2

15
10

文字

分享

2
15
10

顛覆過去發現!中研院團隊首揭細胞「無合成分裂」登上《Nature》期刊

PanSci_96
・2022/05/04 ・2311字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/中研院新聞稿

德國植物學家馮莫爾 (Hugo von Mohl) 在 1835 年首次觀察到細胞分裂後,過去 180 年來,大家只知道兩種細胞分裂方式──有絲分裂、減數分裂。透過製造新的細胞,讓生物體的發育、生長與繁殖成為可能。

中央研究院 細胞與個體生物學研究所助理研究員 陳振輝團隊 在研究斑馬魚發育時,意外發現另一種獨特的細胞分裂方式,其分裂過程不需要進行遺傳物質(DNA)複製,因此命名為「無合成分裂」,於今(111) 年 4 月登上知名國際期刊《自然》(Nature),並獲專文推薦。

中研院 細生所 李奇鴻所長 表示,此研究顛覆過去百年來的細胞分裂發現,有助於後續對其他生物體進行深入探究,進一步了解其詳細的細胞生理調控機制。

「細胞分裂」是所有生命的基礎,長久以來,科學家認為細胞分裂方式有兩種:

-----廣告,請繼續往下閱讀-----

第一,體細胞(如皮膚細胞、肌肉細胞、幹細胞等)要進行「有絲分裂」,1 個母細胞分裂為 2 個具有相同染色體數量的子細胞,讓個體發育生長。

第二,生殖細胞則透過「減數分裂」,將母細胞分裂成 4 個具有一半染色體數量的子細胞(如精子和卵子細胞),有性繁殖才有可能發生。

首度發現體細胞進行「無合成分裂」:僅增生、無 DNA 複製 

陳振輝以斑馬魚為研究對象,長期深入探索生物再生過程的細胞和分子機制,研發多顏色活細胞標誌工具(Palmskin),用上百種不同顏色來標誌不同的表皮細胞,並能即時、高解析度追蹤斑馬魚體表所有皮膚細胞的動態行為。

透過多顏色活細胞標誌(Palmskin),產生上百種不同顏色來標誌不同的表皮細胞,即時、高解析度追蹤斑馬魚體表所有皮膚細胞的動態行為。

團隊意外發現,當斑馬魚在個體發育的特定階段,最表層的皮膚細胞──原被認為是不會分裂增生的體細胞,其單一母細胞竟然可以分裂 2 次,共產生 4 個子細胞,且這些子細胞皆不具有完整的母細胞 DNA。

然而,陳振輝一開始也百思不得其解,為什麼斑馬魚的皮膚細胞需要這樣分裂?而且分裂後的子細胞形狀變小也變扁?多年來與斑馬魚為伍的他,認為答案可能與個體發育成長所遇到的特殊挑戰有關。

細胞由 1 增 4:有效增加斑馬魚體表覆蓋面積

研究團隊利用一個數學幾何模型作為基礎,與中研院 化學研究所 研究員許昭萍、顏清哲博士 跨領域合作,進行細胞體積變化的定量分析,他們發現斑馬魚單一表皮細胞經過兩次「無合成分裂」之後,整體的表面積可增加 6 成。

-----廣告,請繼續往下閱讀-----
實驗觀察到斑馬魚表皮細胞由1增4的過程。圖/nature video Youtube 截圖

陳振輝表示,由於斑馬魚幼魚在特定的發育階段長得很快,體表面積需要快速增加。為了維持一個穩定的皮膚雙層結構,下層的表皮幹細胞以正常的「有絲分裂」來增生,但是上層已分化的表皮細胞,恐已失去此選項,轉而進行「無合成分裂」。

這種分裂方式能讓表皮細胞在資源有限的情況下,有彈性的快速延展,使生物個體有效率地增加體表局部面積,以維持表皮細胞穩定的覆蓋率。此為斑馬魚幼魚在特定發育階段所利用的應急策略。

研究團隊表示,目前對「無合成分裂」的了解尚在初步階段。由於斑馬魚是脊椎動物,也是科學家研究個體發育、再生反應及人類疾病常用的模式生物,他們預測此一新型的細胞分裂方式,或許不只限於斑馬魚體表的表皮細胞,仍有待更多研究探索。

投稿過程艱辛 屢屢重複多次實驗 

陳振輝回憶,此篇論文的投稿時間已經是前(109)年底的事,由於顛覆大家過去對於細胞分裂的認識,初期就收到很多審查意見,「但不只審稿人有意見,我們自己也想知道是否還有其它可能的解釋。」

-----廣告,請繼續往下閱讀-----

一開始,陳振輝團隊原本只想觀察表皮細胞如何移動或脫落,沒想到卻看到此獨特現象,還以為會不會是研究工具出了錯,「怎麼跟教科書教的完全不同!」重複做了多次對照實驗。

本論文第一作者 陳潔盈,現為 中研院國際研究生學程 博士生,也在其中付出許多心力。面對長度僅約 0.5 公分的斑馬魚幼魚,為了反覆觀察其表皮細胞的分裂過程,她必須每 12 小時麻醉幼魚一次,小心翼翼地置於高倍顯微鏡下拍照,並且確定它在鏡頭下的姿勢每次都相同,結束後還得把麻醉後的幼魚喚醒,以持續進行活體實驗。像這樣的過程整整連續十天,重複循環多次。

即使投稿歷程艱辛,團隊成員們興致勃勃,畢竟不是常有這樣的機會可以跟大家分享,「嘿,我想告訴你還有另一種細胞分裂方式的可能。」陳振輝笑說,原來在太陽底下真的能發現新鮮事! 

  • 本論文第一作者為陳潔盈,研究團隊包括顏清哲、阮筱彧、許紹君、曾子倫、蕭崇德、許昭萍、陳振輝,經費由中研院及科技部支持。

延伸閱讀

-----廣告,請繼續往下閱讀-----

新聞連絡人:
陳振輝助研究員,中央研究院細胞與個體生物學研究所
(Tel) 02-2789-9537,chcchen@gate.sinica.edu.tw
郭姵君,中央研究院秘書處媒體小組
(Tel) 02-2789-8821,deartree@gate.sinica.edu.tw
陳昶宏,中央研究院秘書處媒體小組
(Tel)02-2789-8059,changhung@gate.sinica.edu.tw

文章難易度
所有討論 2
PanSci_96
1225 篇文章 ・ 2317 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室

討論功能關閉中。

顯微觀點_96
9 篇文章 ・ 3 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
1

文字

分享

0
1
1
台灣第一人 邱文泰獲選國際顯微攝影競賽評審
顯微觀點_96
・2024/06/28 ・4750字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

曾擔任 2023 Taiwan 顯微攝影的評審、成大生醫光學影像核心平台主持人邱文泰,被選為 2024 IOTY 的亞太區評審代表,是台灣第一人!

細胞狗仔隊 專拍細胞不為人知的一面

「我是細胞生物學的愛好者,我們實驗室團隊是細胞生物學的狗仔隊,專拍細胞不為人知的一面。」成大生醫工程系主任邱文泰,帶著笑容自我介紹。

邱文泰專精於活細胞分子造影、光遺傳學以及變化多端的細胞內信使:鈣離子對細胞生理機能的調控。他與團隊近年的重要研究之一,是以光遺傳學精密調控細胞內鈣離子濃度波動,觀察鈣離子如何影響細胞遷移(cell migration)。

20 世紀後半葉,生醫學界逐漸發現鈣離子是功能繁複的細胞訊息傳遞者,可調控授精、細胞增生與死亡、學習與分化,也參與細胞遷移、活化特定轉錄因子。

-----廣告,請繼續往下閱讀-----

傳統生化科技如藥理、化學、物理方法,無法在時間、空間上精準調控與觀測活細胞內的鈣離子變化。細胞如何讀取鈣離子濃度波動(calcium oscillation)訊號,如頻率、幅度等,還是一個待解的謎題。

以光操縱鈣離子通道 解碼鈣離子波動訊號

邱文泰團隊運用光遺傳學(Optogenetics)技術,將人為編輯過的光敏感鈣離子通道蛋白 CatCH(calcium translocating channelrhodopsin)基因轉染(transfect)進入人類骨肉瘤細胞(U2SO)。位在細胞膜的 CatCh 蛋白一旦吸收藍光,就會開啟鈣離子通道,讓胞內的鈣離子濃度快速提升。

光線停止照射,CatCh 就不再輸入鈣離子,細胞原本的平衡機制開始作用,將鈣離子排至胞外(或內質網中),造成細胞質的鈣離子濃度起伏。因此實驗團隊能精密調整骨肉瘤細胞的鈣離子波動,並結合螢光顯微術觀測細胞狀態。

他們以大量表現 Catch 的骨肉瘤細胞(U2OS-CatCh)作為鈣離子波動的主要實驗對象,以藍光照射細胞,調整細胞內鈣離子濃度波動的幅度、週期、頻率、時間等參數。

-----廣告,請繼續往下閱讀-----

在模擬傷口癒合的實驗中,培養皿中間表面被留下一道未被細胞覆蓋的空地,兩側細胞會逐漸往中間遷移、會合,直到將空地填滿。此細胞遷移的過程與人體傷口癒合相似,也與癌細胞在人體擴散的機制有關。

細胞遷移需要細胞骨架與細胞內諸多蛋白質分子聯合運作,參與的分子間還會彼此調控、影響。不同的細胞內訊息分子(即第二信使,second messenger)分別調控不同的蛋白分子路徑。鈣離子在其中的角色眾說紛紜,科學界對詳細機制的認識猶如管中窺豹。

邱文泰團隊發現,對 U2SO-CatCh,0.01 赫茲的藍光照射可帶來顯著高於對照組的細胞遷移量。在 0.1 赫茲的光照下,細胞遷移量卻比沒有照光的對照組更低。

參與細胞遷移的重要轉錄因子 CREB, NFAT, NF‐κB 也由不同強度的鈣離子波動活化,NF‐κB 由較低的鈣離子濃度活化;NFAT 由較高的鈣離子濃度活化;而高或低的鈣離子濃度波動都可以活化 CREB。

-----廣告,請繼續往下閱讀-----

他們的研究不僅印證鈣離子波動可調節癌細胞增生、遷移的理論,也發現鈣離子波動頻率、幅度並非愈高就愈有效。若以 10 赫茲的藍光照射 U2SO 培養皿一個小時,90% 的細胞會死亡,死亡率遠高於波動頻率較低的組別。

透過光遺傳學技術對細胞進行時間、頻率的精準刺激,邱文泰團隊發現鈣離子作為細胞第二信使,能攜帶的訊息比過往的想像更加龐大。也推進了鈣離子訊息的解碼技術,在癌症研究、轉錄因子活化機制研究上,都可能帶來幫助。

堅持研究活細胞,以影像探索未知

熱衷細胞生物學的邱文泰說,「要當細胞狗仔隊,就要有好的相機大砲,才拍得到細胞生活的秘密。」他認為,現代細胞生物學必須要以活細胞為研究材料,才能深入了解細胞生理機制。而拍攝細胞生理活動的顯微設備,是細胞生物學家依賴的重要工具。

邱文泰早期拍攝的「藍眼」:以 FRET(Fluorescence resonance energy transfer)技術拍攝 STIM1 分子和細胞膜上 Orai1 分子結合,帶螢光蛋白的目標分子結合時發生能量轉移,STIM1 會將螢光能量轉移給 Orai1,使其發出橘色螢光。

邱文泰認為,現代的細胞與分子生物學不同過往,需要以影像證據說服科學家同儕。研究發表的依據不再是間接量化的座標點、折線圖、柱狀圖,他說「現在顯微影像是不可或缺的,甚至立體影像才是學術發表的標準。」

-----廣告,請繼續往下閱讀-----

邱文泰分析,隨著類器官(organoid)、層光顯微術(light sheet)、生物組織澄清化(tissue permeabilization)等顯微技術逐漸成熟,精密顯微影像會在生醫研究領域被視為理所然的科學依據。

回想早期接觸的生物學技術,邱文泰笑說,「我那時的研究生都有一件實驗用『戰袍』,上面遍佈黑色斑點,是在暗房被顯影劑沾到的工作痕跡。現在的實驗都用數位影像,研究生恐怕連底片長什麼樣子都不知道。」

邱文泰回憶,數位顯微影像甫推出的時候,學術圈同儕普遍擔心著名期刊不接受新式的數位影像。「誰知道兩三年後,再也沒有人在暗房洗底片!接下來的細胞生物學家,實驗衣都很潔白。」

邱文泰說明,生物學研究會隨著技術演進,愈必要的技術,帶來的改變愈快。他舉例道「傳統的顯微影像以 2D 形式為主,對生物體的模擬有限。3D 影像將是未來生物學研究不可避免的趨勢。」

-----廣告,請繼續往下閱讀-----

不僅植入螢光蛋白、使螢光蛋白遺傳、分子標定等技術成為細胞生物學研究的基本配備,科學家還需要精密的顯微設備才能拍好實驗成果。

生醫光學影像核心平台 共享儀器降低門檻,帶來交流

邱文泰說,儀器的成本與操作的確會形成實驗門檻,因此成大醫學院營運生醫光學影像核心平台,聚集校內學者的貴重光學儀器,由專門經理、技術員負責保養、補充、操作事宜。每個實驗室的成員,甚至附近學校的師生、生技廠商都可以申請使用,僅需負擔相當低廉的費用。

研究生在生醫影像核心平台合作使用倒立雷射共軛焦顯微鏡。

平台內許多貴重儀器都是沈孟儒(成大藥理所特聘教授,現任成大校長)、邱文泰等學者主動提供,他們也樂意無償提供使用教學。擔任平台主持人的邱文泰說,共用貴重儀器可以提升學術圈的整體利益,不但儀器的價值得以充分發揮,研究者們也可以透過平台交流彼此的技術專長。

他舉例道,「最直接的方法,就是看誰最常登記使用特定儀器,就表示他很擅長那項技術,需要的時候可以直接請求合作。」若儀器都留在各自的實驗室裡,這種交流學習的機會無法出現。研究者也不容易嘗試不同儀器的功能,討論不同儀器的優劣長短。

-----廣告,請繼續往下閱讀-----

最嚴格的細胞生物學,點燃學術興趣

邱文泰說,自己出身苗栗鄉間,選填大學志願時沒有明確志向,只想離家遠一點。他覺得自然與生物是成長過程中熟悉的一部分,就選填了大多數的生物學科系。就讀成大生物學系,是分發之下的偶然。

在成大生物學系,周遭同學紛紛進入實驗室做專題,邱文泰卻直到大三還沒建立學術志向。直到的必修課「細胞生物學」結束後,他對實驗的興趣才被點燃。那門課由甫從美國歸來的陳虹樺老師任教,教學與考試都相當嚴格緊湊。

邱文泰回憶當年的細胞生物學課說,「期中考和期末考要寫滿四個小時,而且幾乎全部是申論題。考前壓力很大。」但也因為如此嚴格的學習要求,他踏實地讀完課本上每一個字。通過期末考後,心中充滿成就感,決定加入細胞生理相關的實驗室進行專題研究。

融合美式獨立與日式嚴謹,潛移默化的學術人格培養

求學階段多在成大吸收養分,現在也致力培育成大學生的邱文泰,認為對自己影響最深刻的,是湯銘哲(現任成大生理所特聘教授)和沈孟儒兩位學者的風範。

-----廣告,請繼續往下閱讀-----

邱文泰說,「湯銘哲老師的心胸開闊,重視自由探索與獨立研究,可說是典型美式風格的學者。碩士班學生的題目要自己發想、設計方法,老師負責引導大方向。」而且湯銘哲對學術同儕非常慷慨大方,隔壁實驗室來借任何耗材與設備,或是需要技術協助,他總是樂意援助。

邱文泰笑說,正因為這種慷慨大方,湯銘哲實驗室的成員經常處於「幫助鄰人」的狀態。他回憶說,「當時覺得很忙碌,但成為實驗室主持人之後,發現自己已經被這種風格潛移默化了。」

邱文泰也以樂於分享、協助的風格領導實驗室。他說,「我的學生也經常幫助其他實驗室的同學,我希望他們在互助、分享的氣氛中成長,成為心胸開闊的人。」

自博士班第二年開始,邱文泰加入新成立的沈孟儒實驗室,接受共同指導。他說,「沈孟儒校長是日式風格的學者,對研究與學術寫作追求完美的高標準。他如果看你的論文草稿寫錯超過三個字,就會請你拿回去重寫。」

邱文泰讚賞說,沈孟儒對科學研究的嚴謹要求,是他的職業楷模。他打開會議室的鐵櫃,數十本厚實日誌整齊排列其中。他說「因為沈老師的指導,我直到今天持續寫著實驗日誌,確實記錄每一天的實驗內容。對學生,我也要求交出完整的實驗日誌,才能從我的實驗室畢業。」

嚴謹治學的風格,呈現在邱文泰的實驗室管理,他們的藥品、抗體集合收納且全體共用,每個人都使用相同規格的研究材料。不會出現各用一套藥品,劑量、藥效不同,實驗結果難以重複的狀況。

他說,「材料的品質控制與共享,對實驗成果的精準化和均一化就是一件好事,也是科學研究的必要。」

邱文泰嚴格要求實驗室各種藥品、器材的擺放秩序,收納之後要編寫目錄和標示,任何人都能一目了然。他打趣說,「小偷闖進我們實驗室,根本不需要翻箱倒櫃,他可以按圖索驥找到所有東西。」

這種嚴謹的管理風格深刻地影響邱文泰的學生。他舉例說,一位博士班畢業生回到廈門大學擔任實驗室經理,按照邱文泰一致化與秩序化的風格整理實驗室,不但讓同事感到驚喜,連周遭實驗室的經理也紛紛來學習這種實驗室管理。

融會了兩位迥然不同的成大傑出學者風範,邱文泰長年投入引導成大學生對知識產生興趣,潛移默化對物嚴謹、對人開闊的高尚人格。因此數次獲得輔導、教學方面的優良教師獎。

鮮為人知的是,他其實差點成為高中教師,遠離成大的學術環境。

探索未知,比收入和安穩的生涯更重要

回憶起職涯轉捩點,邱文泰說,「那是人生最困難的決定。我剛退伍就在台南女中得到正式教師職位。眼看有個穩定、待遇不差的職業選擇,卻又被邀請回去讀博士班。」

邱文泰的考慮相當務實:高中教師的薪資高於社會平均、有退休保障,上下班時間穩定還有寒暑假。而博士班學生薪資不如高中教師,更不容易保持生活與工作的平衡。

收入和閒暇時間考量之外,邱文泰更重視學生對知識的態度,他回憶說,「我喜歡對高中生分享最新科學消息,例如當年諾貝爾獎得主與研究內容。」學生們的反應卻是「這些會考嗎?」

高中生在升學制度訓練下,認為只有考試相關的科學知識才是重要的,而高中教師也必須精熟解題技巧。邱文泰坦承,「我體會到,自己並不想走上鑽研教科書上既定知識與解題技巧的職涯。對我來說,更想要的是親手研究、接觸未知。」

邱文泰說,「跟我同屆考上高中老師的同學已經準備退休,而我還在規劃新的研究計畫、主持與眾人研究息息相關的生醫影像核心平台,但是我覺得這樣很充實。」

主持儀器共享平台,減少科學社群的資本差距;傳授學生知識與潛移默化的人格教育,對邱文泰來說毫無義務感,而是讓生醫領域更加蓬勃明朗的充沛機會。

查看原始文章

討論功能關閉中。

顯微觀點_96
9 篇文章 ・ 3 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。