0

4
1

文字

分享

0
4
1

再壓力一點點我就發炎囉~輕微的壓力就能影響你我免疫——《終結憂鬱症》

PanSci_96
・2020/04/30 ・3455字 ・閱讀時間約 7 分鐘 ・SR值 549 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/艾德華.布爾摩 (Edward Bullmore);譯者/高子梅
  • 編按:不同於傳統生理、心理二元論觀點,作者從免疫學的角度切入、結合神經科學,重新思考憂鬱症與身體發炎的關聯。

壓力是最廣為人知,但又最不為人所了解的憂鬱症成因。它是眾人通曉的生活現實,我們每個人都可能親身或看別人有過因為壓力而感到憂鬱的經驗。

流行病學研究證實壓力的影響很大,尤其是來自重大生活事件的壓力,譬如配偶、雙親或孩子的死亡,或失業,或其它一些傷慟或屈辱。

在這些情況下,得到憂鬱症的機率會比憂鬱症的背景風險(background risk)多出 9 倍。從另一個角度來看,約有 80% 的憂鬱症發作,是因為先前發生了充滿壓力的生活事件。

最令人沮喪的壓力,通常來自重要關係的喪失和遭到社會排斥。圖/pixabay

最令人沮喪的壓力通常來自重要關係的喪失和遭到社會排斥。所以如果有個男人對妻子主動提出離婚訴訟,喪失了婚姻關係,他得到憂鬱症的風險會多 10 倍;但如果是妻子對他提出離婚訴訟,他的憂鬱症風險將多出 20 倍,因為他不只失去婚姻,還被丟臉地拋棄。

憂鬱症不純粹是個人問題!

壓力對憂鬱症風險的影響是非常明顯的。只是社會壓力怎麼會對憂鬱症有這麼大的作用,這一點還不是很清楚。一如往常,奉行笛卡兒主義的人會說,「如果是你,你也會有憂鬱症,不是嗎?」要是太太跟別人跑了,要是被炒魷魚,我敢打賭你也不會太開心。

遇到這種事,誰不憂鬱呢?(才沒有這麼簡單!)圖/GIPHY

但一如往常,這個說法並不科學,對治療也沒有任何幫助。它只是暗示因為壓力而得到憂鬱症純粹是個人問題,證明當事者的個性不夠堅忍。換個說法,是他自己的錯。

除了壓力的痛苦之外,還得蒙受無法自己克服憂鬱的羞辱。但過去二十年來,已經有愈來愈多人支持另一種解釋,著重體內的發炎反應,而不是內在的自省

從免疫學的角度來看,人有可能憂傷而死嗎?

經過精算,我們發現人的壽命會因喪親之痛而縮短,顯示重大生活事件可能影響免疫系統。如果太太和你離婚,或者你在生活上遭遇一些可怕的事,那麼你不只比常人更有可能得到癌症和心臟病,預期的壽命也會比事件發生前來得短。

「心碎而死」不只是比喻,還可能成真?圖/GIPHY

我們都把心碎而死當成比喻,但我們都知道這種事在我們四周很常見:有人失去心愛的人之後,出乎意料早早過世。我就聽過,許多結婚多年的夫妻在短短幾週內先後撒手人寰。我們不都聽過這樣的故事嗎?

最近有研究甚至證實,人若是剛喪親,心臟病或中風的死亡風險將高出兩倍。失去相守一生的伴侶,這種感情和社會上的雙重打擊會大大影響你的生存適應力。保險公司深知這一點,這也是為什麼他們會為顧客提供喪親輔導的諮詢服務。憂傷可以殺死你。這也是可以靠免疫學來解釋的另一個確鑿事實。

我們現在已經知道,帶來壓力的生活事件會在免疫系統的池塘裡丟下一顆石頭,造成免疫細胞在作業和互動上的劇烈變化。

  • 先天免疫系統的巨噬細胞本來在自體的前線巡邏,這時會因喪親之痛而變得憤怒而活躍,於是釋出更多炎性細胞激素到血液循環裡。
  • 巨噬細胞的過度活化可能造成粥狀硬化的動脈發炎,增加心臟和大腦血管裡血塊形成的風險,提高心臟病發或中風的機率。

如此一來,心碎而死可以用「社會壓力對免疫系統造成了影響」來解釋。

其它不像喪親那樣單一且極端的社會壓力,也會啟動巨噬細胞而引起發炎。炎性生物標記(像細胞激素和C反應蛋白)在很多壓力環境下也都會升高,譬如貧困、負債、在社會上孤立無援。

阿茲海默症患者的照護者,和平日負責照顧患有失智症配偶或親人的人,他們的炎性生物標記都會升高。幼年若飽受貧困、棄養或虐待,成年後的炎性生物標記也較高。

童年經驗對免疫系統的影響

紐西蘭的一項重大流行病學研究追蹤了達尼丁(Dunedin)這座城市 1972 到 73 年間出生的 1037 名孩童。

他們小心評估了這些孩童的社經狀態(簡單來說,就是他們父母財富的多寡)、是否孤立和是否受虐。30 年後進行第二次的評估,結果發現,孩提時貧困、孤立或受虐過的受測者,成年時期發生憂鬱症和肥胖的機率比其他人高出兩倍。

童年創傷,也可能被免疫系統「記住」。圖/pixabay

我們幾十年前就知道,免疫系統有長期記憶,能記住幼時遭受過的感染或注射過的疫苗。現在我們也開始明白,免疫系統原來也會記得幼時被侵犯或挨餓的經驗,以及對自體早期生存的任何一種威脅。

童年受虐的倖存者在長大成人後,免疫系統可能處於一種一觸即發的狀態,只要遇到一點感染和社交挫折,就會出現過度的發炎反應,進而引發憂鬱症狀。童年受虐如何對成人心理健康產生不良影響,佛洛伊德(和鮑洛伊爾)早在一百多年前就大膽點出,現在我們是用免疫系統來重新解釋。

想知道壓力是什麼感覺?站上台就知道

不過,要想知道壓力是什麼感覺,並不一定要有憂鬱、喪親或受虐的經驗。

有些事情幾乎每一個人多少都會有壓力,在眾人面前說話就是。站在眾人面前侃侃而談,縱然只有幾分鐘,也往往會引發主觀上的恐懼或焦慮,再伴隨客觀生理上的亢奮,譬如血壓升高、心跳加快和流汗。

就算是現在看起來很擅長公眾演說的人,過去也需要花點力氣去克服焦慮。圖/GIPHY

在講台上時,人的身體一樣會出現「戰或逃反應」(fight-or-flight response),包括腎上腺素和正腎上腺素升高,啟動交感神經系統,同時迷走神經令人安定的抗腎上腺素作用也會跟著減緩。

有些人非常厭惡這種亢奮、焦慮的狀態,所以從不上台。在眾人面前被問也很有壓力,就像我們醫學院學生在巴茲病房裡受教授質問一樣。就算是現在看起來很擅長公眾演說、臨場回答也很自在的那些人,從前通常也是要花點力氣去克服自發和反射的焦慮。

輕微的壓力就能馬上啟動發炎反應?

我們很久以前就知道,在眾人面前說話會有壓力,只是直到最近才明白,像這種輕微的壓力,也會快速啟動身體的發炎反應。

特里爾社會壓力測試(Trier social stress test)的實驗設計,就是要模擬在眾人面前說話的壓力。實驗對象(受測者)被要求對四名觀眾進行 12 分鐘的演說,再接受觀眾四分鐘的心算問答。

通常這種實驗都是事先安排好的,受測者站在桌子前面說話,觀眾則坐在桌子的另一邊,後者穿著白色的實驗服,表情故作不以為然。我們大概都可以想像,這經驗對受測者帶來多大的壓力,即使他們都知道那只是演出來的,這是一個合乎實驗倫理的實驗,他們的表現好壞不會造成什麼嚴重後果。

要在講台上侃侃而談,並不容易。圖/GIPHY

在最近一場實驗裡,有一組受測者是身心健康,並且對自己在 1990 年代的教學經驗很滿意的德國教師。他們在特里爾社會壓力測試之前和之後都提供了血液樣本。結果發現,在眾人面前說話後立刻採樣的血液,裡頭的巨噬細胞比之前更加活躍,也釋出更多的細胞激素。

第二組受測者是一群在工作上受挫的教師。大家都知道,教書是一份壓力很大的工作,有很高比例的教師因病而提早退休或告假。第二組教師覺得他們的教學付出並沒有得到適當的回報,所負的責任並沒有相對的補償,無論是薪資、升遷或同儕和學生給予的尊重。但他們還是盡心盡力地授課,只是心力交瘁。

在受測前,這些教師身上的巨噬細胞比第一組教師身上的巨噬細胞來得憤怒。承受了這次站在眾人面前說話的額外壓力後,他們的巨噬細胞變得更憤怒了。

諸如在眾人面前說話這種帶來壓力的事件究竟是如何啟動免疫細胞的,我們還不確定,不過有兩三種可能原因正在研究中。

比方說,我們都知道,因為壓力而陡升的腎上腺素會送出危險訊號給巨噬細胞,啟動巨噬細胞的憤怒反應,與接收到脂多醣這樣的危險感染訊號時的反應相同。

此外,我們也知道,壓力會干擾體內的荷爾蒙系統,使巨噬細胞對類固醇的鎮定效果不再有那麼靈敏的反應。一如往常,這當中還有許多細節有待釐清,但這正是科學迷人的原因之一:每往前走一步,就會產生更多問題

image description

——本書摘自《終結憂鬱症:憂鬱症治療大突破》,2020 年 2 月,如果出版社

文章難易度
PanSci_96
1006 篇文章 ・ 981 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
2

文字

分享

1
2
2
【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?下篇:文章內容有哪些資訊有誤或需要補充?文獻海洋在這裡!
Jamie Lin_96
・2022/09/18 ・13083字 ・閱讀時間約 27 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

在這篇文章中我會針對該科技新報文章所提及的內容進行闢謠科普,關於關於其引用的研究的闢謠科普詳見本文上篇:【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

針對原始文章內錯誤的句子我會寫出是哪部分錯誤,並逐一科普,各段文字來自原始文章截圖;而跟那兩篇引用文獻有關的句子我用紅色底線標注,考量到文獻品質不佳在本篇中不多加討論(詳情請見本系列文上篇),在這篇中我也會分享一些跟疫苗副作用相關的發表,[]內的數字代表下方引用文獻reference列表對應到哪些學術發表,這篇文章很長,推薦抱持著輕鬆的心情慢慢看。

原文第一段。圖/科技新報
錯誤點:
  • 疫苗研發量產需要時間,跟不上病毒突變速度是正常的;已有完成臨床試驗的疫苗的病毒如HBV其實也還持續在開發效果更好的疫苗,總有天選之人打了疫苗沒效,有些疫苗則是要根據施打者過往病史來做選擇。
  • 疫苗的功效不只有防止感染,能降低感染後重症率、住院率、死亡率等也算是疫苗的功效。
  • 現在流行的病毒株跟當初開發疫苗時的病毒株差異極大,整體效果下降非常正常,並不是因為疫苗讓免疫系統變爛,而是病毒變厲害。
  • 號稱麻省理工的研究偏向文獻綜述,把一堆文獻抓在一起加上一些分析錯誤的數據,通篇沒有文獻或正確數據可以佐證其論點
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?

要回答這些問題答案必須分為兩個面向:

1.哪些因素會影響病毒出現新變種的速度

  • 病毒本身特性[1–3]
  • 感染人數人口密度[4]
  • 受感染者的免疫狀態[5–7]
  • 病毒突變後增強的能力[8][9]

新冠病毒的突變速度不是全部病毒中最快的,但也不慢,再加上其能夠在物品表面上存活時間長又有無症狀之帶原者[1][10],使其能快速傳播讓總感染人數上升,在人口密度較高的國家/區域確診病例數上升更為顯著,感染人數越多病毒傳遞越遠,在這過程中出現新變種的可能性就會跟著上升[4]

而病毒不會只感染特定族群,有些免疫力低下或是一些因為疾病免疫系統受到影響的人也會被感染,跟免疫力健全者相比這些人的免疫系統難以清除病毒[5–7],之前在南非就有一個案例是一位 HIV 感染的 22 歲女性持續被 beta 病毒株感染 9 個月,接受 HIV 治療約兩個月並從 covid 感染恢復後,其研究團隊發現該女子身上的病毒株已有超過 20 個新突變[6]

隨著病毒不斷傳播、突變、傳播、突變,目前主流病毒株 Omicron 家族其實具有比過往病毒株更好的免疫逃避性,能夠躲過免疫系統與感染/疫苗誘導出的抗體的追殺[8][9],同時也因為其免疫原性低,儘管確診後也無法產生足量有效的抗體對抗反覆感染,而病毒的免疫逃避性變好也代表可以逃過疫苗誘導出的抗體,疫苗保護力隨之下降[8][9]][11][12]

上述因素層層疊加,使我們三不五時就會聽到有新變種的消息,同樣這些因素也影響了疫苗開發與效果。

2.疫苗開發與臨床試驗流程

疫苗開發到進入臨床試驗跑完整個流程其實非常曠日費時,近幾年順利通過三期臨床實驗的伊波拉疫苗(有獲歐盟批准)從研發到走完臨床實驗到正式上市也已經過了 20 多年[13][14]

臨床試驗相關細節與名詞解釋在科學月刊 2018 年 7 月的文章 — 臨床試驗「盲不盲」與台灣藥物臨床試驗資訊網中有詳細解釋[15][16],而臨床試驗相關資訊可以在 ClinicalTrials.gov 上查詢,那是一個國際級臨床實驗資訊的資料庫[17],但這邊需要特別解釋一個臨床實驗的特性:臨床實驗一定會有報告如期中報告等,絕對會提交給監督審核的機構,但其報告是否向大眾公開、最後是否整理發表至期刊上等則不一定!所以如果一般大眾查不到某臨床實驗的公開的報告跟發表是在合理範圍內,其臨床試驗過程中的數據並沒有強制一定要公開,而最後失敗與否則會公開。

我自己的研究範圍就包含愛滋病疫苗,從過往已經宣告失敗的臨床試驗中找出失敗原因去改進或是檢測正在進行中的臨床試驗效果如何都在我的工作範圍之內,我們在做研究分析的同時病毒仍在外造成疫情,研究人員這端能做的主要是設計並篩選出可能成為疫苗候選的成分,通過細胞、動物實驗等去分析毒性、效力及可能可以用在人類身上的劑量,這些主要是在臨床前階段就會完成。

進入到第一階段臨床試驗時除了檢測疫苗在人類身上的安全性之外,我們也會測試不同疫苗濃度及施打方式等會不會效果更好,這時候會分非常多組,每組大概 10 幾人且有安慰劑組,將檢體寄送給不同專業的研究機構進行分析後最終會知道哪個配方跟施打方式是這些中最好的,如果安全性過關且在實驗室的實驗中有看到初步效果,在監督機關審核通過許可後會進到第二期臨床試驗,招募更多志願者並進一步分析疫苗有效性跟是否有潛在的不良反應(每個人身體狀況不同所以施打者越多就有機會觀察到更多不良反應),如果在此時發現效果不好、有過多嚴重不良反應等負面結果臨床試驗就會終止於此難以繼續進入第三期。

新藥研發的整個過程大致分為 4 大項。圖/科學月刊

許多臨床實驗都有非常長的追蹤期,一年三年五年七年不等,但誰都沒預料到 Covid-19 疫情的爆發,倘若針對突然爆發的全球性疫情的疫苗仍要有原先那樣長得追蹤期,對全球民眾健康所帶來的傷害會超出預期,但儘管因為特殊狀況縮短 Covid-19 臨床試驗時間,開發出來也需要極佳的運氣與一定的時間,要生產足夠的疫苗同樣需要時間,這些都不是馬上完成的。

在疫情爆發之初有不少人提倡透過感染獲得群體免疫這個論點,這也使不少質疑為何要施打疫苗甚至選擇讓自己被感染。但其實已有免疫學領域大佬明確指出:傳統群體免疫的觀念可能不適用於 COVID-19 [18] 。下方的簡報是我針對該發表做簡單的科普,有興趣可以看一看。

最初群體免疫這個術語是從獸醫界開始使用[18],非常多學者想要知道那在人類流行病上同樣的理論是否適用,但在 20 世紀初期許多學者便已得知因爲疾病差異、免疫力持續時間、人口流動、所接受醫療資源差異等,人類想要單純通過感染獲得針對 Covid-19 的群體免疫基本上是不可能,需要透過適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間等多管齊下才可能達成[19]

看完上述資訊後讓我們回到:疫苗為什麼會跟不上病毒變種速度?為什麼疫苗防止感染能力變差?這兩個問題上,答案便會好懂些:

  • 疫苗開發與產量都需要時間,但感染數量居高不下給病毒有出現新變種的機會,等疫苗上市時病毒已經突變無數次有新變種,自然追不上。
  • 病毒的免疫逃避性逃過疫苗誘導出的抗體,疫苗保護力隨之下降。

控制疫情還是需要以適當公衛手段與有效的預防措施來控制感染數,爭取研發更有效的疫苗的時間並讓能夠施打的族群施打,多管齊下才可能達成。

原文第二段。圖/科技新報
錯誤點:
  • 是先天性免疫“系統”,而非先天免疫細胞,他們成員很多
  • 先天性免疫系統不會活化後就變成適應性免疫系統,先天性免疫系統中的細胞不會活化後就變成適應性免疫系統的細胞(樹突細胞另提),吞噬細胞再怎麼被刺激也不會瞬間變身變成B細胞
  • T細胞與B細胞會不會產生記憶性、產生的記憶性多久跟病原體/抗原有關,不一定會在接受病原體/抗原刺激後出現。

人體的免疫系統分為先天性免疫系統與適應性免疫系統[20][21],而這兩者的區別為

先天性免疫系統:

  • 非特異性反應,會對所有病源有反應
  • 一接觸到病原馬上開始動工
  • 不是所有先天性免疫系統的成員都有記憶性
  • 包含發炎反應、補體系統與部分白血球(如吞噬細胞),部分成員會協助活化適應性免疫系統

適應性免疫系統:

  • 對特定病原與抗原起反應
  • 需要一點時間才會有強烈反應
  • 有記憶性(會記得敵人一段時間)
  • 淋巴球,T 細胞與 B 細胞屬於這裡!

先天免疫系統不會因為接觸到病原體就變成適應性免疫系統他們同時存在有時互相幫忙,並以不同的機制保護人體

而常常聽到人提到的 B 細胞與 T 細胞他們的保護身體的機制簡單來說是

B 細胞:

  • 認識抗原(可能來自病原體或是疫苗)後大量製造能夠識別目標物的抗體
  • 有些抗體如中和性抗體需要特殊的B細胞製造且成熟時間長

T 細胞:

  • 識別受感染的細胞
  • 協助 B 細胞更好的認識病原體的抗原
  • 引導能夠清除的T細胞過來
  • 清除受感染的細胞
  • 殺死癌細胞[22]
抗體與 Fc 受體以及其可能誘導出的免疫反應。圖/參考資料 23

抗體、補體、抗體加上 T 細胞等組合產生多種機制,都是免疫中的一環缺一不可[23],但這些機轉中也有可能對身體造成危害的如抗體依賴增強作用Antibody-dependent enhancement (ADE),ADE能讓感染變嚴重[23][58]。倘若疫苗誘導出來的抗體做臨床前試驗或是第一期臨床試驗時發現有ADE,那該疫苗不會進到後續臨床試驗;而要觀察上市後的疫苗有沒有ADE可以從重症率死亡率是否激增來判斷,目前真實世界數據尚未看到Covid-19疫苗有ADE的問題,但有分析其可能機轉 [58][59],而在細胞實驗中感染Covid後部分誘導出的抗體有觀察到ADE [60]

在癌症治療方面T細胞十分重要,其機轉非常複雜且需要不同細胞因子與受體協同合作[22]。B細胞與T細胞被活化後有些後代成員可能會成為具有免疫記憶的記憶B細胞與記憶T細胞等,未來如果碰到類似的抗原時可以有所反應,而能夠有多長的記憶時間則要看病源體/抗原特性來定,但這些被活化的免疫細胞不一定都能在未來提供有效的免疫反應。

在今年八月底發布於 medRxiv 上一篇尚未經通行審查但內容十分嚴謹(高機率已經投稿期刊正在進行審核)的論文指出:Covid 確診者(兩個月內)體內針對病毒抗原的特異性 B 細胞會使疫苗施打效果變差 [24],一分析確診者與未確診者施打 CoronaVac 疫苗後的免疫反應之研究指出過去有確診過的人施打疫苗後產生的中和抗體廣度較未確診者窄[25],這些研究其實揭示了因感染活化的免疫細胞甚至是記憶性免疫細胞並非在未來能成為我們對抗病源的好幫手,可能會成為讓疫苗效果變差的壞人[26]

今年六月刊登於頂級期刊 Nature 的一篇發表更是指出 Covid 病毒進化非常多並且能夠抑制針對自己的免疫反應,這有利於反覆感染外,過往感染所產生的免疫銘印(immune imprinting)對未來再次面對不同 covid 病毒時的免疫反應產生負面影響,讓你的免疫系統(尤其是 T 細胞)對於新變種的抵抗力大幅下降[12],但在沒確診只有施打疫苗的族群上,尚未看到上述這些負面影響。

原文第三段與第四段。圖/科技新報
錯誤點:
  • 訊號傳遞的關鍵不是只有干擾素,細胞激素非常重要
  • 細胞被感染後不一會分泌干擾素,要先識別出來是敵人
  • 三種類型的干擾素都很重要不分軒輊,在癌症治療的運用上不是只有第一型,第三型也有。
  • 那篇號稱MIT但不是MIT的發表中沒有研究數據可以證實他所說的mRNA疫苗會破壞第一型干擾素的訊號傳遞。

能夠刺激觸發免疫系統活動的關鍵除了抗原外,宿主所產生的各種細胞激素(cytokine),其中包含文中所提到的干擾素(Interferon),能給予免疫系統進行各種不同的免疫反應[27][28],而 Covid-19 確診導致的細胞激素風暴(cytokine storm)同樣有細胞激素跟干擾素的參與[29]

下方圖片中的內容是一篇探討 Covid 確診後的細胞激素風暴相關路徑與參與的細胞激素、干擾素成員圖,非常精美可以當作參考,或是看一看漂亮的圖表心情好。

細胞激素風暴的機轉與參與成員其實非常繁雜。圖/參考資料 29

細胞激素參與身體中非常多的功能如:細胞訊息傳遞與調節免疫功能等,細胞激素家族非常龐大,而文中所提及的干擾素也是成員之一[27]。干擾素能夠影響病毒複製進而保護細胞不被感染與調節刺激一些免疫細胞,但病毒也不是毫無招架的餘地,有些病毒其實有拮抗干擾素的能力[28][30]。此外感染後的發燒、疼痛、發炎等症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28]

而干擾素分成三型,功能不完全相同但都很重要:

  • 第一型:具影響病毒複製等功能,其成員有些被運用在治療肝炎,有些被用在治療多發性硬化症。[27][31]
  • 第二型:誘導刺激免疫反應。[32]
  • 第三型:較晚發現的成員,可能能夠影響病毒與真菌的感染。[33][34]

干擾素的確有跟其他療法如化療等一起運用在癌症治療上[35],其機轉與在治療上的運用也一直有在深入研究[36][37]

原文第五段。圖/科技新報
錯誤點:
  • 是細胞激素加上干擾素與其他被啟動的免疫機轉引起Covid-19確診後的最初症狀,不能說是由干擾素引起的
  • 免疫觀念是流動的,疫苗也不是只有預防感染的功能,降低住院率、死亡率、重症率、緩解症狀等都是疫苗會具有的功能,更別提還有治療性疫苗這個類別
  • 畫紅線的科學家表示的內容是錯的,疫苗接種對身體健康狀態有所要求,能接種疫苗者本身身體健康有一定水準,體內的免疫系統能夠清除病毒,打疫苗是讓免疫系統受到訓練後能更好的清除病毒,而施打疫苗後症狀輕微不代表身體沒抵抗
  • 就現有研究來說(免疫系統正常的成人)不論接種疫苗與否,病毒在人體停留的時間沒有統計上的顯著差異
  • 免疫系統功能低下者(如化療患者、愛滋病患者、特殊疾病患者等)被病毒感染後病毒可能揮之不去,但如果換作是普通人不論有沒有打疫苗免疫系統都有能力清除病毒,但能不能活到病毒被清除完又是另一回事。

Covid-19 確診後的症狀並非單純由干擾素引起,細胞激素也扮演了非常重要的角色[28],而疫苗功能其實不單純只有預防感染,減輕症狀與預防重症等也算是疫苗的功能[18]

據目前現有研究來看,確診 Omicron 的人施打疫苗者與未施打疫苗者其實病毒量沒有太大的差距[38][39],但施打疫苗者可能因為體內的抗體與有記憶性的免疫細胞辨識出敵人並開始清除病毒所以症狀出現的較早(可見下方引用推文中的圖片)。

倘若是身體健康的成年人,施打疫苗者確診後體內病毒不會停留更長的時間[39],免疫系統會有能力將病毒清除;但倘若為免疫功能低下的人,如:特殊疾病患者、化療病人、愛滋病患等,比起健康的成年人他們體內的免疫系統較虛弱難以將病毒清除且確診後演化為重症的可能性較高,所以我們必須要小心不要讓他們被感染[5–7]

而在這篇文章刊出不久候我收到一封信,信中說“ 如果長時間不清除疾病,可能會導致嚴重的疾病 ” 這段話可以用澳大利亞2022/06/11到2022/08/27的12週的感染新冠而住院(非加護病房)的確診案例數據去作佐證,之後我又收到一封信說我選用的數據錯誤,他給的數據只有New South Wales,不是澳洲全國。其實這兩封信中都犯了非常常見的數據分析錯誤,這樣的資訊也是假消息的愛用品,該如何破解呢?

筆者收到的信件。圖/作者
錯誤點:
  • 數據分析錯誤,分母取錯
  • 要討論像是疫苗會不會影響確診率這樣的現象或假說不能只用一個地區的數據,這不是在討論不同地區因為醫療資源、人口密度等帶來的影響或案例報告。先撇開最後統計結果不提,這樣要 “只用一個地區的數據來應證一個可能會發生在全世界各地的假設” 的行為恰恰就是學術領域中會被人詬病甚至退稿的 “挑數據說故事”
  1. 時間:數據是2022年6~8月的數據,已能獲得充沛疫苗資源的國家來說該國國民絕大多數都有接種疫苗,澳洲公布的數據來看16歲以上的澳洲人98%有接種一劑疫苗,兩劑為96.3%,三劑為71.7%,而New South Wales的人口數根據Population Australia這個網站上顯示在2022年6月底可能會達到 826萬人,而該地區16歲以上居民97%有接種一劑疫苗,兩劑為95.4%,三劑為69.6%(數據來源
澳洲全國疫苗接種狀態。圖/Australian Government Department of Health and Aged Care
New South Wales疫苗接種狀態。圖/NSW Health

2. 分母要選對:在做如該信提到的感染機率比較時,我們必須要有施打疫苗者跟有施打疫苗者比,沒施打疫苗者跟沒施打疫苗者比,為什麼?因為你要比的是施打疫苗者跟沒施打疫苗者各自的感染機率,而以澳洲數據來看16歲以上施打至少一劑疫苗者有98%(20,209,451人,換而言之沒施打疫苗者大約是2%(412,428人);而在New South Wales16歲以上施打至少一劑疫苗者有97%(約8,017,050人),未施打疫苗者大約3%(大約247,950人)如果沒選對分母,算出來的數據會大錯特錯。

3. 小心分子裡有詐:做數據分析前我們必須要看數據有沒有妥善處理,儘管現在資訊較為發達,還是有可能有些數據會被標記或應該表記為unknown,因為其實際狀況如何以現有資訊來說未知,舉例來說

  • 疫苗施打紀錄存疑需要額外查證
  • 有在其他地方打過疫苗但沒有證明文件
  • 在該系統中沒有出現有施打疫苗紀錄(可能其他地方有)等等

這些都會影響數據處理方式跟最終數據計算方式,這些unknown數據必須標示好並另外處理,不能跟其他數據混為一談更不能直接裁切掉忽視不理,更不能說為了讓數據量夠多我剔除unknown後多用幾週數據讓樣本數夠大,這已經能算惡意扭曲數據。

對於專業人士來說unknown這樣的數據的確是棘手,但相較於一般大眾我們有更多的權限去調取資料與做進一步數據清理分析,倘若真的處理不來我們也會如實告知,許多資訊因為涉及病人隱私絕對不會對外公開,所以問我們怎麼處理分類清理這些數據也沒用,更別提根據分析數據不同我們會用不同的統計方式,不是一般的加減乘除就可以理得清。

此外,在信中我有收到對方用來參考做計算的數據來源,而這張表一看問題就很大連拿來算的價值都沒有,爲什麼呢?

筆者收到的信件中所附的數據圖表。圖/作者

一位相關領域的博士去看原始數據後作出以下點評:

“ Unknown這群不管有沒有打疫苗也不能不理,而且光是8/20號的數據中unknown居然佔了27%(173/638住院數)的統計數,然後說當然不能分析? 他在開什麼玩笑? unknown只有幾種情形:

  • 沒打
  • 有打,沒有證明
  • 打了不是澳洲認為OK的疫苗(台灣人最愛講高端不能出國)
  • 有打的證明但不被認證

不把這些數據好好分類就直接當missing data處理,甚至在他提供的聯結中直接裁切不說明,就是惡意的扭曲數據的意義!”

對我來說他所用的數據還有另一個問題:年齡層資訊去哪了?病人是否有其他疾病呢?

讓我們再繼續使用2022年8月20日New South Wales的數據,住院者數量上升的年齡段集中在60歲以上的族群,詳情請見下圖:

2022年8月20日New South Wales的數據。圖/NSW Health

人類的免疫系統隨著年齡增長會有所影響,儘管都是16歲以上成年人,25歲的年輕人跟90歲的老人狀況不一樣,這就是為何在其他疫苗效力分析的文獻中會以10歲為一個年齡層區分開來分析,甚至連性別、種族等都是我們要考慮的因素,還要再考慮到施打了什麼疫苗;倘若取樣方式、思維邏輯錯誤,再怎麼計算最終結果也是錯的。

而且…儘管沒有權限去獲取所有數據細節,澳洲其實有數據庫已把寄件者想要知道的資訊算好了,New South Wales的數據與分析結果可點擊超連結查詢,在CovidBaseAU的網站上還有其他州與澳洲整體的數據相關分析可以查閱。

總而言之言而總之:

數據資訊充足沒有惡意處理、病人資訊明確並且數據量夠並且挑選適當的統計方式才可以進行數據分析,不是隨便加減乘除就會馬上得到真理

  • (選配)複習一下國中與高中數學在機率統計方面的內容:可能對於有些人來說國高中所學的內容有點模糊了,所以在看到數據時做分析時會搞混應該用哪些數據當分子,哪些數據當分母,可以稍微複習一下。

而在原始文章中那個號稱MIT但根本不是MIT的發表在數據統計上犯的一個極大錯誤也是分母選擇錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除;同理在計算施打疫苗後的突破性感染比例其母數應該是施打疫苗者的人數,而沒施打疫苗者的感染比例則應適用沒有施打疫苗者的人數,別搞混嘍!

原文第六段。圖/科技新報

錯誤點:

  • Covid-19 mRNA疫苗減弱適應性免疫反應方面沒看到有扎實實驗數據的發表,原文提到的根本不是MIT發表的發表也沒有相關數據可以佐證。
  • B細胞在癌症治療中如何發揮功用還在研究中,而且B細胞能分泌的抗體種類很多,不是只有中和病原體的功能。

在本文撰寫的當下我以 google scholar 與 pubmed 查關鍵字 covid-19、mRNA vaccine、T cell、B cell 看到的主要是探討疫苗如何誘導 T 細胞與 B 細胞免疫反應,而細胞受損方面文獻主要在討論 covid 透過哪些路徑感染免疫細胞,確診對於免疫系統的影響(如 T 細胞多樣性降低,B 細胞失調等)等[40 – 44]

在癌症治療方面 T 細胞的確有其一席之地,與不同細胞激素與細胞協調清除癌細胞[22][45][46],而近幾年的研究顯示 B 細胞與癌症治療與預後評估有所關聯,相關機制仍在研究[47][48]

原文第七段。圖/科技新報

錯誤點:

  • 先天免疫與適應性免疫缺一不可
  • 被誘導出來的適應性免疫不一定有益
  • 該荷蘭研究數據量與分析方式有疑慮,不應用其下定論

參與先天性免疫與適應性免疫的成員眾多且都很重要[27][28],但不一定所有機轉誘導出來的免疫反應都是你的好朋友[12][26]。而該荷蘭研究是否真的有顯著差異能夠證明疫苗施打後真的會影響 IFN-α 以其文章中的數據來看仍有疑慮,詳細討論在上篇中在此不多贅述。

原文第八段。圖/科技新報

錯誤點:

  • 中和性抗體不會在一次疫苗接種後幾週就出來
  • 有實際數據的研究與論文綜述指出疫苗可效刺激誘導T細胞而非活性下降

中和性抗體需要不短的成熟期,不可能在疫苗接種後幾週內產生[49][50],除非你已經是接種超過一劑疫苗,接著在第二或是第三劑疫苗施打後幾週內產生中和性抗體那可能還說得過去。而 mRNA 疫苗可以有效刺激與誘導 T 細胞與 B 細胞已在過往實驗中獲得證實[51],對於其導致心肌炎、心包炎與過敏等的可能機制也有不少研究團隊分析討論[52][53],並針對其安全性與哪些族群可能施打有較高的風險有所研究[52–54]

mRNA 疫苗研究多年但實際大量運用在人體上也是第一次[55][56],比起其他傳統疫苗技術來說他有一定的優點如可以快速製備,同樣也有缺點如存放難度高、目前已知副作用不少以及缺乏傳統疫苗臨床試驗的長期追蹤,這些都是需要更多研究與更多時間才能知道答案。

整體來說「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」文中部分內容正確,但更多的是似是而非跟描述方式不當,而構成這篇文章的兩篇引用文獻品質不佳甚至拿來當主打點的發表早已有國外文章分析其內容有多少問題[57],有興趣的人可以在 Reference 中找到連結查看。

引用文獻有誤、關於免疫學敘述有誤且偏頗,這是我對於「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章的評價;而針對該文的兩篇闢謠文 Reference 超過 60 個,遠超過原始文章中的引用文獻的數量,從此也可以看出要澄清假消息需要付出的心力有多驚人。

結語

會將這系列文拆成上下篇主要是因為「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」是基於兩篇引用文獻再加上其他資料寫出來的,如果不將有標紅色底線的兩篇引用文獻相關內容先做闢謠科普這篇文章會很混亂很長。

沒有任何技術是完美的,隨著技術的發展、更多的研究與臨床觀察我們才能找到更適合的改進方向,進而讓不論是疫苗研發技術還是藥物療法開發等變得越來越好。但這世界上不會有任何事情是大家都接受的,總有攻擊的聲浪甚至有虛假資訊流竄,有些人儘管有高學歷,但那絕對不代表他們說的寫的是正確的,多的是這樣的人散播似是而非的資訊。

這系列文章的最後我想感謝在寫文章的過程中提供不同專業建議與見解的博士們(為了寫這篇文章我詢問了好幾位相關專業的博士),還有願意看到這行話的讀者,願這兩篇文章能夠讓沒有相關背景的大眾對於疫情相關的資訊判讀有些幫助,祝一切安好。

參考資料

  1. Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The remarkable evolutionary plasticity of coronaviruses by mutation and recombination: insights for the COVID-19 pandemic and the future evolutionary paths of SARS-CoV-2. Viruses. 2022 Jan 2;14(1):78.
  2. Schwarzendahl, F.J., Grauer, J., Liebchen, B. and Löwen, H., 2022. Mutation induced infection waves in diseases like COVID-19. Scientific Reports12(1), pp.1–11.
  3. Pathan, R.K., Biswas, M. and Khandaker, M.U., 2020. Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model. Chaos, Solitons & Fractals138, p.110018.
  4. Sharif, N. and Dey, S.K., 2021. Impact of population density and weather on COVID-19 pandemic and SARS-CoV-2 mutation frequency in Bangladesh. Epidemiology & Infection149.
  5. Mishra, M., Zahra, A., Chauhan, L.V., Thakkar, R., Ng, J., Joshi, S., Spitzer, E.D., Marcos, L.A., Lipkin, W.I. and Mishra, N., 2022. A Short Series of Case Reports of COVID-19 in Immunocompromised Patients. Viruses14(5), p.934.
  6. Maponga, T.G., Jeffries, M., Tegally, H., Sutherland, A.D., Wilkinson, E., Lessells, R., Msomi, N., van Zyl, G., de Oliveira, T. and Preiser, W., 2022. Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with poorly controlled HIV infection. Available at SSRN 4014499.
  7. Hoffman, S.A., Costales, C., Sahoo, M.K., Palanisamy, S., Yamamoto, F., Huang, C., Verghese, M., Solis, D.A., Sibai, M., Subramanian, A. and Tompkins, L.S., 2021. SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA. Emerging Infectious Diseases27(10), p.2720.
  8. Focosi, D., Maggi, F., Franchini, M., McConnell, S. and Casadevall, A., 2021. Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. International journal of molecular sciences23(1), p.29.
  9. Nel, A.E. and Miller, J.F., 2021. Nano-enabled COVID-19 vaccines: meeting the challenges of durable antibody plus cellular immunity and immune escape. ACS nano15(4), pp.5793–5818.
  10. Riddell, S., Goldie, S., Hill, A., Eagles, D. and Drew, T.W., 2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virology journal17(1), pp.1–7.
  11. Pulliam, J.R., van Schalkwyk, C., Govender, N., von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K. and Moultrie, H., 2022. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science376(6593), p.eabn4947.
  12. Reynolds, C.J., Pade, C., Gibbons, J.M., Otter, A.D., Lin, K.M., Muñoz Sandoval, D., Pieper, F.P., Butler, D.K., Liu, S., Joy, G. and Forooghi, N., 2022. Immune boosting by B. 1.1. 529 (Omicron) depends on previous SARS-CoV-2 exposure. Science377(6603), p.eabq1841.
  13. https://www.jnj.com/johnson-johnson-announces-european-commission-approval-for-janssens-preventive-ebola-vaccine
  14. https://www.statnews.com/2020/01/07/inside-story-scientists-produced-world-first-ebola-vaccine/
  15. http://scimonth.blogspot.com/2018/07/blog-post_19.html
  16. https://www1.cde.org.tw/ct_taiwan/notes.html
  17. https://clinicaltrials.gov/
  18. Morens, D.M., Folkers, G.K. and Fauci, A.S., 2022. The concept of classical herd immunity may not apply to COVID-19. The Journal of Infectious Diseases.
  19. Eichhorn, Adolph. Contagious abortion of cattle. №790. US Department of Agriculture, 1917.
  20. Smith, A., 2000. Oxford dictionary of biochemistry and molecular biology: Revised Edition. Oxford University Press.
  21. Alberts, B., 2017. Molecular biology of the cell. WW Norton & Company.
  22. Waldman, A.D., Fritz, J.M. and Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology20(11), pp.651–668.
  23. Lin, L.Y., Carapito, R., Su, B. and Moog, C., 2022. Fc receptors and the diversity of antibody responses to HIV infection and vaccination. Genes & Immunity, pp.1–8.
  24. https://www.medrxiv.org/content/10.1101/2022.08.30.22279344v1
  25. Zhu, Y., Lu, Y., Tang, L., Zhou, C., Liang, R., Cui, M., Xu, Y., Zheng, Z., Cheng, Z. and Hong, P., 2022. Finite neutralisation breadth of omicron after repeated vaccination. The Lancet Microbe.
  26. Suryawanshi, R. and Ott, M., 2022. SARS-CoV-2 hybrid immunity: silver bullet or silver lining?. Nature Reviews Immunology, pp.1–2.
  27. Janeway, C.A., Travers, P., Walport, M. and Capra, D.J., 2001. Immunobiology (p. 600). UK: Garland Science: Taylor & Francis Group.
  28. De Andrea, M., Ravera, R., Gioia, D., Gariglio, M. and Landolfo, S., 2002. The interferon system: an overview. European Journal of Paediatric Neurology6, pp.A41-A46.
  29. Fajgenbaum, D.C. and June, C.H., 2020. Cytokine storm. New England Journal of Medicine383(23), pp.2255–2273.
  30. Elrefaey, A.M., Hollinghurst, P., Reitmayer, C.M., Alphey, L. and Maringer, K., 2021. Innate immune antagonism of mosquito-borne flaviviruses in humans and mosquitoes. Viruses13(11), p.2116.
  31. Ntita, M., Inoue, S.I., Jian, J.Y., Bayarsaikhan, G., Kimura, K., Kimura, D., Miyakoda, M., Nozaki, E., Sakurai, T., Fernandez-Ruiz, D. and Heath, W.R., 2022. Type I interferon production elicits differential CD4+ T-cell responses in mice infected with Plasmodium berghei ANKA and P. chabaudi. International Immunology34(1), pp.21–33.
  32. Kidd, P., 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alternative medicine review8(3), pp.223–246.
  33. Espinosa, V., Dutta, O., McElrath, C., Du, P., Chang, Y.J., Cicciarelli, B., Pitler, A., Whitehead, I., Obar, J.J., Durbin, J.E. and Kotenko, S.V., 2017. Type III interferon is a critical regulator of innate antifungal immunity. Science immunology2(16), p.eaan5357.
  34. Hermant, P. and Michiels, T., 2014. Interferon-λ in the context of viral infections: production, response and therapeutic implications. Journal of innate immunity6(5), pp.563–574.
  35. Goldstein, D. and Laszlo, J., 1988. The role of interferon in cancer therapy: a current perspective. CA: a cancer journal for clinicians38(5), pp.258–277.
  36. Zaidi, M.R., 2019. The interferon-gamma paradox in cancer. Journal of Interferon & Cytokine Research39(1), pp.30–38.
  37. Dunn, G.P., Ikeda, H., Bruce, A.T., Koebel, C., Uppaluri, R., Bui, J., Chan, R., Diamond, M., Michael White, J., Sheehan, K.C. and Schreiber, R.D., 2005. Interferon-γ and cancer immunoediting. Immunologic research32(1), pp.231–245.
  38. Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., Meltzer, L., Asraf, K., Cohen, C., Fluss, R. and Biber, A., 2022. Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron. New England Journal of Medicine386(14), pp.1377–1380.
  39. Boucau, J., Marino, C., Regan, J., Uddin, R., Choudhary, M.C., Flynn, J.P., Chen, G., Stuckwisch, A.M., Mathews, J., Liew, M.Y. and Singh, A., 2022. Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA. 1) Infection. New England Journal of Medicine387(3), pp.275–277.
  40. Junqueira, C., Crespo, Â., Ranjbar, S., de Lacerda, L.B., Lewandrowski, M., Ingber, J., Parry, B., Ravid, S., Clark, S., Schrimpf, M.R. and Ho, F., 2022. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, pp.1–9.
  41. Pontelli, M.C., Castro, I.A., Martins, R.B., La Serra, L., Veras, F.P., Nascimento, D.C., Silva, C.M., Cardoso, R.S., Rosales, R., Gomes, R. and Lima, T.M., 2022. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. Journal of molecular cell biology14(4), p.mjac021.
  42. Joseph, M., Wu, Y., Dannebaum, R., Rubelt, F., Zlatareva, I., Lorenc, A., Du, Z.G., Davies, D., Kyle-Cezar, F., Das, A. and Gee, S., 2022. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proceedings of the National Academy of Sciences119(34), p.e2201541119.
  43. André, S., Picard, M., Cezar, R., Roux-Dalvai, F., Alleaume-Butaux, A., Soundaramourty, C., Cruz, A.S., Mendes-Frias, A., Gotti, C., Leclercq, M. and Nicolas, A., 2022. T cell apoptosis characterizes severe Covid-19 disease. Cell Death & Differentiation, pp.1–14.
  44. Woodruff, M.C., Ramonell, R.P., Haddad, N.S. et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature (2022). https://doi.org/10.1038/s41586-022-05273-0
  45. Feng, S. and De Carvalho, D.D., 2022. Clinical advances in targeting epigenetics for cancer therapy. The FEBS Journal289(5), pp.1214–1239.
  46. Abrantes, R., Duarte, H.O., Gomes, C., Wälchli, S. and Reis, C.A., 2022. CAR‐Ts: new perspectives in cancer therapy. FEBS letters596(4), pp.403–416.
  47. Petitprez, F., de Reyniès, A., Keung, E.Z., Chen, T.W.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougoüin, A. and Moreira, M., 2020. B cells are associated with survival and immunotherapy response in sarcoma. Nature577(7791), pp.556–560.
  48. Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G. and Gopalakrishnan, V., 2020. B cells and tertiary lymphoid structures promote immunotherapy response. Nature577(7791), pp.549–555.
  49. Moore, P.L., Williamson, C. and Morris, L., 2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends in microbiology23(4), pp.204–211.
  50. Gray, E.S., Madiga, M.C., Hermanus, T., Moore, P.L., Wibmer, C.K., Tumba, N.L., Werner, L., Mlisana, K., Sibeko, S., Williamson, C. and Abdool Karim, S.S., 2011. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. Journal of virology85(10), pp.4828–4840.
  51. Hogan, M.J. and Pardi, N., 2022. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annual Review of Medicine73, pp.17–39.
  52. Heymans, S. and Cooper, L.T., 2021. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nature Reviews Cardiology, pp.1–3.
  53. Risma, K.A., Edwards, K.M., Hummell, D.S., Little, F.F., Norton, A.E., Stallings, A., Wood, R.A. and Milner, J.D., 2021. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. Journal of Allergy and Clinical Immunology147(6), pp.2075–2082.
  54. Anand, P. and Stahel, V.P., 2021. The safety of Covid-19 mRNA vaccines: A review. Patient safety in surgery15(1), pp.1–9.
  55. Park, K.S., Sun, X., Aikins, M.E. and Moon, J.J., 2021. Non-viral COVID-19 vaccine delivery systems. Advanced drug delivery reviews169, pp.137–151.
  56. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E. and Vieweg, J., 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of clinical investigation, 109(3), pp.409–417.
  57. https://www.respectfulinsolence.com/2022/05/02/scientific-review-articles-as-disinformation/
  58. Halstead, S.B. and Katzelnick, L., 2020. COVID-19 vaccines: should we fear ADE?. The Journal of infectious diseases, 222(12), pp.1946–1950.
  59. Li, M., Wang, H., Tian, L., Pang, Z., Yang, Q., Huang, T., Fan, J., Song, L., Tong, Y. and Fan, H., 2022. COVID-19 vaccine development: milestones, lessons and prospects. Signal transduction and targeted therapy, 7(1), pp.1–32.
  60. Maemura, T., Kuroda, M., Armbrust, T., Yamayoshi, S., Halfmann, P.J. and Kawaoka, Y., 2021. Antibody-dependent enhancement of SARS-CoV-2 infection is mediated by the IgG receptors FcγRIIA and FcγRIIIA but does not contribute to aberrant cytokine production by macrophages. MBio, 12(5), pp.e01987–21.
所有討論 1
Jamie Lin_96
2 篇文章 ・ 1 位粉絲
正在論文與發表地獄中載浮載沈的免疫學博士後選人 熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫論文、部落格文章就是在推特上筆戰科普

0

6
2

文字

分享

0
6
2
【闢謠科普兩不誤】「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有疑慮的引用文獻及判斷文獻可信度小技巧分享
Jamie Lin_96
・2022/09/17 ・4028字 ・閱讀時間約 8 分鐘

單純只說這篇文章內容錯誤無法說服人,就讓我們一起從有狀況的引用文獻到問題百出的文章內容逐一拆解科普過去吧!

因為內容眾多所以這篇文將會拆成上下兩篇,上篇為引用文獻出了什麼包以及若非專業人士我們怎麼快速判斷發表是否可信?下篇為整篇文章內容有哪些觀點有誤與有哪些相關可信賴發表值得看。

分析這篇文章引用的文獻,破解有問題的引用文獻跟判斷文獻可信度小技巧。圖/科技新報

筆者目前研究領域跟工作狀態:免疫學博士候選人,預計於 2023 年 2 月正式取得博士學位,研究主題為愛滋疫苗與功能性抗體,具備在生物安全等級三級實驗室工作的資格與能力,最近在發表地獄中載浮載沉。

在細緻拆解這篇文章的內容前,我想先來聊聊這篇文章引用的兩篇發表到底問題在哪裡?為什麼我會說有狀況?

第一篇引用文獻的四大問題

這篇文章引用兩篇發表,第一篇是 2021 年 5 月 6 日發布在 medRxiv 上的 The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses,研究團隊在荷蘭,也是該文中所提的荷蘭研究。

引用的文獻之一。圖/medrxiv
  • 文獻引用與解讀錯誤
  • 可能該發表從實驗假設到結論都有問題
  • 數據分析與解讀方式可能有問題(其實在審核過程中,研究團隊是有可能需要針對評審質疑的方向加做實驗來證實假設論點為真,進而說服評審)
  • 可能會誤導非該領域的讀者

因為疫情很多研究團隊會將發表先放上 medRxiv 與 bioRxiv,其實不少很扎實的研究之後都投稿上了正式期刊,倘若有投稿上會顯示在 Rxiv 的連結上。

這篇研究到我寫文的當下尚未正式投稿刊登,該研究總樣本數為 16 人其實不多之外,支持該發表論點的主要是這兩張圖,因為研究團隊說疫苗接種後的 IFN-α 濃度有顯著差異。

除了樣本數不高外,對於顯著差異的判斷也隨著時間改變而有所不同。圖/Figure 1H, 1I

但真的有顯著差異嗎?我看完數據後表示存疑。

樣本數少之外可以看到只有一兩個點較高,其他點分佈都非常平均,這樣的狀態下其統計的顯著差異可能來自那一兩個極端值,而非兩組真實有差;如果我是評審我會詢問該團隊移除最高值後期數據是否仍有顯著差異並請他們將 Y 軸改成 log10 scale 來看分佈,如果重新分析製圖後真有顯著差異我才可能會覺得這篇發表的實驗結果可以支持論點。

第二篇引用文獻號稱 MIT 研究是真的假的?

第二篇研究為 2022 年 4 月 15 日刊出在 Food and Chemical Toxicology 的 Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs,在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?

在文中被稱為是 MIT 研究也是「MIT:自然免疫系統失靈」的由來,但這篇文章真的是 MIT 研究且可信嗎?圖/Food and Chemical Toxicology 

這篇真的很長,拉到最下方的作者貢獻(Author contributions)區可以看到這段話:S.S., G.N and A.K. all contributed substantially to the writing of the original draft. P.M. participated in the process of editorial revisions. 意思是作者序上的前三位作者負責寫這篇文章的草稿,而最後一位作者是通訊作者並且負責整篇文章的投稿與問題回覆

如果對於貢獻、通訊作者、問題回覆等名詞看得一頭霧水,可以參考我之前寫針對期刊投稿與貢獻的科普文,裡面對這些名詞都有簡單定義解釋。

簡單來說這篇發表誰是老大跟屬於哪個機構?答案是這篇研究的通訊作者 Peter A. McCullough,他是一位心臟科醫生並且有許多反疫苗言論[1][2][3],且該發表應歸屬於 Truth for Health Foundation 的研究(在其機構 mission 上寫他們提供以信仰為基礎的療法),完全不能說是MIT的研究,而寫文章的前三位作者分別背景為:

  • Stephanie Seneff:背景為計算機科學,近年研究興趣與生物較為相關的為現代疾病(如:阿茲海默、自閉症、心血管疾病等)與藥物數據庫的分析,以及營養缺乏和環境毒素對人類健康的影響。其生物相關發表不少有所爭議並被專家批評缺乏證據、推論不正確等[4][5]。(Wikipedia link
  • Greg Nigh:工作為自然療法醫療人員與針灸師。
  • Anthony M. Kyriakopoulos:希臘研究員,最近幾年主要研究牛磺酸。

上述三位作者加上通訊作者全部沒有免疫學背景甚至不是相關研究人員

而更有趣的是該篇發表的主要編輯為 Dr. Jose Luis Domingo,他主要研究方向為環境與食品污染對人類健康的影響,但他的研究其實不少備受批評外,他曾經在 Food and Chemical Toxicology 期刊上徵稿[6],希望有人能夠投稿關於 Covid-19 疫苗對人體有害的稿件,之後便有了這篇號稱「MIT 研究」的發表,但國外也早已有文章批評其是披著科學文獻皮的虛假訊息[7]

講完該發表作者群與編輯的背景與事蹟後,讓我們看一看這篇文章發表在哪個期刊:Food and Chemical Toxicology 食品與化學毒理學期刊;而正統疫苗相關發表會去什麼期刊:生物學、免疫學等相關期刊。每個期刊代表的研究領域不同外,同時也代表該期刊的評審背景,你不可能在食品相關期刊找到免疫學專業的評審,反之亦然。倘若這篇疫苗有害論的發表整體論點清晰佐證明確,那早就應該可以上免疫學相關期刊,不用跑去食品期刊湊熱鬧

可能有人會問:作者與編輯有狀況不代表內文有狀況啊?

這篇發表我很認真的看完了,簡單來說有兩個致命問題:

  • 引用很多文獻,但是完全沒有任何文獻可以支持他們的論點
  • 數據分析方式錯誤,如果要算該疫苗的不良事件比例分母應該為“總施打人數”,而不是拿別的疫苗的施打人數來做加減乘除

通篇錯誤滿滿,完全可以當作科學寫作與生物統計學的負面教材。

所引用的兩篇文章各有不同的疑慮

「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文章引用的兩篇發表

  • 第一篇沒有經過同行審查,對我來說數據分析結果存疑,需要進一步的分析與更多專業人士審查後我才會相信
  • 第二篇內把所屬機構寫錯外,作者群與編輯無免疫學背景且內文錯誤滿滿

光就其引用文獻的品質其實就可以直接判斷該文章不合格根本連看都不需要看,而在下篇文章我會深入拆解文章內容並針對其寫到的資訊做科普。

快速檢閱發表是否可信的小技巧

我常常被人問:Jamie,我沒有免疫學背景,那我該怎麼判斷這篇文章可不可以信任呢?

這裡我想分享幾個簡單的判斷方式:

  • 看作者所屬機構跟學歷背景:大多數的研究人員都會有紀錄學歷、發表、工作機構的頁面如:Google scholar, research gate, ORCID ID 等,而在期刊發表中我們會放上我們所屬機構,如果作者是在該領域相關機構工作學歷也相關,那可信度會高一些。
  • 查詢作者與編輯風評:如果發現大量負面評價,那可以不用看。
  • 看一看實驗 N 值、圖表、XY 軸與單位:每個研究會招募到多少人或是使用多少動物不一定,但通常越多越好,我自己會找有設置可以參考的對照組的發表,如果是跟人有關的最少要有 30 人但案例報告除外,動物實驗方面一組至少要 5 隻起跳,再來我會看該發表圖表的 XY 軸與使用的單位,再來看圖片中數據的分佈,如果發現說有顯著差異但數據分佈很集中只有一兩個數值極高或極低,那我會存疑當作並沒有顯著差異。
  • 看發表內容跟期刊主題是否一致:大部分的期刊都有自己的主題,就像我做愛滋病疫苗研究我可能會投往 AIDS, Frontiers, Genes & Immunity, Cell report 等期刊,但我不會說要去投毒物學期刊,這與我的研究方向完全不符合!如果發表內容跟期刊主題不一致還刊出來,那要不期刊很爛要不後面問題很大,不論哪個都是個警訊。
  • 盡量看有同行審查(peer-reviewed)的期刊發表:有些很優的發表因為疫情需要資訊快速交換所以會先放在未經同行審查的資料庫中之後正式投稿到期刊上,但這對於非相關專業的人來說很難判斷,在此我建議找有同行審查的期刊發表來看,但同樣需注意發表內容跟期刊主題是否一至。
簡單的判斷文章的可信度可以從作者所屬機構跟學歷背景、風評等多種面相來參考。圖/pixabay

疫情開始後其實有非常多關於 Covid-19 相關的垃圾發表,標題跟內文不符或是通篇錯誤,儘管我是相關專業有時候我也覺得很煩躁,但這些技巧是我需要大量查找 paper 時一定會使用的的快速分辨技巧,僅供參考。

【闢謠科普兩不誤】 — 「mRNA 疫苗爭議浮現,MIT:自然免疫系統失靈」這篇文到底有多少錯?上篇:破解有問題的引用文獻跟判斷文獻可信度小技巧分享 到此結束,下篇正在努力撰寫中,如果有任何疑問歡迎留言發問!

參考資料

  1. US cardiologist makes false claims about Covid-19 vaccination.
  2. The COVID-19 “Vaccine Holocaust”: The latest antivaccine messaging.
  3. Vaccines are a safer alternative for acquiring immunity compared to natural infection and COVID-19 survivors benefit from getting vaccinated, contrary to claims by Peter McCullough.
  4. Mesnage, R. and Antoniou, M.N., 2017. Facts and fallacies in the debate on glyphosate toxicity. Frontiers in public health5, p.316.
  5. Not Even Wrong: Seneff And Samsel Debunked By The Seralini Crew.
  6. Call for Papers on potential toxic effects of COVID-19 vaccines.
  7. Scientific review articles as disinformation.
Jamie Lin_96
2 篇文章 ・ 1 位粉絲
正在論文與發表地獄中載浮載沈的免疫學博士後選人 熱愛攝影、做手工藝且永遠管不住好動的手,不是在寫論文、部落格文章就是在推特上筆戰科普

0

3
1

文字

分享

0
3
1
空虛、寂寞、真的會覺得冷?體溫調節與憂鬱症的關聯──《做個有溫度的人》
時報出版_96
・2022/09/11 ・3423字 ・閱讀時間約 7 分鐘

憂鬱跟冷的聯想

著名的臨床心理師貝克(Aaron Beck)曾寫電子郵件告訴我,他臨床治療的患者常說他們覺得冷。或許沒有人對這點感到意外,畢竟覺得冷與感到憂鬱似乎「很自然」就湊在一起了。然而,這並沒有告訴我們,讓兩者如此明顯相連的生理機制是什麼。

Cat GIF
如果常常覺得冷的話,記得注意保暖,還要注意你的心情哦!圖/GIPHY

1970年,韋克林(Anthony Wakeling)與羅素(Gerald Russell)做了一項研究,探索十一位罹患神經性厭食症的女性患者的體溫調節。

神經性厭食症是一種可能危及生命的飲食障礙,其特徵是自我限制飲食、過激的減肥欲望、非常害怕體重增加(該研究也找來十一位健康的女性作為對照組)。雖然多數的厭食症患者體重過輕,但她們還是認為自己太胖。儘管她們已經吃得很少了,有些人還會催吐或濫用瀉藥。我們知道神經性厭食症可能導致心臟受損、骨質疏鬆症、不孕,或其他與營養不良有關的疾病。

那十一位患者在住院期間於營養不良狀態下接受檢測,隨後又於進食後再次接受檢測;這些測試包括衡量口腔與皮膚的溫度在接受熱刺激與標準膳食之後的反應。

研究人員發現,這些患者基本上對任何類型的溫度變化都不太敏感。因此,神經性厭食症似乎與體溫調節能力受損有關。臨床證據與體溫控制失調是一致的,患者的四肢冰涼發青,組織與微血管床受損,常喊冷。事實上,一些嚴重營養不良的人會出現體溫過低的現象,甚至可能致命。

研究這些厭食症族群往往很困難,因為大樣本取得不易;樣本小則意味著,目前為止我們的結論大多只是推測。但我們的理論性推論呼應了一個概念:食物攝取是由下視丘的結構所調節的,下視丘也正是調節溫度的地方。

hypothalamus 就是下視丘,主要功能跟人體的恆定有關。圖/wikipedia

以手術破壞下視丘內的核(名稱是腹內側核〔ventromedial nucleus〕)會導致老鼠暴飲暴食及肥胖;老鼠下視丘的極外側部分(即遠離那個核)雙側受損時,會導致老鼠節食,把自己餓死。新的研究已把這些結果延伸應用到其他物種上,例如,山羊與老鼠的研究都顯示,腹內側核涉及食物攝取的調節。

注意,人類大腦中的下視丘很小,所以很難研究。不過,觀察顯示,人類的這個大腦結構出現病變時,可能使人變胖或消瘦。

前面提過,下視丘的一部分在體溫調節中負責扮演主恆溫器的角色;但我們也提過,下視丘不只是恆溫器而已,它也調節多種基本的代謝流程、睡眠、疲勞、晝夜節律與依附行為。這裡需要再次提醒大家,研究人員必須避免陷入反向推論的陷阱。

下視丘很複雜,一個神經區域不只負責一種行為或機制。我們知道,身體承受熱壓力時,它的視前區是散熱控制部位。食物攝取與體溫調節之間的關聯不是偶然的,兩者都攸關新陳代謝,也都參與身體能量平衡的間接控制。韋克林與羅素研究厭食症患者時,推測食物攝取調節失靈可能與無法調節體溫有關。

早期關於神經性厭食症的病因,理論是強調心理根源,例如童年遭到性侵、在功能失調的家庭成長所造成的情感創傷。一般認為導致神經性厭食症的其他心理因素,還包括焦慮、孤獨、自卑、憂鬱。以文化身體理想意象為基礎的社會原因,在過去也是重要因素。

厭食症發生的原因有很多種也很複雜。圖/Pixabay

厭食症跟憂鬱症的關聯

最近,研究探索了基因因素(這種疾病有很高的遺傳性)以及「下視丘─腦下垂體─腎上腺軸」的過度活躍(導致無法妥善地調節荷爾蒙)。有些人認為厭食症與憂鬱症之間是因果關係,但兩者的關聯其實沒那麼直接。

早期的憂鬱症理論就像厭食症理論一樣,把憂鬱症視為一種心理失調,但最近的研究是探索身體失調與社交情境的失調。在這方面,醫學與心理學都穩定地朝著一條漫漫長路發展:持續把神經運作視為身體現象,把大腦、神經系統與其他身體組成視為包含在單一生物的整體內。

以前的理論認為,大腦是所有心理疾病的源頭。這類理論雖然還沒被完全推翻,但越來越多人認為,把情緒障礙(尤其是憂鬱症)視為涉及中樞神經系統、周圍神經系統以及所有影響中樞神經系統的身心失調,可能比較正確。這反映了一種仍持續發展的心理健康觀點,不僅源自於大腦,而且源自一個更大、涵蓋更廣的系統,而那個系統會配合實體與社交環境進行調適。

換言之,從身體到中樞神經系統的輸入,在認知與情緒狀態中都扮演關鍵要角。來自周邊的輸入,其中包括溫度感覺訊號,那些訊號可能對幸福感與憂鬱感有很重要的影響。

傳統上,理論是把焦點放在體溫調節的生理面,也就是達成與維持恆定。不過,最近的研究以證據顯示,調節體溫所涉及的神經機制與情緒狀態的關聯,遠比傳統理論所想的更密切。

溫度的調節對於身體的影響遠比我們想得重要!恆溫動物是這樣,那變溫動物也一樣嗎?圖/envatoelements

溫暖的好處

我們已經看到,接觸實體冷熱與有關社交冷熱的認知及情感行為相關。最近,許多對嚙齒動物做的研究顯示,實體溫暖會刺激血清素的分泌;在大眾文化中,這些神經傳遞物質與產生幸福感、快樂感、甚至欣快感有關。這個觀點確實有些道理,雖然生物化學與生理上的現實複雜得多。

總之,臨床前的嚙齒動物研究顯示,啟動分泌血清素的神經元,身體溫暖後就會產生類似抗憂鬱藥的效果。因此,我們可以推論,溫度感覺通路與掌控情緒的大腦系統會相互作用,無法妥善調節溫度可能與情感疾病(affective disorder)有關。最耐人尋味的是,研究顯示,提供實體溫暖(即啟動溫暖的溫度感覺神經通路)可能有治療情感疾病(包括憂鬱症)的療效。

我們知道,有情感疾病的人,對溫度有不同的感知,對皮膚溫度變化也有不同的反應,他們不見得能調節體溫。有些研究人員甚至認為,膚電傳導程度可能是辨識憂鬱症的特徵。情緒與溫度看似具有許多關聯,不過,根據現有的證據,我認為目前並沒有簡單的生物特徵可以判斷心理症狀。

不管有沒有具體的生物特徵,憂鬱症患者似乎都有調節體溫的問題。這現象呼應了貝克在電子郵件中的臆測:憂鬱症患者對溫度的反應確實變了。

對無害的溫度刺激產生負面的情緒反應,可能也與憂鬱症有關,因為憂鬱症會弱化一個人對舒適溫暖的感知,但強化一個人對不舒適高溫的感知。研究也顯示,憂鬱症患者比健康的人更少流汗,可見降溫機制運作不良。

2009 年,一項研究綜合分析了三個獨立實驗室的研究結果,總共涉及 279 位憂鬱症患者與 59 位健康的參與者。綜合分析的結果顯示,膚電傳導性較低導致出汗減少,可能是憂鬱症患者自殺風險的一個指標。研究顯示,傳入的熱感應訊號,會刺激血清素合成系統以及與憂鬱有關的大腦區域。這表示,憂鬱症患者的體內降溫機制運轉不良。

熱的調節不良常被發生在憂鬱症換著身上,但這似乎跟前面提到的感到溫暖會有比較正面的感覺有衝突。圖/envatoelements

2007 年的一項研究,檢視了非典型憂鬱與自我安慰行為之間的關係(例如想吃巧克力之類的療癒美食、想洗熱水澡)。

研究結果顯示,社交因素、體溫調節、憂鬱症之間可能有關聯。這些行為是用來對抗皮膚溫度低或社交冷淡嗎?它們可能是為了觸發降溫機制,以降低交感神經與情緒的促發,以及核心體溫嗎?還是這兩種動機都存在呢?

回想一下前面的實驗:社交排擠導致皮膚溫度降低,但拿著熱飲又減少了社交排擠的負面影響。我相信身體溫暖可以抒解一些憂鬱感,但真正的解方當然複雜得多。那取決於社交環境、溫度,以及你因應這些因素的方式之間的關係。在未來幾年裡,我相信會有新的技術讓我們詳細研究這些關聯。

——本文摘自《做個有溫度的人:溫度如何影響我們的生活、行為、健康與人際關係》,2022 年 9 月,時報出版,未經同意請勿轉載。

時報出版_96
148 篇文章 ・ 27 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。