常見。此外,枯葉中、倒下的樹上、草地裡或牛糞上,也都是菇類生長的地方。

菇類採集是一種社會的「反學習」(遺忘先前所學)。你不是被動地吸收資訊,而是主動且專注地在森林的每個角落尋找真菌。不過度採集、只拿自身所需,把剩下的留給別人。你不再感覺遲鈍,而是磨練出注意的技巧,只注意菇類、泥土的香氣,以及醒目的形狀、質地和顏色。

只有願意撥開遮蓋的落葉並專注尋找,才能體認到菇類的多樣性和廣泛分布。圖/unsplash

菇類採集喚醒身體的感官感受,讓心靈與身體重新建立連結。這是一種可以從中瞭解自然世界的感人冥想,每次的發現都振奮人心,運氣好的話還可以帶一些免費、美味又營養的食物回家。祝您採集愉快。

-----廣告,請繼續往下閱讀-----

計畫

菇類採集就像在生活中摸索一樣,很難照既定計畫執行,而且以前的經歷完全派不上用場。最好的方法就是放棄「非採集到什麼不可」的念頭,持開放心態走出戶外執行這項工作。菇類採集不僅是享受找到菇的滿足感,更重要的是體驗走過鬆脆的樹葉、聞著森林潮濕的有機氣味,並與手持手杖和柳條筐的友善採菇人相遇的過程。

菇類採集很難照既定計畫執行,最好的方法就是放棄「非採集到什麼不可」的念頭。採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。圖/unsplash

你很快就會明白為什麼真菌會有「神秘的生物界」的稱號。真菌無所不在但又難以捉摸,採集過程幾乎就像玩捉迷藏,只不過你根本不確定自己在找什麼,甚至根本不知道要找的東西是否存在。但還是要有信心,只要循著樹木走、翻動一下原木、看看有落葉的地方,這個過程就會為你指路。一點點的計畫,將大大增加你獲得健康收益的機會。所以,讓我們開始吧。

去哪裡找?

林地和草原,是你將開始探索的兩個主要所在。林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。橡樹、松樹、山毛櫸和白樺樹都是長期的菌根夥伴,所以循著樹種,就離找到目標菇類更近了。

林地底層提供真菌所需的有機物質,也為樹木提供菌根關係。圖/pexels

草原上也會有大量菇類,但由於這裡的樹木多樣性和環境條件不足,所以菇類種類會比林地少許多。如果這些地點選項對你來說都太遠了,那麼可以試著在自家花園或在地公園綠地當中尋找看看。這些也都是尋菇的好地方。

-----廣告,請繼續往下閱讀-----

澳洲新南威爾斯州奧伯倫

澳洲可以說是真菌天堂。與其他大陸隔絕的歷史、不斷變化的氣候以及營養豐富的森林,讓澳洲真菌擁有廣大的多樣性。澳洲新南威爾斯州(New South Wales)的奧伯倫(Oberon)就有一座超過四萬公頃的松樹林,是採集菇類的最佳地點之一。

在那裡,有廣受歡迎的可食用菌松乳菇(又稱紅松菌),據說這種真菌的菌絲體附著在一棵歐洲進口樹的根部,而意外被引進澳洲。 1821 年,英國真菌學家塞繆爾・弗里德里克・格雷(Samuel Frederick Gray)將這種胡蘿蔔色的菇命名為美味乳菇(Lactarius deliciosus),這的確名符其實,因為「Deliciosus」在拉丁語中意為「美味」。如果想要在奧伯倫找到這些菇類,秋天時就要開始計劃,在隔年二月下旬至五月的產季到訪。

位於澳洲新南威爾斯州的奧伯倫就有一座超過四萬公頃的松樹林,是採集菇類的絕佳地點。圖/unsplash

英國漢普郡新森林國家公園

在英國,漢普郡的新森林國家公園(Hampshire’s New Forest)距離倫敦有九十分鐘的火車車程。它由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞,甚至還有野生馬匹在園區裡四處遊蕩。

這片森林擁有兩千五百多種真菌,其中包括會散發惡臭的臭角菌(Phallus impudicus),它的外觀和結構就如圖鑑中描述般,與男性生殖器相似且不常見。還有喜好生長於橡樹上,外觀像架子一樣層層堆疊的硫色絢孔菌(Laetiporus sulphureus ,又稱林中雞)。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。如果幸運的話,該地區可能會有採集團體可以加入,但能做的也僅限於採集圖像鑑別菇類,而非採集食用。

-----廣告,請繼續往下閱讀-----
在英國,漢普郡的新森林國家公園由林地和草原組成,當中有種類繁多的植物群、動物群和真菌可供遊客觀賞。該國家公園不允許遊客採收這裡的菇,所以請把時間花在搜尋、鑑別與欣賞真菌上。圖/unsplash

美國紐約市中央公園

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類,足以證明真菌孢子的影響之深遠。

加里・林科夫(Gary Lincoff)是一位自學成才、被稱作「菇類吹笛人」2 的真菌學家,他住在中央公園附近,並以紐約真菌學會的名義會定期舉辦菇類採集活動。林科夫是該學會的早期成員之一,該學會於 1962 年由前衛作曲家約翰・凱吉(John Cage)重新恢復運作。凱吉也是一位自學成才的業餘真菌學家,並靠自己的能力成為專家。

甚至紐約市的中央公園也有採集菇類的可能性。雖然在 1850 年代公園建造之時並未刻意引進菇類物種,但這個占地八百四十英畝的公園現已登錄了四百多種菇類。圖/wikipedia

進行菇類採集時,找瞭解特定物種及其棲息地的在地專家結伴同行,總是有幫助的。如果你需要一個採集嚮導,求助於所在地的真菌學會會是一個正確方向。

何時去找?

在適當的環境條件下(例如溫度、光照、濕度和二氧化碳濃度),菌絲體全年皆可生長。某些物種對環境條件較敏感,但平均理想溫度介於 15~24 ℃ 之間,通常是正要進入冬季或冬季剛過期間,因此秋季和春季會是為採集菇類作計畫的好季節。

-----廣告,請繼續往下閱讀-----
秋季和春季是為採集菇類作計畫的好季節,但因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。圖/unsplash

當菌絲體從周圍吸收水分時,會產生一股破裂性的力量,讓細胞充滿水分並開始出菇。這就是菇類通常會出現在雨後和一年中最潮濕月份的原因。牢記這些條件,就可以引導你找到寶藏。但也要記得,因為菇類受溫度變化模式和降雨量的影響很大,所以每年採菇的旺季時間會略有不同。

註解

  1. Sonya Sachdeva, Marla R Emery and Patrick T Hurley, ‘Depiction of wild food foraging practices in the media: Impact of the great recession’, Society & Natural Resources, vol. 31, issue 8, 2018, <doi.org/10.1080/08941920.2 018.1450914>. ↩︎
  2. 譯注:民間傳說人物。吹笛人消除了哈梅林鎮的所有老鼠,但鎮上官員拒絕給予承諾的報酬,於是他就吹奏著美麗的音樂,把所有孩子帶出哈梅林鎮。 ↩︎

——本文摘自《真菌大未來:不斷改變世界樣貌的全能生物,從食品、醫藥、建築、環保到迷幻》,2023 年 12 月,積木文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

2
0

文字

分享

0
2
0
如何知道報導數據有沒有騙你?試試「利特爾法則」——《一輛運鈔車能裝多少錢?》
三民書局_96
・2023/07/08 ・2027字 ・閱讀時間約 4 分鐘

「每天有 10,000 名嬰兒潮出生的人年滿 65 歲。」——《紐約時報》,2014 年 8 月 1 日

「每月有 8,000 名嬰兒潮出生的人年滿 65 歲。」——《紐約時報》,2016 年 5 月 7 日

每天都會有幾千份不同的報紙刊登這樣的報導:「每『某段時間』有『多少』『某族群』『如何』。」許多報導內容都與某個「里程碑」(milestone) 相關,或是一生只會發生一次的事,例如出生、死亡或特定年齡的生日。

你對每月有多少嬰兒潮出生的人年滿 65 歲有任何概念嗎?我其實也完全沒概念。所幸我們往往可以理性推論出,這些陳腔濫調的說法是否合理。而在本例中,甚至能夠找出上述哪一則報導的說法基本上正確,而哪一則報導肯定錯誤。

要如何才能判斷新聞上的數據是正確的呢? 圖/envato

什麼是利特爾法則?

其中一種方法是根據稱作利特爾法則 (Little’s Law) 的經驗法則。它是一種守恆定律 (conservation law),說明經過某些處理過程的事物數量、事物抵達某處理階段的速度,以及處理過程所花費時間長短,三者之間的關係。

以下舉一個簡單例子,你就能輕鬆記住這個法則,並且用來檢視你的思路。想像一間有「1,000 名」學生的學校;每名學生入學後會就讀「4 年」,然後畢業;如果忽略輟學生和轉學生,則每個年級會有「250 名」學生,如圖所示。

-----廣告,請繼續往下閱讀-----
圖 7.1:利特爾法則應用於一所有 1,000 名學生的 4 年制學校。圖/《一輛運鈔車能裝多少錢?》

利特爾法則把上述 3 個數字的關係連結起來:總共 1,000 名學生等於每年級 250 名學生乘以 4 年。1,000 除以 250 得到 4,1,000 除以 4 得到 250,而 250 乘以 4 則得到 1,000。單就上述例子來說,這樣的關係現在看來顯而易見,但利特爾法則說明的關係,卻是由麻省理工大學史隆管理學院 (MIT Sloan School of Management) 的利特爾 (John Little) 教授,於 1954 年第一次提出。

接下來就使用利特爾法則來估算,每天有多少嬰兒潮出生的人年滿 65 歲吧。為了簡化計算,首先假設美國人口為 3 億人,也就是正在「處理過程中」的人數。「處理過程」指的是一個人的一生。假設每個人活到 75 歲,則 75 年就是「處理時間」。上述數字其實過度簡化,原因是有些人英年早逝,而有些人則長命百歲;此外,人口估算的方法也忽略了遷入、遷出和出生率,但目前為止,這個估算數字已經夠好。

如果將 3 億除以 75,會得到各年齡組別都有 400 萬人,這個數字同時也是抵達率 (arrival rate):每年 400 萬人出生;以及離開率(departure rate):每年 400 萬人死亡。同時 400 萬人也是每年抵達任何年齡里程碑的人數,其中就包含年滿 65 歲。如圖 7.2 所示,包含 65 歲在內,任何特定年齡的人數都是 400 萬人。

圖 7.2:利特爾法則應用於美國人口。 圖/《一輛運鈔車能裝多少錢?》

將 400 萬除以「1 年(400 天)」,可以得到每天 10,000 人。但實際上 1 年只有 365 天,也就是比 400 天少了 10%,所以可以將 10,000 增加 10%,得到每天達到任何年齡里程碑的人數約為 11,000 人的結論。

-----廣告,請繼續往下閱讀-----

因此,「每天有 10,000 名嬰兒潮出生的人年滿 65 歲」的說法正確,而「每月有 8,000 名嬰兒潮出生的人年滿 65 歲」則錯誤,「每月」應該改為「每天」。

使用之前,先了解數字是怎麼來的

相同類型的推理也可以應用到其他地方:

「今年的每一天,都約有 1,800 人會慶祝最具意義的生日(65 歲生日),這也意味著他們即將退休。」——《每日郵報》(Daily Mail),2011 年 8 月 2 日

英國人口約為 6,500 萬人,因此可以假設人們的壽命為 65 年,藉此簡化計算。這代表每年有 100 萬名英國人年滿 65 歲,因此每天約有 2,700 人年滿 65 歲。然而,英國的預期壽命略為超過 80 年,因此更接近的數字應該是每天 2,300 人年滿 65 歲(6,500 萬除以 80 再除以 365)。這個數字比報導中的 1,800 人還要多,但相差不大,報導數字還在合理範圍內。

為了進一步確認,我另外找了一些獨立資料來源。許多報導都提到,出生於 2013 年 7 月 22 日的喬治王子(Prince George),是那天出生的「2,200 個嬰兒」中的其中一個。當然喬治王子很可能成為未來英格蘭的國王,身分和其他嬰兒顯然不同。

-----廣告,請繼續往下閱讀-----

請注意,以上為了計算方便,都是使用近似數字,如有必要,之後還可以進一步進行更精確的計算。例如,我並不確定報導包含英國的哪些區域,有可能實際上相關的人口是 7,500 萬人,這樣的話就可以先假設預期壽命為 75 年,便於計算,然後在更確定實際的人口數後,進行上調或下修。

簡化數字的方法,確實能幫助你更容易計算數字。無論計算任何數字,你都應該先尋找簡化數字的方法,之後再來考慮,是否需要計算更精確的數字。

——本文摘自《一輛運鈔車能裝多少錢?:輕鬆培養數感,別再被數字迷惑》,2023 年 6 月,三民出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。