Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

左看右看 貓頭鷹、寶石竟是斑馬魚

顯微觀點_96
・2024/03/28 ・1870字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

乍看以為是寶石結晶的斑馬魚肌纖維、如竹林屏風般的斑馬魚尾鰭,到似貓頭鷹的斑馬魚鏡像圖以及充滿生命力大樹般的斑馬魚神經樹突,每一幅影像都以斑馬魚為題,卻拍出不同的趣味。

本次 Taiwan 顯微攝影競賽八名優選獎中,就有四位得獎者是中研院細胞與個體生物學研究所陳振輝老師的學生。這些拍出技術與美感兼具作品的研究者,分別為 Uday Kumar、Marco De Leon、陳樂融和劉昱秀。

其中, 來自印度的 Uday Kumar 參加第一屆顯微攝影競賽至今,年年獲獎,更榮獲首屆金獎。而他的同儕,來自菲律賓的 Marco De Leon 也因受到他的啟發參賽,於今年獲得優選。

-----廣告,請繼續往下閱讀-----

陳振輝老師實驗室主要以斑馬魚為樣本進行再生研究。他的學生們各自探索斑馬魚的不同組織或器官;有人專精於研究心臟、有人專門研究神經,有人則專門研究肌肉纖維。

Gems And Maturity Marco Pomida De Leon
Gems And Maturity Marco Pomida De Leon
生命之樹 劉昱秀

Uday Kumar 表示,由於每個人研究的方向不同,因此必須從基因工程到成長過程,各自「顧好」自己的斑馬魚。

這些攸關研究進度與實驗設計的斑馬魚,養殖在細生所地下室的魚房。數十個排列整齊畫一的魚缸,裡頭有著各式大小、不同生長階段和品系的斑馬魚。

為了能夠取卵進行基因轉殖,從養殖器皿到時間都必須加以控制。Uday Kumar 表示,除了一般魚缸外,養殖斑馬魚會再裝置一個多孔的產卵盒。晚上將公魚和母魚用隔板隔開,並保持環境黑暗,避免交配產卵。

-----廣告,請繼續往下閱讀-----

等到隔天上午將隔板拿掉,讓公魚、母魚相會,並利用光周期誘發產卵、受精後,必須將特製的產卵盒斜置,好讓受精卵下沉到魚缸底部。如此一來,也可避免斑馬魚將受精卵吃掉。

陳振輝老師實驗室專注於「多顏色細胞標誌技術」(Brainbow/Skinbow)。利用基因重組的方式,將紅、藍、綠三種不同色的螢光蛋白在個別細胞裡表現不同數量,依不同比例產生更多顏色來標誌不同細胞。

Uday Kumar 表示,要將目標基因注入細胞內,需要使用顯微注射技術,在立體顯微鏡下將注射管準確地插入受精卵中。

不過這對他來說,顯微注射已經是一件熟練到「像騎腳踏車」般簡單的事,一天注射超過 500 顆受精卵都沒問題。

-----廣告,請繼續往下閱讀-----

雖然基因轉殖對這些研究者來說已是熟能生巧的事,但要建立新的基因轉殖魚仍然要花上漫長的時間,通常需要 6 個月到一年,品系才會逐漸穩定。以 Uday Kumar 於 2021 年獲得金獎的作品來說,就是花了兩年才培育出能以正確比例呈現美麗色彩的斑馬魚。

顯微攝影的每一幅作品除了呈現出精彩美麗的影像外,背後更蘊含著每一位研究者精湛的技術以及長久累積的研究心血。

583050
細生所地下室的魚房,有著各式大小、不同生長階段和品系的斑馬魚。攝影/楊雅棠
Uday Kumar使用立體顯微鏡。攝影/楊雅棠

斑馬魚小教室

斑馬魚(Danio rerio)是常見的模式生物之一,原分布於孟加拉、印度、巴基斯坦、緬甸、尼泊爾等南亞淡水流域。其體長約 3 至 4 公分,雄魚體修長且背部呈淺橄欖黃色,雌魚體渾圓腹部較彭大;適合生長溫度為 23 至 28℃。

斑馬魚胚胎透明、發育期間短,容易觀察;且屬於脊椎動物,與人類有相似器官如心血管、神經等,加上基因組序列已解開,基因轉殖容易,種種優點使得牠成為非常適合作為遺傳研究及藥物篩選的脊椎動物模式。

查看原始文章

  1. 顯微鏡下一抹彩虹,陳振輝,《中央研究院週報》第 1610 期
  2. 臺灣斑馬魚中心——中研院分支介紹,黃聲蘋,《中央研究院週報》第 1360 期
  3. 心臟、尾鰭與脊椎,那些以斑馬魚進行的「再生」研究
  4. 「從動物身上問對問題,就可以找到答案!」陳振輝談斑馬魚的超強再生力
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
27 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
「美」不僅限於正常與好事:專訪金獎得主何俊達
顯微觀點_96
・2025/01/28 ・5128字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

致命之美-癌細胞的雙面表演
圖/顯微觀點

「醜細胞」之美

2024 台灣顯微攝影競賽金獎「致命之美:癌細胞的雙面表演」清晰呈現癌細胞分裂前張牙舞爪的瑰麗生命力。作者何俊達身為神經科學領域的博士後研究員,拍攝這張獲獎照片的動機卻是興趣使然。

處在嚴謹專業的學術領域,何俊達不僅把顯微攝影看作必要的研究技術,也是他蒐集奇妙影像、磨鍊美感的方法。何俊達笑說,「細胞愈奇怪,我就愈喜歡。我有一個小資料夾,叫做 Ugly Beautiful Cell,專門放這些奇怪的細胞。」獲得金獎的乳癌細胞影像,就屬於這個珍藏資料夾。

何俊達說,「這張照片其實是無心插柳1,我大概只花了 30 分鐘拍攝。第一眼只覺得『好怪,好漂亮!』後來嘗試不同套色的時候才發現,我拍得滿不錯。」他補充道,雖共軛焦系統得到的螢光訊號一開始僅是單色的,但使用者可自行選擇套色,而顏色的選擇就反映了這個人的色彩美學,還有當下對影像的感受。

-----廣告,請繼續往下閱讀-----

1. 金獎作品之細胞材料由Drexel University, the Romano Lab – Olivia El Naggar 提供,作者何俊達鳴謝其協助。

這個資料夾舊名「Unknown Beautiful Cell」(UBC),後來何俊達想到「醜」的台語/閩南語(䆀,bái)諧音像「my」,改名為「Ugly Beautiful Cell」,台英混合就讀做「Bái/My Beautiful Cell」。

拍攝這幅影像時,他直覺「必須省略一些資訊,才能得到最好的畫面。」便取消細胞中心區域將近一半的顯微掃描。因此影像中細胞周邊放射狀的偽足(filopodia)骨架相當清晰立體,但是細胞中心的「屋頂」骨架卻並未呈現,觀眾能直接看穿細胞膜,視野直達癌細胞的生命中心。

這個細胞即將進行分裂,染色質逐漸凝聚成染色體,在核酸染色之下形成諸多鮮明的獨立色塊,而不是螢光均勻的常見細胞核。因為染色質(chromatin)只有在細胞複製期會疊合纏繞成染色體(chromosome),其餘時候四散分布在細胞核內。

-----廣告,請繼續往下閱讀-----
Ubc Taiwan
Ugly Beautiful Cell—Taiwan. 圖 / 何俊達提供

何俊達強調,「這個影像是調整染色體疊合比例的成果,透過刻意減少一部分的疊合,反而可以讓不同深度的染色體看來更有稜有角、具立體感。疊加所有的Z軸影像,反而會讓畫面變雜亂」

何俊達的構圖想像力,源自他在大學時期對攝影的愛好。他感嘆,以前經常拍攝自然風景、人物等多樣題材,在博士班期間忙碌到必須擱置相機。「有一天我用著顯微鏡,忽然想到,這樣進行顯微攝影,我其實也是在拍攝風景!」他對攝影的愛好日漸投射到顯微攝影,融入他的科學生涯。

何何俊達與實驗室主持人穆琪教授攝於卓克索大學醫學院藥理與生理學系。 何俊達提供俊達得獎感言:「 感謝顯微觀點給我這個獎項,這個金獎對我而言意義重大。我的科學研究道路並不順遂,跌跌撞撞的也過了 20 年。從微生物學,病理學,到了神經科學,我一直都相信好的結果也必須使用好的呈現方法,不然只是孤芳自賞,所以不曾忘記磨鍊自己的取景視角以及畫面美感。
我發現「美」不必然只與正常的事物有關聯,只要細細地整理觀察,美其實存在於許多小角落中,包含癌細胞之中。最後,雖然無法親自領獎與大家討論細節著實可惜,但希望大家可以享受這個展覽,體會顯微世界的美好。」

用「美國時間」精進技術

在費城卓克索大學進行博士後研究的何俊達,也曾在台灣讀過生物領域的博士班,但他直言,他的顯微攝影技術在美國才得到大幅進展。

技術進步的最大關鍵,是在卓克索大學可以得到「自由使用顯微鏡的時間」。他說,「同仁都很準時下班,因此晚上我可以待在實驗室,自由使用共軛焦顯微系統,得到反覆trial and error的機會。」

-----廣告,請繼續往下閱讀-----

例如,不同解析度、對影像反摺積(deconvolution)計算的次數,許多細微的差別只有在分析數據的時候才能發現。

Ch生活照.3
何俊達與實驗室主持人穆琪教授攝於卓克索大學醫學院藥理與生理學系。 圖 / 何俊達提供

何俊達指出,實驗室主持人穆琪教授(Dr. Olimpia Meucci)也不介意他下班後持續練習使用顯微系統。他說,「這邊的風氣比較寬容,很願意提供試錯的機會。嘗試很久也沒關係,能夠一起檢討、最後產出足夠的成果就好。」

對於晚間繼續操作顯微鏡的辛苦,何俊達笑稱,「一個留學生晚上就算只回家看電視,還是要花電費。我在實驗室用顯微鏡反而省錢。」這些摸索顯微技巧的時光省下多少電費是未知數,但是在後來的研究中大幅提升了影像處理的效率。

顯微攝影技術之外,何俊達也在穆琪指導下得到較多的實驗自由。他在台灣讀博士班時「感覺自己像是教授的手」,雖然看似對實驗方法有選擇空間,但實際上只能採用指導教授偏好的作法。

-----廣告,請繼續往下閱讀-----

何俊達提及,他在美國遇到的教授通常不會對實驗方法直接提供選擇,因為許多學生的研究題目因為時代的不同,或許已經有了更新穎的工具可以回答,那他們自己對這些工具沒有使用的實際經驗,「他們會問『你想怎麼做?』然後爬梳這個提案的合理性、可行性,透過實驗設計的邏輯和經驗進行評估。」

他也坦承,在美國的生醫研究資源比較豐富,通常不用擔心經費。即使研究提案包含團隊裡無人熟練的技術,教授也通常樂意協助學生到其他實驗室去學習並合作,或是安排技師前來教學。

CXCL12:挽救認知衰退的細胞因子

2024 年夏天,何俊達終於獲得博士學位。他的研究集中於細胞趨化因子 CXCL12 如何調控神經細胞樹突棘(dendritic spines)生成及活動,並延伸到對腦皮層網絡結構的影響,未來可能成為腦部疾病的新藥物基礎。

樹突棘是神經元樹突上的小凸起,會與其他神經元的軸突末端形成突觸,接收外來訊號,是學習與記憶的基礎神經構造。新的體驗與學習行為,會讓神經元生成新的樹突棘。

-----廣告,請繼續往下閱讀-----
Ubc Neuron
Ugly Beautiful Cell: 小鼠腦部皮質神經元與樹突。 圖 / 何俊達提供

何俊達以體外培養的方式純化大鼠腦部皮層的神經細胞,並使用顯微技術成像與量化分析觀察 CXCL12 分子,發現它可以促使樹突棘的新生成、導致樹突棘聚集密度增加,並穩定尚未完全成熟的樹突棘,以吸引更多的突觸蛋白質(synaptic protein)累積於樹突棘,進而得到穩定的突觸結構,鞏固神經之間的連繫。

同時,何俊達也以活體細胞成像方法,使用鼠腦急性切片(acute slice)觀察 CXCL12 的作用。他將實驗鼠大腦取出,迅速在低溫溶液中切片,浸入常溫人工腦脊髓液,以保持腦神經活性,確保在顯微鏡下觀察到腦神經接近活體的狀態。

這項技術對穆琪團隊而言相當新穎,何俊達說,「光是以類腺病毒將綠色螢光蛋白正常表現,且讓螢光能在樹突棘上漂亮表現出來,就花了我一整年的時間,連真正的實驗都還沒開始。」因為腦神經很脆弱,要找到能表現足夠螢光、同時維持神經活性的載體病毒種類、濃度並不容易。

HANDs:愛滋病毒對腦部的傷害

動物自然衰老或因疾病導致的腦部病變過程中,經常觀察到程度不一的樹突棘退化。例如阿茲海默症患者腦部經常出現嚴重的樹突棘減少、分布逐漸稀疏、萎縮等現象。而人類免疫缺乏病毒 (Human Immunodeficiency Virus/HIV)陽性的患者,也有可能會遭遇樹突棘構造退化,並發展出認知衰退障礙症(HIV- Associated Neurocognitive Disorders, HANDs)。

-----廣告,請繼續往下閱讀-----

何俊達解釋說,「相對於台灣的肝病比例較美國多,美國則是 HIV 相關的疾病比台灣多上許多。雖然患者現在可以用雞尾酒療法抑制體內病毒的複製,血液中檢驗不出病毒量,但將近一半的患者可能因為潛伏在腦中的 HIV 出現神經發炎反應,導致神經細胞以及其樹突棘的退化,且我們已知這些退化現象與認知衰退有著高度相關性。」

他補充,自第一起美國的 HIV 病患開始(1980 年代),多數患者現在年事已高,臨床上不容易判定是腦部的自然年老衰退,或是 HIV 產生的病毒蛋白、甚至由於雞尾酒藥物本身導致神經元加速退化,但認知衰退是 HIV 患者間亟需正視的臨床現象。

同時,美國 HIV 患者的感染率與藥物濫用的問題有高度相關,鴉片類藥物與 HIV 可能同時對他們的腦部產生傷害。這個集體健康議題備受美國社會重視,穆琪實驗室選擇從藥理、神經生理層面切入研究,因此得到公共經費的充分支持。

Ubc Dog
Ugly Beautiful Cell—Dog. 圖 / 何俊達提供

博士的窄門長路

何俊達笑稱,他很感謝他太太沒有要他放棄博士班研究。他回憶道,「前年 12 月,我太太來美國找我慶祝聖誕假期,準備一起去德國再度蜜月。我因為實驗進度不夠,還跟她說『我會晚一點回家』,她難以置信我要晾她一人在家。」幸好在聖誕節之前,何俊達順利得到實驗成果。

-----廣告,請繼續往下閱讀-----

何俊達能加入資源豐沛、自由度高的科學團隊,並非出自好運或美國遍地都是研究經費,而是經過明確的現實考量。他解釋說,「我知道這個團隊的興趣與我相符,並且實驗室經費資源以及系所資源多元豐富,才做出選擇的。申請的門檻與競爭當然也不容易。」

當年,何俊達決定中斷讀到第五年的本地博士班,轉投海外從頭來過。他笑說,「畢竟前一個博班只讀到一半,所以投了20多家學校,沒有一家要收我。」後來經過朋友介紹,他才知道卓克索大學醫學院重視藥理與生理,畢業校友在生醫業界有一席之地。因此他瞄準了資源充沛、志趣相符的穆琪團隊。

Ch生活照.2
留學生在費城生活大不易,但是穆琪教授給予何俊達相當充分的學術自由與信賴。 圖 / 何俊達提供

何俊達申請加入穆琪團隊的過程並不簡單,儘管那時何俊達已經在台大的博士班磨練了5 年,他並沒有直接取得博士班的入取許可,反而是先取得了碩士班的機會。他回憶,「為了把握這個機會,我只好貸款在費城讀碩士班。」

兩年後,何俊達與一位實驗室同儕競爭直升博士班的名額,這個轉換學程的考試,要在 3 周內寫 3 份報告,接著會有 3 位教授進行口頭審核。何俊達回想自己能獲得資格的原因,「這個考試看重的並不是答案完全正確,而是能解釋為什麼自己要這麼寫。」

科學家是幸運的一群

儘管博士班路程比一般人想像的路程更加漫長,剛獲得博士學位不久的何俊達認為,自己比起很多人已經相當幸運。

Ch生活照.1
何俊達在卓克索大學繼續博士後研究,嘗試將過去的實驗方法運用在不同細胞上。 圖 / 何俊達提供

他坦言,相對於可以快速應用的工程科學,多數生命科學家的研究成果無法在幾年內應用到臨床情境、形成社會貢獻,卻能持續得到公共經費進行研究,其實是幸運又奢侈的職業。

何俊達說,「其實基礎科學家像是被社會寵壞的一群夢想家,社會不問實際回報地支持他們做自己熱愛的夢。我想,社會允許這樣的一群人存在,是因為其中偶爾有一個人會做出改變社會的巨大貢獻。」他補充,「現實一點,也可以看成是對社會進步的保險」

何俊達獲得台灣顯微攝影競賽金獎,除了獎金還包含一台解剖顯微鏡。這台顯微鏡將轉贈給他的姪子。何俊達說,姪子小時候很喜歡昆蟲,負笈海外之後不知道姪子還喜不喜歡觀察昆蟲,但希望這台顯微鏡可以維持他對自然與生物的好奇心。

何俊達分享道,「每個人都該有個不求回饋的興趣,沒人提供報酬也可以得到快樂的興趣,像是攝影和顯微攝影帶給我的滿足。希望這台顯微鏡可以啟發我姪子建立自己的興趣。」

本篇專訪的英文版:“Beauty” Exists Beyond the Norm: An Interview with Chunta Ho

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
27 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。