0

7
3

文字

分享

0
7
3

借刀殺蟲!藍莓的養兵抗敵策略——淺談植物泌液作用的原理及應用

羅夏_96
・2021/09/02 ・3201字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你是否在清晨看過水珠出現在一些植物的葉片邊緣上?相信不少人都看過,也會以為這是露水(包括我也是!)然而,這些在葉片邊緣整齊排列的水珠其實並非露水。一般露水所形成的水珠排列並不規律,且會鋪滿整個葉面。而這些會整齊地排列在葉片邊緣的水珠,其實是由植物的泌液作用(Guttation)所產生的。過去科學家認為泌液作用就只是植物用來將體內多餘的水排出而已,但新的研究顯示,泌液作用的功能很可能不僅於此1

草莓葉片邊緣因泌液作用產生的水珠。圖/維基百科

植物如何獲取水分?

要知道泌液作用的成因,我們得先了解植物是怎麼獲取水分的。

植物是由其根部來吸收土壤中的水分,當水進入根後,便能運輸到整株植物中。上述是我們對於植物獲得水分的一般認知,但植物獲得水的整個過程,其實要比我們想的複雜得多。

首先,植物會主動消耗能量,在根部累積高濃度的離子,而這就讓根和土壤之間產生滲透壓,讓水自動流到根內的木質部導管中。由於植物的構造,水在進入導管後便無法再流出根部,因此隨著水不斷地進入根內的導管,就會產生一股將水向上推的壓力,而這就是「根壓」。對於草本植物和矮小的灌木來說,根壓就足以將水向上運送到葉片。但對於高大的木本植物,根壓並不足以將水送到高處的葉片,這就時要靠「蒸散作用」和「毛細作用」來輸送水分。

植物可透過葉片上的氣孔來交換氣體,氣孔同時也讓植物的水分蒸散出去。而這個蒸散作用會形成一股負壓,對導管中的水產生一股吸引力。只要導管內的水柱是連續的,此負壓可以從葉片傳遞到根部,將導管內的水一路由根部向上拉至葉片中。另外由於導管的管徑很細,毛細作用也是使水柱上升的重要因素。毛細作用的來源有兩個,一是水分子與管壁間的附著力;二是水分子本身的表面張力(源於水分子的內聚力)。當水分子被管壁上的極性分子向上吸引而向上流時,水分子本身強大的內聚力會使導管中的水也被往上拉。

-----廣告,請繼續往下閱讀-----

對於高大的木本植物來說,蒸散作用是左右植物吸水水分的重要因素。雖然草本植物靠根壓即可輸送水分,但草本植物也會透過蒸散作用調控水分的輸送。另外蒸散作用也是植物用來調控體溫和排除體內多餘水分的方法。

植物獲得水分的三大關鍵:根壓、毛細作用、蒸散作用。圖/Transpiration stream

「泌液作用」的成因

講了有關植物獲得水分的方法,那麼泌液作用在植物身上到底扮演什麼樣的功能呢?答案是排除多餘的水分。

前面提到,植物會透過蒸散作用來排除體內多餘的水分,不過植物在夜晚會關閉大部分的氣孔,因此蒸散作用的效率會大幅降低。植物的根部在夜晚仍會不斷地吸收水分,不過正常情況下,夜晚剩餘氣孔所產生的蒸散作用,是足夠將多餘的水排出的。但如果植物是處在土壤水分高,且低溫高濕度的環境下(這種環境下,水分難轉換成水蒸氣),單靠剩餘氣孔所產生的蒸散作用無法將多餘的水排出。於是在這種情況下,植物便會透過泌液作用將多餘的水直接從葉片的泌水孔(hydathode)排出,而這些水就形成我們清晨在葉片邊緣所看到的水珠。

科學家大多認為,泌液作用只是植物將體內多餘的水排出的方法,沒什麼特別。雖然過去也觀察到許多昆蟲會吸食因泌液作用而形成的小水珠,但許多科學家都認為這些昆蟲只是單純在補充水分。但後續的研究發現,葉片的泌水孔和維管束組織是連在一起的。因此有些研究人員就猜測,透過泌液作用排出的水珠,其中可能含有維管束運輸的其它物質,如礦物質、糖和蛋白質等。因此來自西班牙和美國的聯合團隊,就推測泌液作用所產生的水珠,很可能也是昆蟲的食物來源1

-----廣告,請繼續往下閱讀-----

藍莓泌液,是許多昆蟲們的心頭愛

研究團隊選定的觀察植物是北方高叢藍莓(Vaccinium corymbosum),原因是該藍莓的泌液作用在整個生長期間非常旺盛,不分晝夜都會形成水珠。另外昆蟲們也非常喜歡藍莓的泌液,許多種類的昆蟲都會來飲用,而這就非常方便研究團隊進行觀察。

藍莓泌液很受昆蟲歡迎。圖/參考資料1

研究團隊首先分析泌液內的營養成分,他們發現每毫升的泌液中含有約 1.5 克的糖與 4.3 毫克的蛋白質,而藍莓花蜜中的糖含量是每毫升 0.4 克,這顯示泌液的營養價值比花蜜還高(看到這兒,我都想來口藍莓泌液了 ~)

接著研究團隊選定三種常飲用藍莓泌液的昆蟲為觀察與實驗對象:翅果蠅(Drosophila suzukii)、阿爾蚜繭蜂(Aphidius ervi Haliday)與草蛉(Chrysoperla rufilabris)。他們分別給予這三種昆蟲以下的營養液:一般水、糖水、蛋白質水、糖+蛋白質水和藍莓泌液,然後觀察牠們的壽命。結果顯示,飲用藍莓泌液的組別,其壽命和飲用糖水是一樣的。

研究團隊接著讓飲用不同營養液的昆蟲進行交配使其受精產卵,並藉此觀察牠們的產卵量是否會受到影響。結果顯示,喝藍莓泌液的昆蟲其產卵量並沒有受到影響。

-----廣告,請繼續往下閱讀-----

綜合以上結果,可以說藍莓泌液堪稱天然營養液,不僅能讓飲用的昆蟲活得好,也能順利產下後代。因此昆蟲要以藍莓泌液做為食物來源,完全沒問題!

飲用泌液(綠色線)的昆蟲,其壽命和飲用糖水(灰色線)一樣。圖/參考資料1

養兵自重,藍莓的防敵策略

藍莓泌液做為高營養食品,會吸引很多昆蟲來吃。這就出現一個問題,這種泌液在吸引大量的草食昆蟲來飲用的同時,牠們會不會順便也把藍莓的葉子給吃乾抹淨呢?按照自然界的法則,藍莓如果真那麼傻,早就無法生存了,它們一定有一套反制措施。

研究團隊統計了藍莓泌液吸引到的昆蟲種類。他們發現與去除泌液的藍莓相比,有泌液的藍莓明顯吸引了更多的寄生蜂類和捕食性昆蟲(如草蛉),同時有泌液的藍莓吸引到的草食性昆蟲數量減少了很多。也就說,藍莓通過泌液豢養了一群天敵的天敵,從而達到威攝與保護自己的效果。

另一個有趣的發現是,有泌液的植株上,蚊子的數量明顯下降了。可能是因為有其他捕食性昆蟲的威懾,蚊子們不得不放棄了這種高營養食品,而這或許可以成為一種新型的天然防蚊手段。

過去泌液作用被認為只是植物用來排水的手段,但這個研究告訴我們,泌液作用的功能可遠不只如此。植物也可透過泌液來吸引不同種類的昆蟲,協助保持自己的健康。當然不同植物所產生的泌液成分都不同,未必都有藍莓這種吸引捕食性昆蟲的特性。但這個研究卻開啟了泌液作用的研究新方向,讓其他研究者能去開拓更多可能。

-----廣告,請繼續往下閱讀-----

泌液作用在農作物中相當普遍,因此未來或許可以透過人工調控的方式,讓農作物生產的泌液達到更有效的驅蟲功能。另外藍莓泌液本身就有營養成分,或許我們也可以將泌液調整成含有更高營養的成分,這樣在採藍莓的同時也能順便收集這些高營養液。到時候,在享用藍莓的同時,也能順便來一杯藍莓營養液 ~

藍莓的泌液除了有高營養成分還有驅蟲效果,圖/Pexels

參考資料

  1. Urbaneja-Bernat P, Tena A, González-Cabrera J, Rodriguez-Saona C. Plant guttation provides nutrient-rich food for insects. Proc Biol Sci. 2020 Sep 30;287(1935):20201080.
文章難易度
羅夏_96
52 篇文章 ・ 822 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

5
2

文字

分享

0
5
2
【貓奴指南】把「貓界大麻」貓薄荷抹在身上,除了方便吸貓/給貓吸還有什麼作用?
PanSci_96
・2024/02/20 ・512字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

為什麼貓這麼喜歡貓薄荷呢?

原來是貓薄荷裡的荊芥內脂導致貓咪吸了貓心大悅,不住翻滾、流口水、打呼嚕。

但是,貓薄荷不是對所有貓都有用。不到六個月的小貓似乎不會有反應,而且有的貓喜歡,有的貓不喜歡……咦,這還和遺傳有關係嗎?

想要同時驅蚊,又讓貓貓情不自禁饞你身子嗎?那你一定要試試貓薄荷!

-----廣告,請繼續往下閱讀-----

荊芥內脂不只會讓貓咪快樂似神仙,也會活化蚊子體內的受體蛋白,接觸到的蚊子會產生搔癢和刺痛感。哈哈小蚊子,你也來嘗嘗癢癢痛痛的痛苦!

給你的貓貓來點刺激的快樂草吧!

延伸閱讀

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2202 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

1
1

文字

分享

1
1
1
植物身上的脂質增加會讓它變胖嗎?不會!反而會促進開花?——專訪中研院植微所前研究員中村友輝
研之有物│中央研究院_96
・2023/10/02 ・6057字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|歐宇甜
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

植物脂是什麼?它會怎麼影響植物?

如果提到植物脂質,一般人可能會想到果實或種子裡儲存的油脂,可以加工成大豆油、花生油、芝麻油等油品。不過,近年有越來越多證據顯示,脂質還會影響植物的生長和發育,例如開花的機制。中央研究院「研之有物」專訪過去院內唯一一位由發育生物學觀點研究植物脂質的學者,他是植物暨微生物學研究所的前研究員中村友輝,我們邀請他分享植物脂質研究與他的研究歷程。

中研院植微所的前研究員中村友輝。圖/研之有物

過去科學家對植物的脂質研究主要分兩個,一個是研究植物經光合作用轉化的脂質,這是植物可以拿來利用的養分;另一個是研究種子裡的脂質,例如透過品種改良或基因改造,提高種子的產油效率。中村友輝的團隊研究微觀的機制,他們探討脂質如何與其他訊號傳遞因子作用,協調植物的生長發育過程。

中村友輝是中研院植微所的前研究員,他深耕脂質研究已有 21 年,在中研院時期(2011~2022),他一手建立起脂質研究團隊,該團隊的重大研究成果之一就是:發現植物脂質跟調控開花有因果關係

中村友輝團隊發現植物脂質跟調控開花有因果關係,圖中植物為阿拉伯芥。圖/研之有物

要找出因果關係並不容易,研究團隊從植物脂質出發,先瞭解植物體內各種不同的脂質,再進一步探索脂質在植物體內如何製造與代謝。製造過程中,不同的酵素與步驟都會影響脂質的含量與結構,甚至同一種脂質,也都可能產生不同結構。

-----廣告,請繼續往下閱讀-----

在瞭解脂質如何製造與代謝之後,接下來就是深入脂質的實際功能。「脂質如何影響植物?」要回答這個問題,必須人為控制脂質的代謝,確認變因。

中村友輝團隊開發出「代謝切換系統」,這套系統可以短暫改變脂質的代謝速率或途徑,讓研究人員改變特定位置的脂質含量和種類,觀察不同脂質對植物的影響。

從人體機制找到調控植物開花的秘密

一般開花植物會根據季節變化、日照長短決定開花時機,而科學家發現植物裡有一種 FT 蛋白質(Flowering Locus T),能誘導植物開花,是一種開花素(Florigen)。

長日照植物在足夠的日照長度下,葉子裡的 FT 基因轉錄會活化並合成 FT 蛋白質,再運輸到頂芽,使葉芽轉變成花芽並開花,不過許多調控機制方面的細節仍然是謎。

中村友輝團隊發現,植物裡有一種磷脂質(磷脂醯膽鹼,Phosphatidylcholine,簡稱 PC),會隨日照變化改變,並與開花素產生交互作用、促進開花。脂質角色的加入,是當時其他學者尚未關注到的領域。

-----廣告,請繼續往下閱讀-----

為什麼團隊會把 FT 蛋白質跟植物脂質連結起來呢?

中村友輝表示,「我們注意到植物的 FT 蛋白質 3D 結構,跟人體中與脂質結合的蛋白質很像,這個蛋白質是磷脂醯乙醇胺(Phosphatidylethanolamine-binding protein,簡稱 PEBP 蛋白質)。雖然 FT 位在植物、PEBP 位在人體,但兩者構造相當相似。我們心想,既然人體的 PEBP 蛋白質可以跟磷脂質結合,植物的 FT 蛋白質是不是也能跟 PC 結合呢?PC 會不會跟調控開花有關? 」

電腦模擬 FT 蛋白質和 PC 磷脂質結合的「開花素活化複合體」3D 結構。資料來源/iScience

脂質真的會影響開花嗎?用代謝切換工程實驗看看!

為了證實這個推測,研究團隊開始進行各種實驗,透過代謝切換工程去調控植物體內的 PC 磷脂質含量,觀察當 PC 變多或變少時,會如何影響 FT 蛋白質的功能,以及開花速度會變快或變慢。

具體應該怎麼做呢?首先要有關鍵酵素「PECT」,只要抑制 PECT 的合成,就會連帶減少 PC 的合成量,進而觀察對 FT 蛋白質的影響。目前是以人工方式製作一段 amiRNA(Artificial microRNA,人工微型核酸),送進植物體內後,它能跟 PECT 的 mRNA 互補並結合,導致 PECT 無法合成。

-----廣告,請繼續往下閱讀-----

另一個方法是使用人工合成的啟動子(promoter,簡稱 p),啟動子是一段能讓特定基因進行轉錄的核酸片段。不同啟動子的功能不太一樣,例如啟動子 pFD,只有在頂芽裡才會驅動 FT 蛋白質合成;還有啟動子 pSUC2(Sucrose Transport 2),只在葉子維管束伴細胞(Vascular companion cells)裡才會驅動 FT 蛋白質合成,它專門跟一種藥物結合,實驗時可以透過藥物來控制。

團隊透過上述這些方法來控制 FT 蛋白質只在特定器官產生,再調控 PC 磷脂質含量增加或減少,藉此觀察脂質對開花的影響。

結果發現,如果在頂芽處讓 PC 磷脂質增加的話,的確可以促使開花。

此外,還發現 PC 構造會隨日夜變化,白天時,PC 磷脂質主要是飽和脂肪酸,容易和 FT 蛋白質結合,促進開花;晚上時,PC 磷脂質主要是不飽和脂肪酸,難與 FT 蛋白質結合,不促進開花,開花時間延遲。

-----廣告,請繼續往下閱讀-----
在植物的頂芽處,PC 磷脂質含量會影響開花,但是日夜情況不同。圖中的飽和脂肪酸是長碳鏈,不含紅色雙鍵。紅色雙鍵越多,表示不飽和脂肪酸程度越高。圖/研之有物(資料來源/中村友輝)

至於團隊有實際拍到 FT 蛋白質和磷脂質結合的模樣嗎?中村友輝說:「我們目前是用電腦模擬的方式,將 FT 蛋白質和磷脂質兩個分子的 3D 模型放在一起比對、計算,得知兩者最可能的結合方式。之前有嘗試用冷凍式電子顯微鏡(Cryo-electron microscopy)拍攝,但可能是 FT 蛋白質本身太小,沒有成功 ,希望未來有機會。」

這篇論文於 2014 年刊登於「自然通訊」(Nature Communications)期刊,之後陸續有些科學家也在研究脂質對開花的影響,有的發現在維管束的脂質也會影響 FT 蛋白質傳送,有的發現水稻的開花素運作模式,跟本次實驗所用的模式植物阿拉伯芥類似。

不過,全世界的植物種類非常多,不同植物的生長、開花特性可能不同,像短日照、長日照植物所需日照時間不同,有些植物如曇花是晚上開花,有些植物是先開花才長葉,其他類型的開花機制仍待更多研究來解開。

中村友輝團隊研究磷脂質如何影響植物開花的機制,採用模式生物阿拉伯芥作為研究對象。圖/研之有物

用藻類酵素刺激產油

如果科學家能掌握並任意開關植物的代謝路徑,以後就能隨心所欲讓植物生長或開花並應用在農業上嗎?中村友輝指出,「一旦瞭解代謝途徑,到真的應用層面上,的確不是遙不可及。我們之前有一個研究,就是透過掌握酵母菌的代謝途徑,讓這些小生物生產大量油脂。」

其實,科學家最早在研究代謝工程時就是以藻類、酵母菌和細菌等單細胞生物為主,每個細胞是一個完整生物體,而多細胞生物是一個個體有很多不同功能的細胞,相較之下,單細胞生物的代謝過程比多細胞生物單純許多。科學家研究酵母菌多年,幾乎瞭解脂質代謝路徑、參與調控的酵素,比較容易進行代謝工程。近年因為地球暖化問題,科學家研究如何以生質能源來替代石油,想透過酵母菌大量生產生質柴油,可惜遲遲找不到突破方法。中村友輝的團隊找到一個創新構想:將一種藻類酵素導入酵母菌,能讓產油量大幅增加。「不過,這個酵素被發現是一個意外。」中村友輝笑道。一開始中村友輝團隊是在分析藻類某種關鍵酵素 DGAT ,它是合成、儲存油脂的關鍵酵素,可以催化三酸甘油脂產生,有一群功能類似但構造不同的同分異構物,就像一個酵素家族。團隊將這些酵素的基因一個個抓出來,把它們導入酵母菌,想分析哪個酵素能讓酵母菌產油最多。最後研究團隊發現 DGAT2 能讓酵母菌產油量提升到野生酵母菌的 10 倍!其實,酵母菌裡也有同樣功能的酵素,但代謝效率、產油能力都沒有這個酵素 DGAT2 來得好,沒想到他們將酵母菌原本的酵素拿掉,運用外來的藻類酵素刺激,能讓酵母菌產油量突破以往極限。

-----廣告,請繼續往下閱讀-----

酵母菌的脂質代謝路徑,上方路徑形成儲存性脂質(橘色),也就是 TAG(三酸甘油酯);下方路徑形成膜脂質(綠色)。如果要生產生質柴油,必須盡量讓酵母菌往儲存性脂質的路徑走。中村友輝團隊將酵母菌原本的酵素替換成含有 DGATs 基因的藻類酵素,發現產油量大幅增加。圖/研之有物(資料來源/Frontiers in Microbiology

中村友輝說道,「有些做代謝工程的方式是改寫整個代謝路徑,我們只是促進或抑制某個路徑,改動範圍沒有這麼大。這篇論文是少數做到應用層面的研究,但我們只有養少量的酵母菌,真正要做到工業級生產,需要其他專門的人。我們仍是以基礎研究為主,聚焦在發現基礎代謝途徑,找出各種未知代謝途徑或未知代謝物。畢竟要先瞭解基本的,才可能有後續應用。」

原來,植物脂質沒有大家想得那樣簡單,只是當作儲存能量而已,更對植物的生長與發育影響重大。中村友輝希望未來繼續探討這個似乎無窮無盡的植物脂質領域,找出更多嶄新的發現。


除了研究內容之外,喜愛植物和旅遊的科學家中村友輝,當初如何踏上科研之路?為何如此熱愛植物脂質領域?來臺灣工作多年又有什麼觀察與發現呢?

問 您從小就喜歡植物嗎?當初如何走上學術研究的道路?

答 我小時候常常在戶外玩,喜歡花草,甚至會跑去河邊採水草,放在家裡水族缸養。在校學習時,我其實都是文科比較好,理科不是很好,應該沒有人想到我會走上科研的道路。但是,我發現自己對「分子生物學」很有興趣,DNA 這麼簡單的雙股螺旋結構,為何會產生蛋白質、形成生物體?我為此深深著迷。

-----廣告,請繼續往下閱讀-----

前幾年我去一場會議演講,詹姆斯·華生(James Watson,DNA 雙股結構發現者)就坐在前面第一排,沒想到我竟然能跟這位崇敬的科學家一起分享自己的實驗,那是個非常值得紀念的日子!

問 您曾去過許多地方旅行,有沒有留下什麼印象深刻的事?

答 我對其他國家的文化感到好奇,也喜歡親身體驗,從當地人觀點融入生活。我曾去到阿富汗和巴基斯坦,那裡戰亂較多,有一點危險,某次經過巴基斯坦和阿富汗交界的公路時,我還付錢請了兩個保鑣隨行。我去到那裡一些很貧困的地方,曾問當地人:「對你來講,活著的目的與意義是什麼?」沒想到那個人只是簡單回說:「我只想要活著就好,我活著的目的就是不要死!」這個回答讓我相當震撼,原來世界上有人是這樣活著。

問 您當初為何選擇植物脂質領域的研究,是否有什麼契機?

答 當年我在日本東京工業大學讀書,通常日本大學在畢業前要完成一個論文,大四有一年時間做研究。我喜歡植物,不喜歡動物或醫學,就選擇進入一間植物實驗室。剛開始我並不是選擇脂質作為主題,不過那時學界已開始發現到,脂質可能影響光合作用,因為脂質是構成葉綠體雙層膜的主要成分,我就因緣際會下踏入植物脂質領域,到現在已經 21 年。

問 您後來如何發現脂質對植物的生長與發育有重要影響?

答 科學家已經知道葉子、種子含有脂質,但大家並不清楚花朵裡的脂質是什麼樣子。那時教授給了我一個題目,就是去瞭解花裡面的脂質成分,這個題目還沒有人做過,我便接下這個挑戰。一開始我是辨識花裡含有哪些脂質,拿來跟種子、葉子的脂質成分做比對。

-----廣告,請繼續往下閱讀-----

花朵分成不同的器官像花瓣、雄蕊、雌蕊、花柱和花萼等,我驚訝的發現,花裡的脂質不但跟葉子、種子的脂質成分不一樣,而且在花朵的不同器官中,脂質成分竟然也不同。這讓我感到很有趣也很納悶:為什麼會有這麼大的差別?成為我開始深入探討脂質對開花影響的契機。

問 您是在什麼樣的契機來到臺灣工作呢?

答 我是從 2011 年進入中研院。在大學當背包客的旅程中,我發現亞洲的科學發展蠻有潛力,便開始學習中文。博士班畢業後,我決定先去新加坡讀博士後研究,當時新加坡的實驗室成員都是華人,包括中國、臺灣和新加坡等。後來剛好中研院植微所在徵人,於是我就來到臺灣。我覺得臺灣最好的部分是人,臺灣人真的非常好!我對這裡的生活很適應,臺灣的小吃、水果都很好吃,我特別喜歡芒果!

問 這些年您對臺灣的學術環境有什麼樣的觀察或心得嗎?

答 在臺灣,可以找到很多願意學習的人一起參與研究。很感謝中研院給我這個機會加入,發展我的研究旅程。我 31 歲就擔任實驗室主持人,我對中研院的回報就是盡量把研究成果一個個發表出來,希望讓中研院知名度提高。臺灣政府很願意支持基礎科學研究,雖然不能馬上看到成果,但對於後幾年的應用來講是最重要的,很希望未來臺灣政府能持續支持基礎研究,吸引更多國外學者來臺灣,將整個基礎研究能量做大。

問 您目前的研究方向有哪些?

答 第一個就是延續脂質調控開花的研究,因為還是有很多東西不瞭解。第二個是持續發現新的代謝途徑。植物的脂質代謝途徑很多、很複雜,大家所見的路徑圖表只是簡單示意,實際上不是真的這麼簡單,還有很多東西沒有被發現。最後是研究脂質跟莖的生長、大小的關係,跟脂質能調控開花的概念有點類似。總結來說,我的研究主軸是希望繼續瞭解脂質是怎樣影響植物的發育和各種生理現象。

中研院植微所的前研究員中村友輝與當時的研究團隊合影。圖/研之有物

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3425 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

6
0

文字

分享

0
6
0
草莓是果實還是種子?又或者……以上皆非?——「112年會考自然科考題」
椀濘_96
・2023/09/22 ・858字 ・閱讀時間約 1 分鐘

112 會考甫結束,自然考科中有題非常令人印象深刻……。

自然科第 35 題。圖/國立臺灣師範大學心理與教育測驗研究發展中心

原來我們吃的草莓不是以為的「果實」,那個紅紅的果肉是其實是草莓的花托,而上面黑色的點點也不是「種子」,而是果實本人!至於真正的種子呢?當然是在那些黑黑的果實裡啦~

這似乎顛覆我們的印象,以為日常生活中所吃的水果果肉就是植物的果實,究竟這當中又藏著什麼奧秘呢?若想進一步完整理解草莓,就得從果實的構造及分類說起。

果實為被子植物的生殖器官之一,當雌蕊中的胚珠完成受精作用後,子房便逐漸發育為果實,胚珠則發育成種子。有些植物的花托、苞片、花萼等構造會與子房外壁癒合,並隨之生長而膨大,成為果實的一部分;例如這次的主角——草莓。

-----廣告,請繼續往下閱讀-----

接著我們談談果實的分類。可依據發育、構造、型態的不同,分為:橘子的「柑果」、水蜜桃為「核果」、杏仁屬於「堅果」等等,至於草莓則被歸類在「瘦果」及「聚合果」。

花的解剖構造。圖/維基百科

現在我們要先將草莓紅紅的果肉剔除,只剩下單獨一粒粒黑黑小小的果實。「瘦果」(achene)顧名思義,型態硬而細小,其內僅有一粒種子,除了草莓外,常見的如愛玉子、向日葵的瓜子。

屬於「聚合果」(又稱「聚心皮果」,為複合果實的一種)的植物則是一朵花中有多個(兩個以上)離生的雌蕊,花的萼片(花萼)、花托一同參與了果實的發育,最終膨大癒合形成肉質果肉;另外,其果實被分類在聚合果的植物,常見的有釋迦、覆盆莓。

其實除了草莓還有許多我們意想不到,所吃的水果果肉並非單單只有果實本人,例如鳳梨、桑葚、香蕉、無花果……等等;它們也都和草莓一樣,由於果實發育的方式,所造就了如此特別、豐富型態,等著我們一一去認識!

-----廣告,請繼續往下閱讀-----
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)