Loading [MathJax]/extensions/tex2jax.js

6

18
3

文字

分享

6
18
3

通過 EUA 審查的國產高端疫苗,真的安全有效嗎?——從美國FDA許可審核的三大要點分析

Tina Chen_96
・2021/08/27 ・3743字 ・閱讀時間約 7 分鐘

高端疫苗(MVC-COV1901)的緊急使用授權(EUA)由申請、審查到現在審查核可,緊急使用授權也成為大家關注的議題。此外,也有人說高端疫苗是「趕鴨子上架」,是否是有這一回事呢?要回答這個問題,我們必須從藥物許可的審核三個重點[1]:「安全性」、「有效性」、「品質」來討論。

安全性(Safety)

臨床試驗上的「安全性」,主要觀察藥物在施打後,是否會有嚴重的不良反應,以及不良反應症狀發生的比例多寡。另外,也會考量該藥物針對的疾病,是否有其他可取代藥物?

過去有許多藥物因為安全性不合格而在臨床試驗失敗。例如 1960 年在美國進行的嬰兒 RSV 疫苗試驗中,「疫苗組」造成了比「對照組」更多的住院患者,甚至在 「疫苗組」中,還出現了死亡案例 [2],1993 年試驗的 B 肝藥物 Fialuridine,15 名受試者中有 6 名產生嚴重肝毒性,且有 5 名受試者死亡 [3]。而在 2006 年,測試治療白血病的免疫療法抗體「TGN1412」的臨床試驗一期中,僅使用少於動物試驗五百分之一的劑量,就造成了 6 名受試者產生嚴重的器官衰竭 [4]

值得一提的是,有些通過試驗安全性的藥物,反而是在上市後才被發現有問題。例如曾經用於治療孕吐問題的沙利竇邁(Thalidomide),在 1960 年之後被發現會造成新生兒海豹肢症 [5]。又如糖尿病用藥 rosiglitazone(商品名 Avandia)在 1999 年通過以後,後續報告卻逐漸顯示此藥會增加心肌梗塞與心衰竭的風險 [6]

臨床試驗上的安全性主要是觀察藥物施打後是否會造成嚴重不良反應。圖/Pexels

相較於過去的臨床試驗,這次新冠疫情造成的社會經濟影響與傷亡人數皆十分巨大,而疫苗研發在這段期間,也比往常來得更快。因此,有些疫苗在開始施打後,才發現其他安全性上的問題,例如 AZ 跟嬌生在上市後,才發現有些施打者出現了血栓 Thrombosis with Thrombocytopenia Syndrome(TTS)反應。

-----廣告,請繼續往下閱讀-----

在近期的統計中,AZ 疫苗 TTS 的發生率約為百萬分之十,發生 TTS 後的總死亡率則高達 5~44% [7] [8]。另外,mRNA 疫苗也被報導出有心肌炎的風險 [9]

在疫情仍肆虐的情況下,儘管接種這些疫苗有安全性的風險,但部分國家也有相對應的「解決方案」。例如因 TTS 的症狀多發生在年輕人身上,部分國家會給年輕人在疫苗施打通知書中加上警語,或是直接改打 mRNA 疫苗。

而根據食藥署所提供的會議紀錄,高端疫苗在臨床試驗第二期中總共有近 4000 名受試者,在這些受試者中,似乎沒有發現嚴重的不良反應 [23]然而, AZ 、BNT、Moderna 不僅在第三期試驗中有數萬人進行測試,目前全世界施打這些疫苗的人口總數,已超過數億人,並有超過半年的觀察時間。相較於目前高端疫苗的受試者數量以及時間,其安全性仍應審慎評估。

有效性(Effectiveness)

藥物(疫苗)的發展目的是「治療或預防疾病的發生」,因此「有效性」(也就是常聽到的「保護力」)是必須考慮的重點。就當前各種新冠疫苗的三期數據來看, BNT 的有效性是 95% [10]、Moderna 為 94.1% [11]、AZ 為 70.4% [12]

-----廣告,請繼續往下閱讀-----

那麼,這些數字是怎麼跑出來的呢?假設有一個對照組與疫苗組各有 10000 名受試者(兩組人數相同)的試驗,若結果為對照組有 200 名感染者,疫苗組有 40 名,這表示在 10000 人中,原本應該會有 200 名感染者,但有 160 人因施打疫苗而避免感染,因此有 80% 的有效性。此外,「預防重症跟死亡率」也是類似的邏輯,如果對照組有 20 名重症死亡,但疫苗組只有 1 名,那就有 95% 的預防重症跟死亡率。 

目前 WHO 的疫苗有效性標準是「能夠達到預防疾病 50% 的效果」,亦即在上述的假設中,對照組有 200 名感染者,而疫苗組有 100名感染者就能達標。

有效性評估是第三期臨床試驗的重要研究內容。 但隨著各種新冠疫苗陸續獲得緊急授權,這樣的實驗設計會在試驗倫理上出現疑慮,例如:明明就有獲得許可的疫苗,卻還讓受試者施打安慰劑暴露在感染風險中。因此,一些替代試驗也開始被提出討論,像是「非劣性試驗」,或「免疫橋接試驗」。

非劣性試驗,是指將對照組的安慰劑,換成目前已經獲得許可的藥物(疫苗),來比較新藥與原有藥物的有效性,若兩組最終的感染人數沒有顯著差異,則可以說明新藥與原有藥物具有相似的保護力。目前,日本第一三共公司的疫苗第三期研究有打算採取此試驗方法 [13]

-----廣告,請繼續往下閱讀-----
目前 WHO 的疫苗有效性標準是能夠達到預防疾病50%的效果。圖/Pexels

而免疫橋接是指「用其他可替代指標來評估有效性」,在施打疫苗後,身體所引起的免疫作用包含產生抗體,也會引起T淋巴球的反應,這些都具有對抗病毒的效果。因此,理論上可藉由比較新疫苗與取得授權的疫苗,在人體施打後產生的抗體量等各種指標上是否有差異,來說明新疫苗的有效性。

目前認爲跟疫苗所產生保護效果相關指標包含:中和抗體的量 [14] 、 CD4 T淋巴球及 CD8 T淋巴球 [15]。不過,單用抗體似乎無法完整預測有效性,Curavac(CVnCoV)在第一期的實驗中看到很高的抗體效價[16],但實際上的有效性卻只有 47% [17].由此可知,光是抗體效價並不能完全代表有效性。

不過,未來 T 淋巴球的相關指標,可能會是免疫橋接的重要指標。目前市面上的新冠疫苗,皆是設計成對抗最原始的病毒株,而在新冠肺炎流行一年多的現在,病毒也產生了變種,這導致施打疫苗後所產生的抗體,對於變種病毒的中和效果變差。但是,T 淋巴球的功能卻沒有減弱,因此 T 淋巴球被認為在對抗變種病毒中扮演重要角色。

在衛福部公布的「COVID-19 疫苗緊急使用授權審查標準」中的「療效評估標準」提到,國產疫苗的有效性評估是使用免疫橋接來確認,將國產疫苗所產生的抗體濃度與 AZ 疫苗做比較,然此條件僅考慮中和抗體。另外,在「疫苗專家審查會議」的會議紀錄中提及,高端疫苗臨床二期試驗數據,並未包含相關 T 淋巴球及變種病毒株之相關資訊,因此疫苗有效性尚待更多驗證 [23]

-----廣告,請繼續往下閱讀-----
目前市面上新冠疫苗的設計是對抗最原始的病毒株。圖/Pexels

品質(Quality)

在確認有效性跟安全性後,品質也是非常重要的,必須確保藥物(疫苗)的「安定性」無虞。

「安定性」包含不同批次生產的藥物(疫苗),有效成分是否過低或超量,是否有其他物質或微生物污染之虞,以及包裝完整性 [18]。2018 年世界曾發生過多款血壓藥物因致癌物質污染而回收藥物 [19],日前嬌生疫苗銷毀 6000 萬劑,便是因為生產線交叉污染而導致。去年國內知名藥廠也曾因製程異常及產品安定性規格偏離,而需回收藥品 [20]

Novavax 疫苗在六月發表的第三期試驗,總試驗人數有 14012 人,實驗設計採 1:1 隨機分配,實驗結果說明其有效性可達 89.7% [21]。但因為必須向 FDA 展示製程的一致性,而再度延遲了向美國申請 EUA [22]

在疫苗專家審查會議的會議記錄上,可以看到高端疫苗在原料製程放大的過程中(2L-50L)出現了不一致的結果,而 高端有條件通過 EUA 的「條件」,正是要求未來逐批檢驗每一批疫苗是否合於安定性,直至能確定 50L 製程穩定 [23]

結論

根據以上三點,高端疫苗的安全性在目前臨床試驗二期中,似乎沒有出現嚴重的不良反應,但長期需要持續追蹤。有效性雖有中和抗體指標做為參考,但仍需更多證據支持,品質則為蛋白質疫苗的一大挑戰,因為高端及 Novavax 疫苗都出現了這個問題,尚須積極克服。

  1. Food, Administration D. Emergency use authorization for vaccines explained. November; 2020.
  2. Hurwitz JL. Respiratory syncytial virus vaccine development. Expert Rev Vaccines. 2011;10(10):1415-33.
  3. McKenzie R, Fried MW, Sallie R, Conjeevaram H, Di Bisceglie AM, Park Y, et al. Hepatic Failure and Lactic Acidosis Due to Fialuridine (FIAU), an Investigational Nucleoside Analogue for Chronic Hepatitis B. New England Journal of Medicine. 1995;333(17):1099-105.
  4. Attarwala H. TGN1412: From Discovery to Disaster. J Young Pharm. 2010;2(3):332-6.
  5. Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci. 2011;122(1):1-6.
  6. Wallach JD, Wang K, Zhang AD, Cheng D, Grossetta Nardini HK, Lin H, et al. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ. 2020;368:l7078.
  7. Pavord S, Scully M, Hunt BJ, Lester W, Bagot C, Craven B, et al. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis. New England Journal of Medicine. 2021.
  8. MacIntyre CR, Veness B, Berger D, Hamad N, Bari N. Thrombosis with Thrombocytopenia Syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination – A risk–benefit analysis for people < 60 years in Australia. Vaccine. 2021;39(34):4784-7.
  9. Hudson B, Mantooth R, DeLaney M. Myocarditis and pericarditis after vaccination for COVID-19. Journal of the American College of Emergency Physicians Open. 2021;2(4):e12498.
  10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine. 2020;383(27):2603-15.
  11. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine. 2020;384(5):403-16.
  12. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021;397(10269):99-111.
  13. KENYA AKAMA N. Japan nears homegrown vaccine with Daiichi Sankyo Phase 3 trials. Nikkei Asia. July 13, 2021.
  14. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine. 2021;27(7):1205-11.
  15. Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, et al. SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology. 2021;6(59):eabj1750.
  16. Kremsner P, Mann P, Bosch J, Fendel R, Gabor JJ, Kreidenweiss A, et al. Phase 1 Assessment of the Safety and Immunogenicity of an mRNA- Lipid Nanoparticle Vaccine Candidate Against SARS-CoV-2 in Human Volunteers. medRxiv. 2020:2020.11.09.20228551.
  17. Cromer D, Reynaldi A, Steain M, Triccas JA, Davenport MP, Khoury DS. Relating in vitro neutralisation level and protection in the CVnCoV (CUREVAC) trial. medRxiv. 2021:2021.06.29.21259504.
  18. Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. Journal of applied pharmaceutical science. 2012;2(3):129-38.
  19. Pottegård A, Kristensen KB, Ernst MT, Johansen NB, Quartarolo P, Hallas J. Use of N-nitrosodimethylamine (NDMA) contaminated valsartan products and risk of cancer: Danish nationwide cohort study. bmj. 2018;362.
  20. 陳偉婷. 杏輝、世達、博謙藥廠出包 食藥署列嚴重違反GMP藥商. 中央通訊社. 2020/10/4.
  21. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. New England Journal of Medicine. 2021.
  22. O’donnell MRaC. Novavax again delays seeking U.S. approval for COVID-19 vaccine. August 5, 2021.
  23. 新冠肺炎(COVID-19)疫苗專家審查會議會議紀錄
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
Tina Chen_96
1 篇文章 ・ 3 位粉絲
雖不是天資聰慧 但勤讀不懈 潭鯉終會躍成龍 讀博變成老太婆 但我還是想透過簡單易懂的文字分享所學 讓科學不再是遙不可及的蜃影 而是貼近大家的日常生活

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
流感合併肺炎鏈球菌感染恐致命?如何預防?肺炎鏈球菌疫苗接種方式介紹!
careonline_96
・2024/06/14 ・2739字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「千萬不可小看肺炎鏈球菌!歷史及醫學文獻上告訴我們,即使青壯年感染流行性感冒,合併肺炎鏈球菌感染,可能病程進展快速,短短 48 小時就過世,相當可怕!」台大醫院內科部感染科教授兼科主任陳宜君醫師指出,「如果肺炎鏈球菌由上呼吸道黏膜進入血液,可能侵襲各個器官,演變為侵襲性肺炎鏈球菌感染症。患者的狀況可能兵敗如山倒,而住進加護病房;可能因而器官衰竭,如肝腎功能受損,嚴重甚至導致洗腎。這些情況都讓家屬很難過、無法接受。」

侵襲性肺炎鏈球菌感染症確診數,在 2023 年底有明顯上升的趨勢,且感染案例數創三年新高1,民眾務必提高警覺。根據疾病管制署的統計,侵襲性肺炎鏈球菌感染症患者中,65 歲以上民眾佔了 44.5 %2。陳宜君醫師提醒,換言之有 55.5 % 是 65 歲以下民眾,比例超過一半。肺炎鏈球菌對各個年齡層都有影響,所以不是只有老年人,各年齡層都要注意。

不可輕忽!肺炎鏈球菌潛伏體內,流感合併肺鏈重症高四倍!

除了 5 歲以下嬰幼兒、65 歲以上老年人之外,還有許多族群屬於侵襲性肺炎鏈球菌感染症的高危險族群,包括慢性病患(如慢性腎病變、慢性心臟疾病、慢性肺臟病、糖尿病、慢性肝病、肝硬化患者)、酒癮者、菸癮者、脾臟功能缺損或脾臟切除、先天或後天免疫功能不全、人工耳植入者、腦脊髓液滲漏者、接受免疫抑制劑或放射治療的惡性腫瘤者或器官移植者3

此外,原本健康民眾在感染流行性感冒、新冠肺炎等病毒後,呼吸道黏膜免疫會受到影響,續發性細菌感染的機會上升。陳宜君醫師說,台大醫院兒科團隊發表過一個很重要的研究,發現單純得到流感的患童約有 5 % 會住加護病房,而流感合併肺鏈的患童約有 20 % 會住加護病房4,顯示流感合併肺鏈比一般流感的重症風險高出四倍之多。

-----廣告,請繼續往下閱讀-----

肺炎鏈球菌主要存在鼻腔黏膜,當免疫力正常時不會產生問題,但當黏膜免疫力下降時,便可能侵入組織,造成中耳炎、鼻竇炎、肺炎等感染;而免疫力低下患者,便可能發展成重症。陳宜君醫師說,患者會出現發燒、咳嗽、氣喘、噁心、胸痛、頭痛、呼吸急促等症狀,可能進展為肺炎、腦膜炎、關節炎、骨髓炎、心包膜炎、溶血性尿毒症、腹膜炎、敗血症等,危及性命5

接種肺炎鏈球菌疫苗,預防勝於治療

面對肺炎鏈球菌感染,預防永遠勝於治療!陳宜君醫師說,肺炎鏈球菌經由飛沫散播,所以可以透過戴口罩、勤洗手、避開擁擠密閉的空間,更積極的做法就是接種肺炎鏈球菌疫苗。

肺炎鏈球菌可分為 92 種以上血清型,其中約有 30 種血清型會造成人類的感染,所以會針對較常見的血清型製作肺炎鏈球菌疫苗6。目前台灣有結合型疫苗(PCV)與多醣體疫苗(PPV)。

多醣體疫苗(PPV),通常不具備長期免疫記憶。陳宜君醫師解釋,結合型疫苗(PCV)可以誘發 T 細胞免疫,有助產生免疫記憶,提供較長時間的保護力7

-----廣告,請繼續往下閱讀-----

研究顯示,接種一劑結合型疫苗(PCV)後,再接種一劑多醣體疫苗(PPV),有助提升免疫記憶,提供較長時間的保護力,並使保護範圍更廣,能有效降低感染肺炎鏈球菌導致嚴重併發症或死亡的風險8。因此,疾病管制署針對 65 歲以上民眾提供公費疫苗政策:接種 1 劑 13 價結合型肺炎鏈球菌疫苗(PCV13)及 1 劑 23 價肺炎鏈球菌多醣體疫苗(PPV23),以保護年長者免於重症威脅9

不過,一般年輕族群亦不可輕忽。陳宜君醫師提到,因為肺炎鏈球菌疫苗是準備讓健康民眾施打,所以在研發疫苗時,對安全的要求非常高。結合型疫苗(PCV)與多醣體疫苗(PPV)皆為不活化疫苗,免疫不全者皆可接種,且能夠與流感疫苗同時接種。國際建議在左手臂接種流感疫苗,在右手臂接種肺炎鏈球菌疫苗。

關於肺炎鏈球菌疫苗的接種方式,疾病管制署建議:

  • 從未接種肺炎鏈球菌疫苗的民眾,可先接種 1 劑結合型疫苗(PCV),間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可先接種 1 劑結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過 1 劑結合型疫苗(PCV)的民眾,可於間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可於接種結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過多醣體疫苗(PPV)的民眾,可於間隔至少 1 年後再接種 1 劑結合型疫苗(PCV)10

「肺炎鏈球菌感染不只造成肺炎!」陳宜君醫師叮嚀,「狀況許可時,建議及早接種疫苗,做好預防措施,才能保護自己、保護身邊的人。」

註解

  1. 衛生福利部疾病管制署 65 歲以上公費肺炎鏈球菌疫苗三階段開打,呼籲長者接種(access date 2024/3/8)
    https://www.cdc.gov.tw/Bulletin/Detail/hr4M-Qmi3Fu2KPC3En2a6Q?typeid=9 ↩︎
  2. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine)(accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  3. Hsing, T. Y., Lu, C. Y., Chang, L. Y., Liu, Y. C., Lin, H. C., Chen, L. L., Liu, Y. C., Yen, T. Y., Chen, J. M., Lee, P. I., Huang, L. M., & Lai, F. P. (2022). Clinical characteristics of influenza with or without Streptococcus pneumoniae co-infection in children. Journal of the Formosan Medical Association = Taiwan yi zhi121(5), 950–957. https://doi.org/10.1016/j.jfma.2021.07.012 ↩︎
  4. 衛生福利部疾病管制署 侵襲性肺炎鏈球菌感染症(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Disease/SubIndex/oAznsrFTsYK-p12_juf0kw
    ↩︎
  5. 衛生福利部疾病管制署  侵襲性肺炎鏈球菌感染症 疾病介紹(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Category/Page/MEYvHLbHiWOcLfQKKF6dpw
    ↩︎
  6. Pollard, A. J., Perrett, K. P., & Beverley, P. C. (2009). Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nature reviews. Immunology9(3), 213–220. https://doi.org/10.1038/nri2494 ↩︎
  7. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP) (cdc.gov) (accessed date 2023/12/15) https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6434a4.htm ↩︎
  8. 衛生福利部疾病管制署 為提升民眾免疫保護力,10月2日起分三階段擴大65歲以上民眾公費接種肺炎鏈球菌疫苗(accessed date 2024/03/08) https://www.cdc.gov.tw/Bulletin/Detail/q9_r5mAOvcpIPSUvrjGFpw?typeid=9 ↩︎
  9. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  10. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎

本衛教文章由台灣輝瑞協助刊登(PP-PRV-TWN-0166-202404)

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
careonline_96
568 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站