13

47
13

文字

分享

13
47
13

台灣的希望?蛋白質類型疫苗——高端疫苗簡介

miss9_96
・2021/04/23 ・5862字 ・閱讀時間約 12 分鐘 ・SR值 630 ・十年級

編按:2021/7/19 高端疫苗於今日通過衛生福利部食品藥物管理署核准通過通過緊急使用授權(EUA),相關數據如下:

1.高端疫苗組與AZ疫苗組之原型株活病毒中和抗體幾何平均效價比值(geometric mean titer ratio, GMTR)的95%信賴區間下限為3.4倍,遠大於標準要求0.67倍。

2.高端疫苗組的血清反應比率(sero-response rate)的95%信賴區間下限為95.5%,遠大於標準要求50%。

編按:2021/6/10 高端疫苗開設二期解盲記者會,提供相關臨床數據。為讓讀者能有更全面的資訊,在此將內容補充至文章當中。

安全性:
1) 安全與耐受性良好
2) 不良反應,安慰劑組:疫苗組
▪發燒 0.4% : 0.7%
▪疲勞 29.7% : 36%
▪肌肉痛 16.6% : 27.6%
▪頭痛 20% : 22.2%
▪腹瀉 12.6% : 15.1%
▪注射處疼痛 23.3% : 71.2%
▪注射處紅斑 0% : 4.9%
▪注射處腫 0% : 10.5%
不良反應的情況,顯示和 Novavax 疫苗接近的狀態,相較於 mRNA、腺病毒疫苗相比,發燒比率極低。注射部位疼痛較明顯。

有效性:
3) 不區分年齡,施打疫苗後,產生血清的人,比率約99.8%
4) 中壯年 (20-64歲),施打疫苗後,產生血清的人,比率約99.9%
5) 不區分年齡,施打疫苗後,血清的中和抗體校價 (GMT titer)為662
6) 中壯年 (20-64歲),施打疫苗後,血清的中和抗體校價 (GMT titer)為733
顯示高端疫苗可誘發針對抗原的抗體,而且幾乎每個人都可以產生抗體。但中和抗體校價等,因為不知道實驗條件,暫無法得知其效益。

新聞稿記者會直播在此。

國內的高端疫苗於 3/30 宣布,二期試驗受試者可在 4 月底接種第二劑,最快可在 6 月初向食品藥物管理署申請專案許可。本文介紹高端疫苗的設計原理、優劣,和挑戰。

總統視導「高端疫苗公司」,並參觀實驗室及疫苗產線。圖/總統府

蛋白質類型疫苗的優勢

上世紀 80 年代以前,疫苗的來源就只有活著和死掉的病毒兩種;但以整顆病毒做為疫苗,有其風險和障礙

  • 安全面:
    活病毒類型疫苗而言,雖然內容物是低毒性的改良病毒株,也可能會在人體內突變回高毒性的野生株病毒,並因此得病(如:小兒麻痺沙賓疫苗,約 270 萬劑裡,會出現 1 例因疫苗而導致小兒麻痺[1])。

    死病毒類型疫苗來說,曾發生藥廠不夠嚴謹、政府監管倉促的「卡特事件(Cutter incident)」。藥廠未能完全殺死病毒,導致疫苗裡仍有高毒性的小兒麻痺活病毒;導致4萬名兒童因接種疫苗而染病、近兩百人終身癱瘓、10 人死亡[2]

    面對高致死、致殘性的疾病,以整顆病毒做為抗原,相當冒險
  • 製程面:
    部分病毒難以在實驗室大量生產,如:B 型肝炎病毒、HPV 病毒,故此類疾病無法用傳統疫苗技術開發。

借助上世紀中期、基因工程的高速發展,人類終於在 1986 年開發出首個基因重組的蛋白質類型疫苗(B 型肝炎)[註1]。此類疫苗僅含病毒蛋白,和增強免疫的佐劑(adjuvant)。換言之,人類只需找到能關鍵的病毒蛋白,就能開發出該疾病的疫苗了。

B 肝疫苗。圖/Wikipedia

在新型冠狀病毒疾病(COVID-19)疫情中,採蛋白質疫苗策略的有:台灣高端疫苗、聯亞疫苗、美國 Novavax 疫苗、古巴主權(Soberana)疫苗等。在此疫苗大戰裡,這類疫苗的優勢為:

  • 儲存 / 運輸:
    相較於 mRNA 疫苗必須冷凍保存(約 -20℃),蛋白質類型疫苗僅需冷藏(約 4℃),較為友善
  • 接種經驗:
    相較於 mRNA、腺病毒載體疫苗未曾在歷史上大規模施打的履歷,蛋白質類型疫苗從發明以來,以透過 B 型肝炎疫苗、HPV 疫苗的千萬人接種,證明該類型疫苗有良好的安全和效力。
  • 血栓併血小板低下
    (VITT, vaccine-induced immune thrombotic thrombocytopenia)之疫苗副作用:經大規模施打,牛津、嬌生疫苗皆疑似出現極罕見的瀰漫性血栓合併血小板低下副作用,可能是疫苗內未被包裹住帶負電的 DNA 所致,現已多國停止施打。而蛋白質類型疫苗內容沒有病毒載體或帶負電的核酸,較無此罕見副作用疑慮

高端疫苗的 COVID-19 疫苗的優勢

如前所述,蛋白質類型疫苗有兩個關鍵:「抗原」與「佐劑」

1. 抗原

早在 2002 年爆發 SARS 後,科學界認知,新興傳染病將越趨常見,因此逐漸投入各種基礎的病毒研究,如:結構、生活史、廣譜型藥物等,並冀望能幫助未來的人類對抗未知的世紀瘟疫。

以冠狀病毒疫苗而言,最佳的抗原選擇是棘蛋白(spike protein)。它分布在病毒表面,同時也是結合人體細胞的關鍵蛋白。若能訓練白血球認得棘蛋白、產出抗體,將可做為阻止感染、預防重症的最佳策略。

而長年的研究,科學家發現冠狀病毒們(如:SARS-CoV,MERS-CoV 和 HKU1-CoV),棘蛋白和細胞表面受器結合後,會改變蛋白質結構;後續細胞和病毒、兩者的膜會融合、注入病毒 RNA。再經實驗發現,相較於膜融合後的棘蛋白結構,融合前的蛋白質結構(prefusion conformation),能誘發更高的抗體[3],因此融合前的棘蛋白,是最佳的疫苗抗原的選擇

但有個問題是,單獨存在的棘蛋白,結構並不穩定,極易自然形變、分解。因此美國國家過敏和傳染病研究所(National Institute of Allergy and Infectious Diseases, NIAID)透過修飾、調整胺基酸,使棘蛋白能保持穩定的融合前結構[3],以期達到誘發抗原的最大化。針對 COVID-19,高端疫苗的抗原選用穩定態的融合前棘蛋白,採用美國 NIAID 策略,將棘蛋白胺基酸-K986 和 V987 改成脯氨酸(P / Proline)、維持融合前結構,也針對易被分解的位置、改造了胺基酸( 682-RRAR-685改成 682-GSAS-685),賦予棘蛋白抵抗分解的特性[4]。讓高端疫苗內含的棘蛋白,維持誘發高度抗體的融合前結構。採取類似優化策略的還有美國 Novavax 等

輝瑞-BNT、莫德納、Novavax和高端之抗原胺基酸序列。圖/作者厲害的大學同學
COVID-19 疫苗的抗原策略。表/參考文獻 5

2. 佐劑

蛋白質類型疫苗,由於缺乏「感染人體細胞」的步驟,能誘發的免疫反應通常較弱,因此會加佐劑強化疫苗。佐劑依原理分為三類:讓局部組織發炎(damage-associated molecular patterns-type adjuvants)、模仿病原體入侵訊號 (pathogen-associated molecular patterns-type adjuvants),和讓白血球更有效捕獲疫苗(particulate adjuvants)等類型[7]

佐劑能強化人體對疫苗的反應,進而降低疫苗裡抗原蛋白的用量、減輕製程壓力、加速疫苗生產。而部分族群(如:嬰幼兒、老年)的免疫系統尚未成熟,或老化,故對疫苗的反應較弱。透過添加佐劑,能安全地提高疫苗對她們免疫系統的反應。

高端疫苗同時混合兩種佐劑-CpG 的 DNA 序列和鋁鹽[6]。鋁鹽等能引起局部發炎,吸引樹突、巨噬細胞聚集,進而活化後天免疫系統、產生抗體和記憶型免疫細胞。現已商用的 HPV 疫苗(保蓓 / Cervarix,葛蘭素史克)、B 型肝炎疫苗(安在時 / Engerix-B,葛蘭素史克)都使用鋁鹽佐劑。而 CpG 的 DNA 序列可做為佐劑的原理,是而動物細胞遇到 DNA 時,可透過細微的差異,判定該 DNA 是否為細菌入侵者。由於高端疫苗中的 CpG 的 DNA 序列,缺乏甲基化(methylation)修飾,能模仿原核生物的 DNA 特徵,活化免疫細胞的第九型類鐸受體(Toll-like receptors / TLRs),導致發炎反應、讓細胞拉起假警報。目前已在商用的 B 型肝炎疫苗(Heplisav-B)裡,即採用 CpG 的 DNA 做為佐劑。

-----廣告,請繼續往下閱讀-----

高端疫苗的動物實驗、一期人體試驗

疫苗的臨床試驗,在動物實驗成功後,會進行三階段的臨床試驗:

  1. 安全性、劑量與濃度。通常數十人。找健康人。
  2. 免疫反應(通常指血清的抗體濃度)。通常數百至千人。找健康人。
  3. 有效性(指「避免被感染」或「防止感染後惡化成重症」)、安全性(常見和少見的不良反應)。通常數千至數萬人。找健康人,在有疫情肆虐的區域,讓疫苗接受真實世界的考驗

高端疫苗已擁有動物試驗和一期臨床試驗結果;二期已在 2021 年 3 月展開。

良好的佐劑,在開發呼吸道疾病疫苗時,可提高誘發 TH1 免疫反應、降低 TH2 免疫反應。TH2 免疫反應會增加 IL-5 等發炎物質、活化嗜酸性白血球(eosinophil)。若疫苗誘發的免疫反應偏向 TH2 免疫反應,當野生病毒侵入人體,過度的 TH2 免疫反應反而會讓肺部出現嚴重的發炎反應、大量的白血球浸潤於肺臟,導致急性的肺損傷[8, 9]

接種疫苗後,再遭遇病毒後,反而可能會導致的疾病。圖/參考文獻 8

從高端疫苗的動物實驗發現,用不同佐劑組合刺激後,小鼠所誘發的血清抗體強度,CpG+ 鋁鹽組合的抗體濃度最高。

不同佐劑組合下,高端疫苗誘發的抗體中和強度。圖/參考文獻 4

而更重要的是,若僅用鋁鹽做為佐劑,疫苗誘發較多、較危險的 TH2 免疫反應,而高端疫苗加入 CpG 為佐劑,有效地將疫苗誘發的免疫力轉向 TH1 路徑、減少疫苗潛在的風險。動物實驗證實,選擇 CpG+ 鋁鹽為佐劑,能誘發更強、更安全的免疫反應

-----廣告,請繼續往下閱讀-----
不同佐劑組合下,高端疫苗誘發的免疫反應類型。IL-5, IL-6 可視為 TH2 免疫反應。圖/參考文獻4

高端疫苗的臨床一期試驗裡,自願者分為三組(各 15 人),注射了5μg、15μg 和25μg 三種劑量。可發現,抗體強度隨劑量增強,且多數接種者產生可以中和病毒的抗體,且抗體強度和康復者接近、或更強[6][註2]

不同劑量的高端疫苗,所產生的抗體強度。圖/參考文獻6

高端疫苗的挑戰

高端疫苗已在今年 3 月展開二期試驗,但可能在未完成三期試驗的情況下,就和食藥署申請專案許可,此規畫令人擔憂。目前歐美核准之疫苗,如:輝瑞、Moderna、嬌生、牛津疫苗等,皆皆在疫區進行三期試驗,並在執行中看到一定效力、安全性數據,和真實的病毒對抗、展現保護力後,才向國家提交使用許可。倘若高端疫苗僅以二期試驗的抗體數據,延伸解讀為疫苗在真實世界的保護力,是冒險的做法。

二期試驗數據 ≠ 三期試驗數據 ≠ 疫苗真實保護力,最近的例子是 HIV(愛滋病疫苗)[註3]。今年3月的《新英格蘭醫學期刊/The New England Journal of Medicine》刊出,葛蘭素史克贊助的 ALVAC-HIV 疫苗三期臨床試驗失敗[10]。儘管該疫苗在二期試驗裡表現優秀、多數受試者產生愛滋病毒蛋白的抗體[11]。但在真實世界的考驗下,發現疫苗幾乎沒有保護力;兩年的追蹤下,疫苗組 138 人感染愛滋病毒、安慰劑組 133 人感染(疫苗:安慰劑人數約 1:1),達到提前終止的無效標準 [10]

因此可以了解,二期試驗數據 ≠ 疫苗在真實世界的保護力。儘管國產疫苗進度落後於歐美大廠,仍希望高端、聯亞等企業能完成三期試驗、在科學上證實國產疫苗的保護力,才能協助台灣人民抵禦病毒、保護健康。

-----廣告,請繼續往下閱讀-----
ALVAC-HIV疫苗三期試驗結果。圖/參考文獻10

保持冷靜,繼續前進。Keep Calm and Carry On.

註 1:第一個蛋白質類型疫苗是透過收集、純化 B 型肝炎患者血液內的病毒蛋白質而成,於 1981 年推出。後因成本、安全性等因素,被基因改造酵母菌產出病毒蛋白的製程所取代。

註 2:可惜的是,該報告沒有區分康復者血清(如:區分為重、中、輕症感染者)。若能區分康復者病況,就能進一步判斷疫苗免疫力強度的優劣。以 Novavax 的一期試驗報告為例,該報告細分不同病情的康復者血清,因此判斷 Novavax 疫苗,能誘發比有症狀感染者更強的抗體。

不同劑型的 Novavax 疫苗組合,對接種者抗體強度的影響。圖/參考文獻 6

註 3:引發愛滋病的病毒的名稱是人類免疫缺陷病毒(HIV),因此愛滋病是患者病況惡化後的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。為符合多數中文讀者的閱讀習慣,本文暫不區分。

參考文獻

  1. Vaccine-associated paralytic polio (VAPP) and vaccine-derived poliovirus (VDPV). WHO
  2. Paul-Henri Lambert (2006) A successful vaccine that missed its target. Nature Medicine. DOI: https://doi.org/10.1038/nm0806-879
  3. Prefusion Coronavirus Spike Proteins and Their Use. US National Institutes of Health/NIH
  4. Tsun-Yung Kuo, Meei-Yun Lin, Robert L. Coffman, John D. Campbell, Paula Traquina, Yi-Jiun Lin, Luke Tzu-Chi Liu, Jinyi Cheng, Yu-Chi Wu, Chung-Chin Wu, Wei-Hsuan Tang, Chung-Guei Huang, Kuo-Chien Tsao & Charles Chen (2020) Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Scientific Reports. DOI: https://doi.org/10.1038/s41598-020-77077-z
  5. Lianpan Dai & George F. Gao (2021) Viral targets for vaccines against COVID-19. Nature Reviews Immunology. DOI: https://doi.org/10.1038/s41577-020-00480-0
  6. Szu-Min Hsieh, Wang-Da Liu, Yu-Shan Huang, Yi-Jiun Lin, Erh-Fang Hsieh, Wei-Cheng Lian, et al. (2021) Safety and immunogenicity of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine (MVCCOV1901) Adjuvanted with CpG 1018 and Aluminum Hydroxide in healthy adults: A Phase 1, dose-escalation study. EClinicalMedicine.DOI: https://doi.org/10.1016/j.eclinm.2021.100989
  7. Ian R. Tizard (2021) Adjuvants and adjuvanticity. Vaccines for Veterinarians. DOI: 10.1016/B978-0-323-68299-2.00016-2
  8. Shan Su, Lanying Du & Shibo Jiang (2021) Learning from the past: development of safe and effective COVID-19 vaccines. Nature Reviews Microbiology. DOI: https://doi.org/10.1038/s41579-020-00462-y
  9. Andrew W. Lindsley MD, PhD, Justin T. Schwartz MD, PhD, Marc E.Rothenberg MD, PhD (2020) Eosinophil responses during COVID-19 infections and coronavirus vaccination. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2020.04.021
  10. Glenda E. Gray, M.B., B.Ch., Linda-Gail Bekker, M.B., Ch.B., Ph.D., Fatima Laher, M.B., B.Ch., Mookho Malahleha, M.B., Ch.B., M.P.H., Mary Allen, B.S.N., M.S., Zoe Moodie, Ph.D., Nicole Grunenberg, M.D., Yunda Huang, Ph.D., Doug Grove, M.S., Brittany Prigmore, M.S., Jia J. Kee, M.S., David Benkeser, Ph.D., et al., for the HVTN 702 Study Team (2021) Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C gp120–MF59 in Adults. The New England Journal of Medicine. DOI: 10.1056/NEJMoa2031499
  11. Fatima Laher, Zoe Moodie, Kristen W Cohen, Nicole Grunenberg, Linda-Gail Bekker, Mary Allen, Nicole Frahm, Nicole L Yates, Lynn Morris, Mookho Malahleha, Kathryn Mngadi, Brodie Daniels, Craig Innes, Kevin Saunders, Shannon Grant, Chenchen Yu, Peter B Gilbert, Sanjay Phogat, Carlos A DiazGranados, Marguerite Koutsoukos, Olivier Van Der Meeren, Carter Bentley, Nonhlanhla N Mkhize, Michael N Pensiero, Vijay L Mehra, James G Kublin, Lawrence Corey, David C Montefiori, Glenda E Gray, M Juliana McElrath, Georgia D Tomaras (2020) Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: A randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1003038

除了高端疫苗,Novavax 疫苗也屬於蛋白質疫苗的一員,快來看看它們的原理吧!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 13
miss9_96
170 篇文章 ・ 1130 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
異體幹細胞移植後必讀:GvHD 發生原因、症狀與治療一次看懂
careonline_96
・2025/11/27 ・3766字 ・閱讀時間約 7 分鐘

異體幹細胞移植(骨髓移植)患者必看!移植物抗宿主疾病(GvHD)常見五問 血液專科醫師詳解

「那是一位30多歲的女性患者,因為急性骨髓性白血病(Acute Myeloid Leukemia,簡稱AML)接受異體幹細胞移植(俗稱骨髓移植)。」臺大癌醫中心血液腫瘤部劉家豪醫師表示,「移植一年後,該名患者發生慢性移植物抗宿主疾病(Graft-versus-Host Disease,簡稱GvHD),並發生皮膚硬化的狀況,硬化的皮膚如同一層囹圄一樣禁錮著患者身體,使她無法靈活活動,甚至無法蹲下、沒辦法使用蹲式廁所。」

劉家豪醫師說,因為第一線類固醇治療成效有限,經過討論後,患者決定接受標靶藥物。終於控制慢性移植物抗宿主疾病(GvHD),硬皮症的狀況也終於獲得改善,今日已可正常活動,重拾自己的生活品質。

第一問:移植物抗宿主疾病(GvHD)是異體造血幹細胞移植(骨髓移植)「必要之惡」?為何會發生?

血液疾病的患者,因為自身造血功能出了差錯,如再生不良性貧血或骨髓化生不良症候群,或是罹患白血病或抗藥性淋巴癌,需要捐者的免疫系統的抗癌效果,就可能需要進行進行異體幹細胞移植(骨髓移植)。劉家豪醫師形容,異體骨髓移植後除了換掉舊的骨髓,隨著捐者的骨髓進入病患體內,製造所有的白血球,重建免疫系統,就像進駐一批全新的警察,會在血液裡巡邏,看到癌細胞就會予以殲滅,即進行一種癌症免疫療法。但這些警察也可能看到其他器官不是自己的,而攻擊患者的器官,進而產生『移植物抗宿主疾病(GvHD)』,俗稱為『反排斥』。

捐贈者與受贈者的細胞都具有獨特的人類白血球抗原(Human Leukocyte Antigen,簡稱HLA)其有如門禁卡,可以幫助警察系統辨認該細胞是不是「自己人」。異體幹細胞移植(骨髓移植)前,都會檢測HLA。捐贈者與受贈者的完全相符,反排斥機會較低。現在因為藥物等的進步,HLA配對不合或半相合的捐贈者移植也可以執行且日益增多的,因此這類反排斥也日益增多。

-----廣告,請繼續往下閱讀-----

但因為反排斥的發生,表示捐贈者免疫系統開始活躍殲滅癌細胞,因此沒有反排斥發生的病患,癌症反而復發機會可能較高。這種額外的抗癌的效果,是骨髓幹細胞移植擁有與其他固態器官移植最大不同之處,其是治癌的一個手段。現在的醫學還無法做到讓捐者的免疫系統,只攻擊癌細胞而不攻擊宿主。劉家豪醫師鼓勵,「所以這個反排斥又稱為必要之惡。有時臨床上停掉抗排斥藥後仍沒有反排斥發生時,甚至會採取輸注淋巴球等手段,來刻意誘發輕微的反排斥,以降低復發率,提升患者移植的成功率。因為移植後最大的敵人反而是復發,也就是癌症本身。」因此在患者與家屬得知發生反排斥時,反而有些人不會覺得不開心。

第二問:如何減少重症移植物抗宿主疾病(GvHD)的發生?

劉家豪醫師說明,既然反排斥為必要之惡,但又不要太嚴重,若過度嚴重的反排斥又可能致命,所以如何控制反排斥有一點發生,卻不要太嚴重,就像當年米飯廣告詞「有點黏又不要太黏」,有發生反排斥又不要太多反排斥,就是醫師要傷腦筋和密切調整的部分。

如何減少重症的反排斥的發生呢? 密切觀察,早期發現異狀,跟醫師保持聯繫是重要的。一些骨髓移植中心會設立移植個案管理師,24小時隨時讓病患通報可能的症狀。增加衛教資訊,讓病患和家屬知道GvHD的表現有哪些,要觀察的項目有哪些也是努力的目標。總之,早期診斷早期治療,是減少其演變成過度重症反排斥的關鍵。

第三問:哪些時間點可能會發生移植物抗宿主疾病(GvHD)?

過去移植物抗宿主疾病(GvHD)的分類方式,是以異體幹細胞移植(骨髓移植)後100天為界限,100天內發生屬於急性,100天以後則為慢性。劉家豪醫師說,今日不再單純的以天數為判斷標準,而是更精準的依據臨床表現區分。因為在臨床上,有些患者在移植後40至50天就會發生慢性移植物抗宿主疾病(GvHD);相反地,超過100天仍可能出現急性表現。因此,患者可能同時發生急性與慢性移植物抗宿主疾病(GvHD)。

-----廣告,請繼續往下閱讀-----

劉家豪醫師也詳述急性與慢性移植物抗宿主疾病(GvHD)兩者的差異:

  • 急性移植物抗宿主疾病(GvHD):常侵犯三個主要器官皮膚、腸道、肝臟。皮膚會出現紅疹或皮疹,腸道受影響會導致腹瀉、噁心、嘔吐,肝臟受影響會使膽紅素升高而出現黃疸。其中腹瀉最危險,須立即通報。
  • 慢性移植物抗宿主疾病(GvHD):侵犯器官範圍更廣,例如肺臟、口腔、眼睛、皮膚、指甲等。肺臟受影響會導致呼吸困難;口腔可能出現發炎、白色斑塊、潰瘍,對辛辣刺激食物敏感;眼睛可能會有乾澀、異物感、甚至角膜潰瘍、影響視力;皮膚會出現色素不均、乾燥,甚至少見的皮膚關節緊繃的硬皮症;指甲會變薄、斷裂;私密陰道或陰莖可能乾澀發炎,造成性交疼痛等。程度和發生率不一,發生可以很少很輕微也可以很多和嚴重。
什麼是植物抗宿主疾病

第四問:如何及早發現慢性移植物抗宿主疾病(GvHD)?

因為相比於急性移植物抗宿主疾病(GvHD)容易在短時間內造成生命威脅,患者普遍都有謹慎面對的共識;但慢性移植物抗宿主疾病(GvHD)初期的影響輕微、緩慢,容易被患者輕視。慢性反排斥較多只是影響生活品質,但其中唯一延誤發現,到晚期較可能發生生命危險的是肺部GvHD,其發生率很低,但因為進展緩慢,可能在發生呼吸困難等嚴重症狀後,才會在回診告知。但那時候肺功能檢查往往已經過度惡化,即使用藥,也已較難顯著恢復。劉家豪醫師說,現在我們強調早期偵測的重要性,除了病患要警覺,肺活量在運動中變化而告知醫護以外,醫師定期檢查也可以早期抓出肺部反排斥。

劉家豪醫師強調「三吹四請」是揪出慢性移植物抗宿主疾病(GvHD)的關鍵:

  • 「三吹」:指的是骨髓移植後一年內,患者要每三個月定期接受肺功能檢查,避免肺功能惡化而不自知
  • 「四請」:請留意肺功能、皮膚、眼睛、口腔這四個最容易產生病灶的部位。如果出現咳嗽、喘、皮膚緊繃、眼睛乾澀、口腔發炎潰瘍等症狀,要及早告知醫師。
「三吹四請」提防移植物抗宿主疾病

第五問:如何治療慢性移植物抗宿主疾病(GvHD)?

移植物抗宿主疾病(GvHD)的第一線治療以類固醇為主角,和需要時加上排斥藥物。但仍有不少患者控制成效不佳或對類固醇依賴。長期使用類固醇之下,患者可能會增加感染、骨質疏鬆、股骨頭壞死、白內障、月亮臉、肌肉病變等的機會。劉家豪醫師說,治療反應不佳,或是無法降低類固醇劑量的患者也無須恐慌,在第二線治療已有健保標靶藥物可能可以使用,能在更安全的狀況下,幫助患者控制慢性移植物抗宿主疾病(GvHD)。及早發現、積極治療能夠幫助緩解症狀,改善生活品質。

-----廣告,請繼續往下閱讀-----

也提醒,除了藥物治療外,患者也要留意日常照護,包括對皮膚反排斥做好敏感皮膚的防曬、乾燥皮膚的保濕;對眼睛反排斥做好眼睫毛周圍的清潔、減少風吹和過度用眼,及尋求眼科醫師的協助;對口腔反排斥減少辛辣刺激食物、用不刺激的兒童牙膏、定期口腔檢查觀察口腔黏膜病變;對於肺部排斥,規律的運動可以及早偵測到肺活量的降低和不正常的喘;對於生殖器官的反排斥,尋求婦產科或泌尿科的協助,如潤滑液、女性荷爾蒙凝膠等。及務必依照指示用藥、按時回診,如果有出現任何症狀,都要盡快告知醫師或管理師,並積極接受治療!

移植物抗宿主疾病治療重點

筆記重點整理

  • 異體造血幹細胞移植(骨髓移植)後,因為捐者的免疫系統可能攻擊接受者,發生移植物抗宿主疾病(GvHD)。但這可能是必要之惡,是治癌的一個手段,可以降低復發率。
  • 移植物抗宿主疾病(GvHD)分為急性或慢性,兩者可能同時發生。前者常侵犯三個主要器官皮膚、腸道、肝臟;皮膚可能會出現紅疹,腸道會有腹瀉、嘔吐,肝臟會有黃疸等症狀。慢性GvHD侵犯器官範圍更廣,例如肺臟、口腔、眼睛、皮膚、指甲等。
  • 請掌握「三吹四請」,「三吹」指的是異體幹細胞移植(骨髓移植)後一年內,每三個月接受一次肺功能檢查;「四請」則是請留意肺功能、皮膚、眼睛、口腔這四個最容易受到影響的部位,如果出現咳嗽、喘、皮膚緊繃、眼睛乾澀、口腔發炎等症狀,要及早告知醫師。
  • 針對慢性移植物抗宿主疾病(GvHD),第一線治療以類固醇為主,但有患者治療成效不佳;若長期用藥,也要小心感染、骨質疏鬆、月亮臉、股骨頭壞死等副作用。但治療反應不佳,或是無法降低類固醇劑量的患者,今日在第二線治療已有標靶藥物可使用,能夠在更安全的狀況下,幫助患者控制慢性移植物抗宿主疾病(GvHD)。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。