Loading [MathJax]/extensions/tex2jax.js

1

1
1

文字

分享

1
1
1

植物身上的脂質增加會讓它變胖嗎?不會!反而會促進開花?——專訪中研院植微所前研究員中村友輝

研之有物│中央研究院_96
・2023/10/02 ・6057字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|歐宇甜
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

植物脂是什麼?它會怎麼影響植物?

如果提到植物脂質,一般人可能會想到果實或種子裡儲存的油脂,可以加工成大豆油、花生油、芝麻油等油品。不過,近年有越來越多證據顯示,脂質還會影響植物的生長和發育,例如開花的機制。中央研究院「研之有物」專訪過去院內唯一一位由發育生物學觀點研究植物脂質的學者,他是植物暨微生物學研究所的前研究員中村友輝,我們邀請他分享植物脂質研究與他的研究歷程。

中研院植微所的前研究員中村友輝。圖/研之有物

過去科學家對植物的脂質研究主要分兩個,一個是研究植物經光合作用轉化的脂質,這是植物可以拿來利用的養分;另一個是研究種子裡的脂質,例如透過品種改良或基因改造,提高種子的產油效率。中村友輝的團隊研究微觀的機制,他們探討脂質如何與其他訊號傳遞因子作用,協調植物的生長發育過程。

中村友輝是中研院植微所的前研究員,他深耕脂質研究已有 21 年,在中研院時期(2011~2022),他一手建立起脂質研究團隊,該團隊的重大研究成果之一就是:發現植物脂質跟調控開花有因果關係

中村友輝團隊發現植物脂質跟調控開花有因果關係,圖中植物為阿拉伯芥。圖/研之有物

要找出因果關係並不容易,研究團隊從植物脂質出發,先瞭解植物體內各種不同的脂質,再進一步探索脂質在植物體內如何製造與代謝。製造過程中,不同的酵素與步驟都會影響脂質的含量與結構,甚至同一種脂質,也都可能產生不同結構。

-----廣告,請繼續往下閱讀-----

在瞭解脂質如何製造與代謝之後,接下來就是深入脂質的實際功能。「脂質如何影響植物?」要回答這個問題,必須人為控制脂質的代謝,確認變因。

中村友輝團隊開發出「代謝切換系統」,這套系統可以短暫改變脂質的代謝速率或途徑,讓研究人員改變特定位置的脂質含量和種類,觀察不同脂質對植物的影響。

從人體機制找到調控植物開花的秘密

一般開花植物會根據季節變化、日照長短決定開花時機,而科學家發現植物裡有一種 FT 蛋白質(Flowering Locus T),能誘導植物開花,是一種開花素(Florigen)。

長日照植物在足夠的日照長度下,葉子裡的 FT 基因轉錄會活化並合成 FT 蛋白質,再運輸到頂芽,使葉芽轉變成花芽並開花,不過許多調控機制方面的細節仍然是謎。

中村友輝團隊發現,植物裡有一種磷脂質(磷脂醯膽鹼,Phosphatidylcholine,簡稱 PC),會隨日照變化改變,並與開花素產生交互作用、促進開花。脂質角色的加入,是當時其他學者尚未關注到的領域。

-----廣告,請繼續往下閱讀-----

為什麼團隊會把 FT 蛋白質跟植物脂質連結起來呢?

中村友輝表示,「我們注意到植物的 FT 蛋白質 3D 結構,跟人體中與脂質結合的蛋白質很像,這個蛋白質是磷脂醯乙醇胺(Phosphatidylethanolamine-binding protein,簡稱 PEBP 蛋白質)。雖然 FT 位在植物、PEBP 位在人體,但兩者構造相當相似。我們心想,既然人體的 PEBP 蛋白質可以跟磷脂質結合,植物的 FT 蛋白質是不是也能跟 PC 結合呢?PC 會不會跟調控開花有關? 」

電腦模擬 FT 蛋白質和 PC 磷脂質結合的「開花素活化複合體」3D 結構。資料來源/iScience

脂質真的會影響開花嗎?用代謝切換工程實驗看看!

為了證實這個推測,研究團隊開始進行各種實驗,透過代謝切換工程去調控植物體內的 PC 磷脂質含量,觀察當 PC 變多或變少時,會如何影響 FT 蛋白質的功能,以及開花速度會變快或變慢。

具體應該怎麼做呢?首先要有關鍵酵素「PECT」,只要抑制 PECT 的合成,就會連帶減少 PC 的合成量,進而觀察對 FT 蛋白質的影響。目前是以人工方式製作一段 amiRNA(Artificial microRNA,人工微型核酸),送進植物體內後,它能跟 PECT 的 mRNA 互補並結合,導致 PECT 無法合成。

-----廣告,請繼續往下閱讀-----

另一個方法是使用人工合成的啟動子(promoter,簡稱 p),啟動子是一段能讓特定基因進行轉錄的核酸片段。不同啟動子的功能不太一樣,例如啟動子 pFD,只有在頂芽裡才會驅動 FT 蛋白質合成;還有啟動子 pSUC2(Sucrose Transport 2),只在葉子維管束伴細胞(Vascular companion cells)裡才會驅動 FT 蛋白質合成,它專門跟一種藥物結合,實驗時可以透過藥物來控制。

團隊透過上述這些方法來控制 FT 蛋白質只在特定器官產生,再調控 PC 磷脂質含量增加或減少,藉此觀察脂質對開花的影響。

結果發現,如果在頂芽處讓 PC 磷脂質增加的話,的確可以促使開花。

此外,還發現 PC 構造會隨日夜變化,白天時,PC 磷脂質主要是飽和脂肪酸,容易和 FT 蛋白質結合,促進開花;晚上時,PC 磷脂質主要是不飽和脂肪酸,難與 FT 蛋白質結合,不促進開花,開花時間延遲。

-----廣告,請繼續往下閱讀-----
在植物的頂芽處,PC 磷脂質含量會影響開花,但是日夜情況不同。圖中的飽和脂肪酸是長碳鏈,不含紅色雙鍵。紅色雙鍵越多,表示不飽和脂肪酸程度越高。圖/研之有物(資料來源/中村友輝)

至於團隊有實際拍到 FT 蛋白質和磷脂質結合的模樣嗎?中村友輝說:「我們目前是用電腦模擬的方式,將 FT 蛋白質和磷脂質兩個分子的 3D 模型放在一起比對、計算,得知兩者最可能的結合方式。之前有嘗試用冷凍式電子顯微鏡(Cryo-electron microscopy)拍攝,但可能是 FT 蛋白質本身太小,沒有成功 ,希望未來有機會。」

這篇論文於 2014 年刊登於「自然通訊」(Nature Communications)期刊,之後陸續有些科學家也在研究脂質對開花的影響,有的發現在維管束的脂質也會影響 FT 蛋白質傳送,有的發現水稻的開花素運作模式,跟本次實驗所用的模式植物阿拉伯芥類似。

不過,全世界的植物種類非常多,不同植物的生長、開花特性可能不同,像短日照、長日照植物所需日照時間不同,有些植物如曇花是晚上開花,有些植物是先開花才長葉,其他類型的開花機制仍待更多研究來解開。

中村友輝團隊研究磷脂質如何影響植物開花的機制,採用模式生物阿拉伯芥作為研究對象。圖/研之有物

用藻類酵素刺激產油

如果科學家能掌握並任意開關植物的代謝路徑,以後就能隨心所欲讓植物生長或開花並應用在農業上嗎?中村友輝指出,「一旦瞭解代謝途徑,到真的應用層面上,的確不是遙不可及。我們之前有一個研究,就是透過掌握酵母菌的代謝途徑,讓這些小生物生產大量油脂。」

其實,科學家最早在研究代謝工程時就是以藻類、酵母菌和細菌等單細胞生物為主,每個細胞是一個完整生物體,而多細胞生物是一個個體有很多不同功能的細胞,相較之下,單細胞生物的代謝過程比多細胞生物單純許多。科學家研究酵母菌多年,幾乎瞭解脂質代謝路徑、參與調控的酵素,比較容易進行代謝工程。近年因為地球暖化問題,科學家研究如何以生質能源來替代石油,想透過酵母菌大量生產生質柴油,可惜遲遲找不到突破方法。中村友輝的團隊找到一個創新構想:將一種藻類酵素導入酵母菌,能讓產油量大幅增加。「不過,這個酵素被發現是一個意外。」中村友輝笑道。一開始中村友輝團隊是在分析藻類某種關鍵酵素 DGAT ,它是合成、儲存油脂的關鍵酵素,可以催化三酸甘油脂產生,有一群功能類似但構造不同的同分異構物,就像一個酵素家族。團隊將這些酵素的基因一個個抓出來,把它們導入酵母菌,想分析哪個酵素能讓酵母菌產油最多。最後研究團隊發現 DGAT2 能讓酵母菌產油量提升到野生酵母菌的 10 倍!其實,酵母菌裡也有同樣功能的酵素,但代謝效率、產油能力都沒有這個酵素 DGAT2 來得好,沒想到他們將酵母菌原本的酵素拿掉,運用外來的藻類酵素刺激,能讓酵母菌產油量突破以往極限。

-----廣告,請繼續往下閱讀-----

酵母菌的脂質代謝路徑,上方路徑形成儲存性脂質(橘色),也就是 TAG(三酸甘油酯);下方路徑形成膜脂質(綠色)。如果要生產生質柴油,必須盡量讓酵母菌往儲存性脂質的路徑走。中村友輝團隊將酵母菌原本的酵素替換成含有 DGATs 基因的藻類酵素,發現產油量大幅增加。圖/研之有物(資料來源/Frontiers in Microbiology

中村友輝說道,「有些做代謝工程的方式是改寫整個代謝路徑,我們只是促進或抑制某個路徑,改動範圍沒有這麼大。這篇論文是少數做到應用層面的研究,但我們只有養少量的酵母菌,真正要做到工業級生產,需要其他專門的人。我們仍是以基礎研究為主,聚焦在發現基礎代謝途徑,找出各種未知代謝途徑或未知代謝物。畢竟要先瞭解基本的,才可能有後續應用。」

原來,植物脂質沒有大家想得那樣簡單,只是當作儲存能量而已,更對植物的生長與發育影響重大。中村友輝希望未來繼續探討這個似乎無窮無盡的植物脂質領域,找出更多嶄新的發現。


除了研究內容之外,喜愛植物和旅遊的科學家中村友輝,當初如何踏上科研之路?為何如此熱愛植物脂質領域?來臺灣工作多年又有什麼觀察與發現呢?

問 您從小就喜歡植物嗎?當初如何走上學術研究的道路?

答 我小時候常常在戶外玩,喜歡花草,甚至會跑去河邊採水草,放在家裡水族缸養。在校學習時,我其實都是文科比較好,理科不是很好,應該沒有人想到我會走上科研的道路。但是,我發現自己對「分子生物學」很有興趣,DNA 這麼簡單的雙股螺旋結構,為何會產生蛋白質、形成生物體?我為此深深著迷。

-----廣告,請繼續往下閱讀-----

前幾年我去一場會議演講,詹姆斯·華生(James Watson,DNA 雙股結構發現者)就坐在前面第一排,沒想到我竟然能跟這位崇敬的科學家一起分享自己的實驗,那是個非常值得紀念的日子!

問 您曾去過許多地方旅行,有沒有留下什麼印象深刻的事?

答 我對其他國家的文化感到好奇,也喜歡親身體驗,從當地人觀點融入生活。我曾去到阿富汗和巴基斯坦,那裡戰亂較多,有一點危險,某次經過巴基斯坦和阿富汗交界的公路時,我還付錢請了兩個保鑣隨行。我去到那裡一些很貧困的地方,曾問當地人:「對你來講,活著的目的與意義是什麼?」沒想到那個人只是簡單回說:「我只想要活著就好,我活著的目的就是不要死!」這個回答讓我相當震撼,原來世界上有人是這樣活著。

問 您當初為何選擇植物脂質領域的研究,是否有什麼契機?

答 當年我在日本東京工業大學讀書,通常日本大學在畢業前要完成一個論文,大四有一年時間做研究。我喜歡植物,不喜歡動物或醫學,就選擇進入一間植物實驗室。剛開始我並不是選擇脂質作為主題,不過那時學界已開始發現到,脂質可能影響光合作用,因為脂質是構成葉綠體雙層膜的主要成分,我就因緣際會下踏入植物脂質領域,到現在已經 21 年。

問 您後來如何發現脂質對植物的生長與發育有重要影響?

答 科學家已經知道葉子、種子含有脂質,但大家並不清楚花朵裡的脂質是什麼樣子。那時教授給了我一個題目,就是去瞭解花裡面的脂質成分,這個題目還沒有人做過,我便接下這個挑戰。一開始我是辨識花裡含有哪些脂質,拿來跟種子、葉子的脂質成分做比對。

-----廣告,請繼續往下閱讀-----

花朵分成不同的器官像花瓣、雄蕊、雌蕊、花柱和花萼等,我驚訝的發現,花裡的脂質不但跟葉子、種子的脂質成分不一樣,而且在花朵的不同器官中,脂質成分竟然也不同。這讓我感到很有趣也很納悶:為什麼會有這麼大的差別?成為我開始深入探討脂質對開花影響的契機。

問 您是在什麼樣的契機來到臺灣工作呢?

答 我是從 2011 年進入中研院。在大學當背包客的旅程中,我發現亞洲的科學發展蠻有潛力,便開始學習中文。博士班畢業後,我決定先去新加坡讀博士後研究,當時新加坡的實驗室成員都是華人,包括中國、臺灣和新加坡等。後來剛好中研院植微所在徵人,於是我就來到臺灣。我覺得臺灣最好的部分是人,臺灣人真的非常好!我對這裡的生活很適應,臺灣的小吃、水果都很好吃,我特別喜歡芒果!

問 這些年您對臺灣的學術環境有什麼樣的觀察或心得嗎?

答 在臺灣,可以找到很多願意學習的人一起參與研究。很感謝中研院給我這個機會加入,發展我的研究旅程。我 31 歲就擔任實驗室主持人,我對中研院的回報就是盡量把研究成果一個個發表出來,希望讓中研院知名度提高。臺灣政府很願意支持基礎科學研究,雖然不能馬上看到成果,但對於後幾年的應用來講是最重要的,很希望未來臺灣政府能持續支持基礎研究,吸引更多國外學者來臺灣,將整個基礎研究能量做大。

問 您目前的研究方向有哪些?

答 第一個就是延續脂質調控開花的研究,因為還是有很多東西不瞭解。第二個是持續發現新的代謝途徑。植物的脂質代謝途徑很多、很複雜,大家所見的路徑圖表只是簡單示意,實際上不是真的這麼簡單,還有很多東西沒有被發現。最後是研究脂質跟莖的生長、大小的關係,跟脂質能調控開花的概念有點類似。總結來說,我的研究主軸是希望繼續瞭解脂質是怎樣影響植物的發育和各種生理現象。

中研院植微所的前研究員中村友輝與當時的研究團隊合影。圖/研之有物

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3674 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

1
0

文字

分享

2
1
0
越南兩千年古早味咖哩?香料的食慾流動
寒波_96
・2023/09/06 ・3133字 ・閱讀時間約 6 分鐘

大多數台灣人對東南亞、南亞風格的香料不陌生,甚至有些常見的香料,不特別查詢還不知道起源於東南亞。

一項 2023 年問世的研究,調查將近兩千年前,越南南部的遺址,見到多款香料植物的蹤跡。證實那個時候已經有多款香料,從南亞或東南亞外海的島嶼,傳播到東南亞大陸。

很多香料,搭配是魔法。圖/參考資料3

越南兩千年古早味咖哩?

讀者們對咖哩(curry)想必都很熟悉,不過還是要先解釋一下。現今咖哩的定義範疇很廣,南亞、東南亞等地存在風味各異的香料混合料理,都能算是「咖哩」。此一名詞的讀音轉化自印度南部的泰米爾語,源自大英帝國對南亞的殖民,不過混合使用香料的料理,歷史當然更加悠久。

由澳洲國立大學的洪曉純率領的考古調查,地點位於越南南部的喔㕭(Oc Eo)遺址。這兒在公元一到七世紀,是「扶南國」的重要城市。這個政權以湄公河三角洲為中心,統治東南亞大陸的南部;柬埔寨的吳哥波雷(Angkor Borei)與喔㕭,為扶南國最重要的兩處遺址。

-----廣告,請繼續往下閱讀-----
東南亞大陸南部的喔㕭,與延伸的地理格局。圖/參考資料1

喔㕭地處湄公河三角洲的西南部,離海 25 公里。這兒一到八世紀有過不少人活動,四到六世紀最興盛。遺址中出土的 12 件工具,外型看來相當類似年代更早,南亞用於處理食物的工具。

進一步分析發現,工具上總共保存著 717 個澱粉顆粒,大部分年代可能介於距今 1600 到 1900 年左右的數百年間。不同植物產生的澱粉形狀有別,有時候可以用於識別物種,近年常用於考古學。

喔㕭遺址出土的研磨工具。圖/參考資料1

這批澱粉中有 604 個可以分辨物種,作為糧食的稻以外,還有八種常用於香料的植物,以薑科植物(Zingiberaceae)的存在感最高,包括五種:薑黃、薑、高良薑、凹唇薑、山奈;還有今日依然常見的丁香、肉豆蔻、肉桂。

解讀這些材料時必需注意,出土工具上能見到的澱粉,只是當年的一小部分,不能直接代表古代使用的比例,只能證明確實有過那些種類。

-----廣告,請繼續往下閱讀-----
越南南部,曾經相當繁榮的喔㕭遺址遠眺。圖/參考資料1

來自亞洲大陸:薑黃、薑、高良薑、凹唇姜、山奈

喔㕭遺址中出土數目最多的是薑黃(turmeric,學名 Curcuma longa)。薑黃的家鄉應該在南亞,早於四千年前的哈拉帕遺址中已經存在;後來薑黃向各地傳播,遠渡至地中海地區。這項發現則是東南亞大陸最早的紀錄。

台灣人大概對薑(ginger,學名 Zingiber officinale)更熟悉,薑可能起源於東亞與南亞,一路向西傳到歐洲。台灣飲食習慣中,薑不只是特定用途的香料,從海鮮湯中的薑絲,到餃子肉餡的蔥薑水與薑末,可謂無所不在的添加物(對!薑默默躲在很多食物中)。

另外三種比較少見的薑科植物,如今東南亞都有種植,包括高良薑(galangal,學名 Alpinia galanga)、凹唇姜(fingerroot,學名 Boesenbergia rotunda)、山奈(sand ginger,學名 Kaempferia galanga,也叫沙薑)。

香料考古的世界觀。圖/參考資料1

來自亞洲海島:丁香、肉豆蔻、肉桂

三種不屬於薑科的香料,如今台灣也都不陌生。肉豆蔻(nutmeg,學名 Myristica fragrans)原產於摩鹿加群島南部的班達群島。摩鹿加群島就是大航海時代歐洲人稱呼的「香料群島」,雖然算是東南亞外海的島嶼,不過靠近新幾內亞,和東南亞大陸有相當距離。

-----廣告,請繼續往下閱讀-----

丁香(clove,學名 Syzygium aromaticum)也原產於摩鹿加群島,早在公元前便已經傳播到歐亞大陸。越南南部的丁香應該是進口產品,不過無法判斷原本種在哪兒,是摩鹿加群島或更西邊的爪哇。

肉桂(cinnamon,學名 Cinnamomum sp.)可能源自好幾個物種,這回光靠澱粉無法準確判斷。不過從其餘植物遺骸看,喔㕭人使用的肉桂,大概是原產於斯里蘭卡,印度外海島嶼上的錫蘭肉桂(Ceylon cinnamon,學名 Cinnamomum verum)。

跨越空間,貫穿時間,香料的食慾流動

喔㕭出土的研磨器具上,除了澱粉還有另一種植物遺骸:植物矽酸體(phytolith),根據型態差異,也能用於植物的分門別類。棕梠、香蕉屬(Musa)植物的矽酸體,見證當時利用的植物種類相當多樣。

公元 1870 年,印度南部泰米爾的留影。 越南南部出土的工具,與她們使用的極為相似。圖/參考資料1

儘管缺乏直接證據,不過以常理推敲,東南亞大陸南部的喔㕭人,使用源於南亞的道具,研磨多款外地引進到當地種植,或是直接進口的香料植物,可能的一項目的,就是製作混合香料的咖哩料理。

-----廣告,請繼續往下閱讀-----

喔㕭遺址也保存許多稻米的碳化穀粒遺骸,稻米飯應該是當時菜單中的重要組成。我猜,當時的人會吃咖哩飯。

越南等地,香料搭配的魔法,顯然將近兩千年前已經存在惹。時至今日,和出土古物超過 87% 相似的研磨器具,依然有人使用。食慾流動的慾望,跨越空間,貫穿時間。

延伸閱讀

參考資料

  1. Wang, W., Nguyen, K. T. K., Zhao, C., & Hung, H. C. (2023). Earliest curry in Southeast Asia and the global spice trade 2000 years ago. Science Advances, 9(29), eadh5517.
  2. Researchers find evidence of a 2,000-year-old curry, the oldest ever found in Southeast Asia
  3. Curry may have landed in Southeast Asia 2000 years ago

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 2
寒波_96
193 篇文章 ・ 1097 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

14
0

文字

分享

1
14
0
法國兒歌竟然唱「我有超棒的菸草,你沒有…」?!——《植物遷徙的非凡冒險》
時報出版_96
・2023/09/03 ・1869字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

我有超棒的菸草,但你沒有!

法國兒歌〈我有超棒的菸草〉唱道:「我的菸盒裡有超棒的菸草。我有超棒的菸草,你沒有⋯⋯」超棒的!

我們讓天真的孩子知道抽菸能帶來愉悅感(雖然抽菸有害健康),以及要如何輕蔑地挖苦朋友(這菸超棒,但你沒有!)。

傳說這首兒歌的作者是作曲家暨詩人拉泰尼昂(Gabriel-Charles de Lattaignant, 1697–1779),這代表兩件事:當時菸草已經遍布法國,而且是最令人開心的作物之一。

發現菸草的尼古丁

菸草的學名是 Nicotiana tabacum,自十六世紀起引入法國。拉丁文屬名「Nicotiana」的取名緣由並不是因為菸草含有尼古丁(nicotine),正好相反,1828 年人類分離出尼古丁時,使用菸草的學名為這種惡名昭彰的物質命名。

-----廣告,請繼續往下閱讀-----
菸草的學名是 Nicotiana tabacum。圖/wikipedia

而「Nicotiana」又來自菸草的「發現者」尼柯(Jean Nicot, 1530–1600)。這裡的引號十分必要。

首先,早在歐洲人之前,美洲印第安人自古以來都有使用菸草的習俗。接著,尼柯不是在亞馬遜發現菸草的人,他甚至從來沒離開歐洲!

尼柯只是將菸草引進法國。最後,雖然他享有引入這種害草的光環,但他甚至不是第一個引入菸草的人。他真的不是!尼柯偷走了另一個人的貢獻,真正引入菸草的人是個更富有冒險精神的修士,名字叫做特維(André Thevet, 1516–1592)。

特維才是真正的菸草引入者

特維的貢獻經常遭人遺忘。如果惡名昭彰的尼古丁叫做「特維丁」,那我們可能就比較記得他(不過黃夾竹桃糖苷的法文的確是「特維丁」,得名自拉丁文學名為「Thevetia」 的黃花夾竹桃──命名緣由的確就是特維)。凱撒的該還給凱撒,那特維的也該還給特維。

-----廣告,請繼續往下閱讀-----

特維生於 1503 或 1504 年的法國西南小鎮安古蘭⋯⋯也 有可能是 1516 年(畢竟太久以前了,沒有人清楚)。他生於農家。

10 歲時,可憐的特維即便不樂意,仍然被送到修道院,之後成了修士。他曾短暫念過書,但沒念過植物學。很驚人嗎?他的這點缺陷瑕不掩瑜,畢竟他讀了不少名家鉅作,包括亞里士多德和托勒密等等。

德勒(Thomas de Leu)筆下的特維。圖/時報出版

此外,他尤其有著強烈的好奇心,十分渴望認識這廣大的世界。這並不意味著他想還俗,只是書籍和旅行都比修道院生活還來得有趣太多了。

如果你去了里約,別忘了帶點菸草回來

他從短程航行開始:義大利、巴勒斯坦、小亞細亞。特維回來時簡直興高采烈,而命運很快又帶給他另一個機會,得以參與一場宏大的冒險。

-----廣告,請繼續往下閱讀-----

國王亨利二世派出軍官暨冒險家維爾蓋尼翁(Nicolas Durand de Villegagnon, 1510–1571),希望在巴西建立法國殖民地。

於是我們天真無邪的僧侶特維啟程前往南美洲,但他不是為了參加里約熱內盧的嘉年華,也不是要去度假勝地科帕卡巴納享受日晒,更不是要大跳森巴舞。

要記得,特維是名僧侶,而巴西也只是葡萄牙人在五十年前發現的一個新興地區。而且,新建立的殖民地將命名為「南極法蘭西」(France antarctique)。共有 600 名移民隨著維爾蓋尼翁和特維一起前往新大陸。

特維對他發現的一切事物都感到驚奇不已。他彷彿不停地低聲唱著名曲:「如果你去了里約,不要忘記登高望遠」。

-----廣告,請繼續往下閱讀-----
安德烈·泰維特《黎凡特宇宙學》。圖/wikipedia

他還將所有的新鮮事物稱為「singularitez」(特維自創的字,與「singularité」〔獨特性〕發音相同且拼寫相似)。

當時仍 是文藝復興時代,人類對世界的認識還相當有限,因而還請各位讀者海涵特維看似幼稚的傳奇行徑。

他履行冒險家的職責,蒐集不少樣本:植物、鳥類、昆蟲,甚至還有印第安人的武器、物品和一件羽毛長袍(當然不是為了嘉年華的扮裝,而是為了學術用途)。

有些人嘲笑不務正業的特維其實最想抱回家的是獎盃。別忘了,他在船上的職務其實是神父,而不是博物學家。但無論如何,他有著觀察入微的靈魂,並且渴望知識。可惜他在新殖民地的時光很快就落幕了⋯⋯

-----廣告,請繼續往下閱讀-----

——本文摘自《植物遷徙的非凡冒險》,2023 年 6 月,時報出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
時報出版_96
174 篇文章 ・ 36 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。