13

47
13

文字

分享

13
47
13

台灣的希望?蛋白質類型疫苗——高端疫苗簡介

miss9_96
・2021/04/23 ・5862字 ・閱讀時間約 12 分鐘 ・SR值 630 ・十年級

-----廣告,請繼續往下閱讀-----

編按:2021/7/19 高端疫苗於今日通過衛生福利部食品藥物管理署核准通過通過緊急使用授權(EUA),相關數據如下:

1.高端疫苗組與AZ疫苗組之原型株活病毒中和抗體幾何平均效價比值(geometric mean titer ratio, GMTR)的95%信賴區間下限為3.4倍,遠大於標準要求0.67倍。

2.高端疫苗組的血清反應比率(sero-response rate)的95%信賴區間下限為95.5%,遠大於標準要求50%。

編按:2021/6/10 高端疫苗開設二期解盲記者會,提供相關臨床數據。為讓讀者能有更全面的資訊,在此將內容補充至文章當中。

安全性:
1) 安全與耐受性良好
2) 不良反應,安慰劑組:疫苗組
▪發燒 0.4% : 0.7%
▪疲勞 29.7% : 36%
▪肌肉痛 16.6% : 27.6%
▪頭痛 20% : 22.2%
▪腹瀉 12.6% : 15.1%
▪注射處疼痛 23.3% : 71.2%
▪注射處紅斑 0% : 4.9%
▪注射處腫 0% : 10.5%
不良反應的情況,顯示和 Novavax 疫苗接近的狀態,相較於 mRNA、腺病毒疫苗相比,發燒比率極低。注射部位疼痛較明顯。

有效性:
3) 不區分年齡,施打疫苗後,產生血清的人,比率約99.8%
4) 中壯年 (20-64歲),施打疫苗後,產生血清的人,比率約99.9%
5) 不區分年齡,施打疫苗後,血清的中和抗體校價 (GMT titer)為662
6) 中壯年 (20-64歲),施打疫苗後,血清的中和抗體校價 (GMT titer)為733
顯示高端疫苗可誘發針對抗原的抗體,而且幾乎每個人都可以產生抗體。但中和抗體校價等,因為不知道實驗條件,暫無法得知其效益。

新聞稿記者會直播在此。

國內的高端疫苗於 3/30 宣布,二期試驗受試者可在 4 月底接種第二劑,最快可在 6 月初向食品藥物管理署申請專案許可。本文介紹高端疫苗的設計原理、優劣,和挑戰。

總統視導「高端疫苗公司」,並參觀實驗室及疫苗產線。圖/總統府

蛋白質類型疫苗的優勢

上世紀 80 年代以前,疫苗的來源就只有活著和死掉的病毒兩種;但以整顆病毒做為疫苗,有其風險和障礙

  • 安全面:
    活病毒類型疫苗而言,雖然內容物是低毒性的改良病毒株,也可能會在人體內突變回高毒性的野生株病毒,並因此得病(如:小兒麻痺沙賓疫苗,約 270 萬劑裡,會出現 1 例因疫苗而導致小兒麻痺[1])。

    死病毒類型疫苗來說,曾發生藥廠不夠嚴謹、政府監管倉促的「卡特事件(Cutter incident)」。藥廠未能完全殺死病毒,導致疫苗裡仍有高毒性的小兒麻痺活病毒;導致4萬名兒童因接種疫苗而染病、近兩百人終身癱瘓、10 人死亡[2]

    面對高致死、致殘性的疾病,以整顆病毒做為抗原,相當冒險
  • 製程面:
    部分病毒難以在實驗室大量生產,如:B 型肝炎病毒、HPV 病毒,故此類疾病無法用傳統疫苗技術開發。

借助上世紀中期、基因工程的高速發展,人類終於在 1986 年開發出首個基因重組的蛋白質類型疫苗(B 型肝炎)[註1]。此類疫苗僅含病毒蛋白,和增強免疫的佐劑(adjuvant)。換言之,人類只需找到能關鍵的病毒蛋白,就能開發出該疾病的疫苗了。

B 肝疫苗。圖/Wikipedia

在新型冠狀病毒疾病(COVID-19)疫情中,採蛋白質疫苗策略的有:台灣高端疫苗、聯亞疫苗、美國 Novavax 疫苗、古巴主權(Soberana)疫苗等。在此疫苗大戰裡,這類疫苗的優勢為:

  • 儲存 / 運輸:
    相較於 mRNA 疫苗必須冷凍保存(約 -20℃),蛋白質類型疫苗僅需冷藏(約 4℃),較為友善
  • 接種經驗:
    相較於 mRNA、腺病毒載體疫苗未曾在歷史上大規模施打的履歷,蛋白質類型疫苗從發明以來,以透過 B 型肝炎疫苗、HPV 疫苗的千萬人接種,證明該類型疫苗有良好的安全和效力。
  • 血栓併血小板低下
    (VITT, vaccine-induced immune thrombotic thrombocytopenia)之疫苗副作用:經大規模施打,牛津、嬌生疫苗皆疑似出現極罕見的瀰漫性血栓合併血小板低下副作用,可能是疫苗內未被包裹住帶負電的 DNA 所致,現已多國停止施打。而蛋白質類型疫苗內容沒有病毒載體或帶負電的核酸,較無此罕見副作用疑慮

高端疫苗的 COVID-19 疫苗的優勢

如前所述,蛋白質類型疫苗有兩個關鍵:「抗原」與「佐劑」

1. 抗原

早在 2002 年爆發 SARS 後,科學界認知,新興傳染病將越趨常見,因此逐漸投入各種基礎的病毒研究,如:結構、生活史、廣譜型藥物等,並冀望能幫助未來的人類對抗未知的世紀瘟疫。

以冠狀病毒疫苗而言,最佳的抗原選擇是棘蛋白(spike protein)。它分布在病毒表面,同時也是結合人體細胞的關鍵蛋白。若能訓練白血球認得棘蛋白、產出抗體,將可做為阻止感染、預防重症的最佳策略。

而長年的研究,科學家發現冠狀病毒們(如:SARS-CoV,MERS-CoV 和 HKU1-CoV),棘蛋白和細胞表面受器結合後,會改變蛋白質結構;後續細胞和病毒、兩者的膜會融合、注入病毒 RNA。再經實驗發現,相較於膜融合後的棘蛋白結構,融合前的蛋白質結構(prefusion conformation),能誘發更高的抗體[3],因此融合前的棘蛋白,是最佳的疫苗抗原的選擇

但有個問題是,單獨存在的棘蛋白,結構並不穩定,極易自然形變、分解。因此美國國家過敏和傳染病研究所(National Institute of Allergy and Infectious Diseases, NIAID)透過修飾、調整胺基酸,使棘蛋白能保持穩定的融合前結構[3],以期達到誘發抗原的最大化。針對 COVID-19,高端疫苗的抗原選用穩定態的融合前棘蛋白,採用美國 NIAID 策略,將棘蛋白胺基酸-K986 和 V987 改成脯氨酸(P / Proline)、維持融合前結構,也針對易被分解的位置、改造了胺基酸( 682-RRAR-685改成 682-GSAS-685),賦予棘蛋白抵抗分解的特性[4]。讓高端疫苗內含的棘蛋白,維持誘發高度抗體的融合前結構。採取類似優化策略的還有美國 Novavax 等

輝瑞-BNT、莫德納、Novavax和高端之抗原胺基酸序列。圖/作者厲害的大學同學
COVID-19 疫苗的抗原策略。表/參考文獻 5

2. 佐劑

蛋白質類型疫苗,由於缺乏「感染人體細胞」的步驟,能誘發的免疫反應通常較弱,因此會加佐劑強化疫苗。佐劑依原理分為三類:讓局部組織發炎(damage-associated molecular patterns-type adjuvants)、模仿病原體入侵訊號 (pathogen-associated molecular patterns-type adjuvants),和讓白血球更有效捕獲疫苗(particulate adjuvants)等類型[7]

佐劑能強化人體對疫苗的反應,進而降低疫苗裡抗原蛋白的用量、減輕製程壓力、加速疫苗生產。而部分族群(如:嬰幼兒、老年)的免疫系統尚未成熟,或老化,故對疫苗的反應較弱。透過添加佐劑,能安全地提高疫苗對她們免疫系統的反應。

高端疫苗同時混合兩種佐劑-CpG 的 DNA 序列和鋁鹽[6]。鋁鹽等能引起局部發炎,吸引樹突、巨噬細胞聚集,進而活化後天免疫系統、產生抗體和記憶型免疫細胞。現已商用的 HPV 疫苗(保蓓 / Cervarix,葛蘭素史克)、B 型肝炎疫苗(安在時 / Engerix-B,葛蘭素史克)都使用鋁鹽佐劑。而 CpG 的 DNA 序列可做為佐劑的原理,是而動物細胞遇到 DNA 時,可透過細微的差異,判定該 DNA 是否為細菌入侵者。由於高端疫苗中的 CpG 的 DNA 序列,缺乏甲基化(methylation)修飾,能模仿原核生物的 DNA 特徵,活化免疫細胞的第九型類鐸受體(Toll-like receptors / TLRs),導致發炎反應、讓細胞拉起假警報。目前已在商用的 B 型肝炎疫苗(Heplisav-B)裡,即採用 CpG 的 DNA 做為佐劑。

-----廣告,請繼續往下閱讀-----

高端疫苗的動物實驗、一期人體試驗

疫苗的臨床試驗,在動物實驗成功後,會進行三階段的臨床試驗:

  1. 安全性、劑量與濃度。通常數十人。找健康人。
  2. 免疫反應(通常指血清的抗體濃度)。通常數百至千人。找健康人。
  3. 有效性(指「避免被感染」或「防止感染後惡化成重症」)、安全性(常見和少見的不良反應)。通常數千至數萬人。找健康人,在有疫情肆虐的區域,讓疫苗接受真實世界的考驗

高端疫苗已擁有動物試驗和一期臨床試驗結果;二期已在 2021 年 3 月展開。

良好的佐劑,在開發呼吸道疾病疫苗時,可提高誘發 TH1 免疫反應、降低 TH2 免疫反應。TH2 免疫反應會增加 IL-5 等發炎物質、活化嗜酸性白血球(eosinophil)。若疫苗誘發的免疫反應偏向 TH2 免疫反應,當野生病毒侵入人體,過度的 TH2 免疫反應反而會讓肺部出現嚴重的發炎反應、大量的白血球浸潤於肺臟,導致急性的肺損傷[8, 9]

接種疫苗後,再遭遇病毒後,反而可能會導致的疾病。圖/參考文獻 8

從高端疫苗的動物實驗發現,用不同佐劑組合刺激後,小鼠所誘發的血清抗體強度,CpG+ 鋁鹽組合的抗體濃度最高。

不同佐劑組合下,高端疫苗誘發的抗體中和強度。圖/參考文獻 4

而更重要的是,若僅用鋁鹽做為佐劑,疫苗誘發較多、較危險的 TH2 免疫反應,而高端疫苗加入 CpG 為佐劑,有效地將疫苗誘發的免疫力轉向 TH1 路徑、減少疫苗潛在的風險。動物實驗證實,選擇 CpG+ 鋁鹽為佐劑,能誘發更強、更安全的免疫反應

-----廣告,請繼續往下閱讀-----
不同佐劑組合下,高端疫苗誘發的免疫反應類型。IL-5, IL-6 可視為 TH2 免疫反應。圖/參考文獻4

高端疫苗的臨床一期試驗裡,自願者分為三組(各 15 人),注射了5μg、15μg 和25μg 三種劑量。可發現,抗體強度隨劑量增強,且多數接種者產生可以中和病毒的抗體,且抗體強度和康復者接近、或更強[6][註2]

不同劑量的高端疫苗,所產生的抗體強度。圖/參考文獻6

高端疫苗的挑戰

高端疫苗已在今年 3 月展開二期試驗,但可能在未完成三期試驗的情況下,就和食藥署申請專案許可,此規畫令人擔憂。目前歐美核准之疫苗,如:輝瑞、Moderna、嬌生、牛津疫苗等,皆皆在疫區進行三期試驗,並在執行中看到一定效力、安全性數據,和真實的病毒對抗、展現保護力後,才向國家提交使用許可。倘若高端疫苗僅以二期試驗的抗體數據,延伸解讀為疫苗在真實世界的保護力,是冒險的做法。

二期試驗數據 ≠ 三期試驗數據 ≠ 疫苗真實保護力,最近的例子是 HIV(愛滋病疫苗)[註3]。今年3月的《新英格蘭醫學期刊/The New England Journal of Medicine》刊出,葛蘭素史克贊助的 ALVAC-HIV 疫苗三期臨床試驗失敗[10]。儘管該疫苗在二期試驗裡表現優秀、多數受試者產生愛滋病毒蛋白的抗體[11]。但在真實世界的考驗下,發現疫苗幾乎沒有保護力;兩年的追蹤下,疫苗組 138 人感染愛滋病毒、安慰劑組 133 人感染(疫苗:安慰劑人數約 1:1),達到提前終止的無效標準 [10]

因此可以了解,二期試驗數據 ≠ 疫苗在真實世界的保護力。儘管國產疫苗進度落後於歐美大廠,仍希望高端、聯亞等企業能完成三期試驗、在科學上證實國產疫苗的保護力,才能協助台灣人民抵禦病毒、保護健康。

-----廣告,請繼續往下閱讀-----
ALVAC-HIV疫苗三期試驗結果。圖/參考文獻10

保持冷靜,繼續前進。Keep Calm and Carry On.

註 1:第一個蛋白質類型疫苗是透過收集、純化 B 型肝炎患者血液內的病毒蛋白質而成,於 1981 年推出。後因成本、安全性等因素,被基因改造酵母菌產出病毒蛋白的製程所取代。

註 2:可惜的是,該報告沒有區分康復者血清(如:區分為重、中、輕症感染者)。若能區分康復者病況,就能進一步判斷疫苗免疫力強度的優劣。以 Novavax 的一期試驗報告為例,該報告細分不同病情的康復者血清,因此判斷 Novavax 疫苗,能誘發比有症狀感染者更強的抗體。

不同劑型的 Novavax 疫苗組合,對接種者抗體強度的影響。圖/參考文獻 6

註 3:引發愛滋病的病毒的名稱是人類免疫缺陷病毒(HIV),因此愛滋病是患者病況惡化後的名稱,而非病毒的稱呼。但在中文的使用者習慣中,似乎會將兩者混用。為符合多數中文讀者的閱讀習慣,本文暫不區分。

參考文獻

  1. Vaccine-associated paralytic polio (VAPP) and vaccine-derived poliovirus (VDPV). WHO
  2. Paul-Henri Lambert (2006) A successful vaccine that missed its target. Nature Medicine. DOI: https://doi.org/10.1038/nm0806-879
  3. Prefusion Coronavirus Spike Proteins and Their Use. US National Institutes of Health/NIH
  4. Tsun-Yung Kuo, Meei-Yun Lin, Robert L. Coffman, John D. Campbell, Paula Traquina, Yi-Jiun Lin, Luke Tzu-Chi Liu, Jinyi Cheng, Yu-Chi Wu, Chung-Chin Wu, Wei-Hsuan Tang, Chung-Guei Huang, Kuo-Chien Tsao & Charles Chen (2020) Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Scientific Reports. DOI: https://doi.org/10.1038/s41598-020-77077-z
  5. Lianpan Dai & George F. Gao (2021) Viral targets for vaccines against COVID-19. Nature Reviews Immunology. DOI: https://doi.org/10.1038/s41577-020-00480-0
  6. Szu-Min Hsieh, Wang-Da Liu, Yu-Shan Huang, Yi-Jiun Lin, Erh-Fang Hsieh, Wei-Cheng Lian, et al. (2021) Safety and immunogenicity of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine (MVCCOV1901) Adjuvanted with CpG 1018 and Aluminum Hydroxide in healthy adults: A Phase 1, dose-escalation study. EClinicalMedicine.DOI: https://doi.org/10.1016/j.eclinm.2021.100989
  7. Ian R. Tizard (2021) Adjuvants and adjuvanticity. Vaccines for Veterinarians. DOI: 10.1016/B978-0-323-68299-2.00016-2
  8. Shan Su, Lanying Du & Shibo Jiang (2021) Learning from the past: development of safe and effective COVID-19 vaccines. Nature Reviews Microbiology. DOI: https://doi.org/10.1038/s41579-020-00462-y
  9. Andrew W. Lindsley MD, PhD, Justin T. Schwartz MD, PhD, Marc E.Rothenberg MD, PhD (2020) Eosinophil responses during COVID-19 infections and coronavirus vaccination. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2020.04.021
  10. Glenda E. Gray, M.B., B.Ch., Linda-Gail Bekker, M.B., Ch.B., Ph.D., Fatima Laher, M.B., B.Ch., Mookho Malahleha, M.B., Ch.B., M.P.H., Mary Allen, B.S.N., M.S., Zoe Moodie, Ph.D., Nicole Grunenberg, M.D., Yunda Huang, Ph.D., Doug Grove, M.S., Brittany Prigmore, M.S., Jia J. Kee, M.S., David Benkeser, Ph.D., et al., for the HVTN 702 Study Team (2021) Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C gp120–MF59 in Adults. The New England Journal of Medicine. DOI: 10.1056/NEJMoa2031499
  11. Fatima Laher, Zoe Moodie, Kristen W Cohen, Nicole Grunenberg, Linda-Gail Bekker, Mary Allen, Nicole Frahm, Nicole L Yates, Lynn Morris, Mookho Malahleha, Kathryn Mngadi, Brodie Daniels, Craig Innes, Kevin Saunders, Shannon Grant, Chenchen Yu, Peter B Gilbert, Sanjay Phogat, Carlos A DiazGranados, Marguerite Koutsoukos, Olivier Van Der Meeren, Carter Bentley, Nonhlanhla N Mkhize, Michael N Pensiero, Vijay L Mehra, James G Kublin, Lawrence Corey, David C Montefiori, Glenda E Gray, M Juliana McElrath, Georgia D Tomaras (2020) Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: A randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1003038

除了高端疫苗,Novavax 疫苗也屬於蛋白質疫苗的一員,快來看看它們的原理吧!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 13
miss9_96
170 篇文章 ・ 1083 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
流感合併肺炎鏈球菌感染恐致命?如何預防?肺炎鏈球菌疫苗接種方式介紹!
careonline_96
・2024/06/14 ・2739字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「千萬不可小看肺炎鏈球菌!歷史及醫學文獻上告訴我們,即使青壯年感染流行性感冒,合併肺炎鏈球菌感染,可能病程進展快速,短短 48 小時就過世,相當可怕!」台大醫院內科部感染科教授兼科主任陳宜君醫師指出,「如果肺炎鏈球菌由上呼吸道黏膜進入血液,可能侵襲各個器官,演變為侵襲性肺炎鏈球菌感染症。患者的狀況可能兵敗如山倒,而住進加護病房;可能因而器官衰竭,如肝腎功能受損,嚴重甚至導致洗腎。這些情況都讓家屬很難過、無法接受。」

侵襲性肺炎鏈球菌感染症確診數,在 2023 年底有明顯上升的趨勢,且感染案例數創三年新高1,民眾務必提高警覺。根據疾病管制署的統計,侵襲性肺炎鏈球菌感染症患者中,65 歲以上民眾佔了 44.5 %2。陳宜君醫師提醒,換言之有 55.5 % 是 65 歲以下民眾,比例超過一半。肺炎鏈球菌對各個年齡層都有影響,所以不是只有老年人,各年齡層都要注意。

不可輕忽!肺炎鏈球菌潛伏體內,流感合併肺鏈重症高四倍!

除了 5 歲以下嬰幼兒、65 歲以上老年人之外,還有許多族群屬於侵襲性肺炎鏈球菌感染症的高危險族群,包括慢性病患(如慢性腎病變、慢性心臟疾病、慢性肺臟病、糖尿病、慢性肝病、肝硬化患者)、酒癮者、菸癮者、脾臟功能缺損或脾臟切除、先天或後天免疫功能不全、人工耳植入者、腦脊髓液滲漏者、接受免疫抑制劑或放射治療的惡性腫瘤者或器官移植者3

此外,原本健康民眾在感染流行性感冒、新冠肺炎等病毒後,呼吸道黏膜免疫會受到影響,續發性細菌感染的機會上升。陳宜君醫師說,台大醫院兒科團隊發表過一個很重要的研究,發現單純得到流感的患童約有 5 % 會住加護病房,而流感合併肺鏈的患童約有 20 % 會住加護病房4,顯示流感合併肺鏈比一般流感的重症風險高出四倍之多。

-----廣告,請繼續往下閱讀-----

肺炎鏈球菌主要存在鼻腔黏膜,當免疫力正常時不會產生問題,但當黏膜免疫力下降時,便可能侵入組織,造成中耳炎、鼻竇炎、肺炎等感染;而免疫力低下患者,便可能發展成重症。陳宜君醫師說,患者會出現發燒、咳嗽、氣喘、噁心、胸痛、頭痛、呼吸急促等症狀,可能進展為肺炎、腦膜炎、關節炎、骨髓炎、心包膜炎、溶血性尿毒症、腹膜炎、敗血症等,危及性命5

接種肺炎鏈球菌疫苗,預防勝於治療

面對肺炎鏈球菌感染,預防永遠勝於治療!陳宜君醫師說,肺炎鏈球菌經由飛沫散播,所以可以透過戴口罩、勤洗手、避開擁擠密閉的空間,更積極的做法就是接種肺炎鏈球菌疫苗。

肺炎鏈球菌可分為 92 種以上血清型,其中約有 30 種血清型會造成人類的感染,所以會針對較常見的血清型製作肺炎鏈球菌疫苗6。目前台灣有結合型疫苗(PCV)與多醣體疫苗(PPV)。

多醣體疫苗(PPV),通常不具備長期免疫記憶。陳宜君醫師解釋,結合型疫苗(PCV)可以誘發 T 細胞免疫,有助產生免疫記憶,提供較長時間的保護力7

-----廣告,請繼續往下閱讀-----

研究顯示,接種一劑結合型疫苗(PCV)後,再接種一劑多醣體疫苗(PPV),有助提升免疫記憶,提供較長時間的保護力,並使保護範圍更廣,能有效降低感染肺炎鏈球菌導致嚴重併發症或死亡的風險8。因此,疾病管制署針對 65 歲以上民眾提供公費疫苗政策:接種 1 劑 13 價結合型肺炎鏈球菌疫苗(PCV13)及 1 劑 23 價肺炎鏈球菌多醣體疫苗(PPV23),以保護年長者免於重症威脅9

不過,一般年輕族群亦不可輕忽。陳宜君醫師提到,因為肺炎鏈球菌疫苗是準備讓健康民眾施打,所以在研發疫苗時,對安全的要求非常高。結合型疫苗(PCV)與多醣體疫苗(PPV)皆為不活化疫苗,免疫不全者皆可接種,且能夠與流感疫苗同時接種。國際建議在左手臂接種流感疫苗,在右手臂接種肺炎鏈球菌疫苗。

關於肺炎鏈球菌疫苗的接種方式,疾病管制署建議:

  • 從未接種肺炎鏈球菌疫苗的民眾,可先接種 1 劑結合型疫苗(PCV),間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可先接種 1 劑結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過 1 劑結合型疫苗(PCV)的民眾,可於間隔至少 1 年後再接種 1 劑多醣體疫苗(PPV)。若是高風險對象,可於接種結合型疫苗(PCV)後,間隔至少 8 週後再接種多醣體疫苗(PPV)。
  • 曾接種過多醣體疫苗(PPV)的民眾,可於間隔至少 1 年後再接種 1 劑結合型疫苗(PCV)10

「肺炎鏈球菌感染不只造成肺炎!」陳宜君醫師叮嚀,「狀況許可時,建議及早接種疫苗,做好預防措施,才能保護自己、保護身邊的人。」

註解

  1. 衛生福利部疾病管制署 65 歲以上公費肺炎鏈球菌疫苗三階段開打,呼籲長者接種(access date 2024/3/8)
    https://www.cdc.gov.tw/Bulletin/Detail/hr4M-Qmi3Fu2KPC3En2a6Q?typeid=9 ↩︎
  2. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine)(accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  3. Hsing, T. Y., Lu, C. Y., Chang, L. Y., Liu, Y. C., Lin, H. C., Chen, L. L., Liu, Y. C., Yen, T. Y., Chen, J. M., Lee, P. I., Huang, L. M., & Lai, F. P. (2022). Clinical characteristics of influenza with or without Streptococcus pneumoniae co-infection in children. Journal of the Formosan Medical Association = Taiwan yi zhi121(5), 950–957. https://doi.org/10.1016/j.jfma.2021.07.012 ↩︎
  4. 衛生福利部疾病管制署 侵襲性肺炎鏈球菌感染症(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Disease/SubIndex/oAznsrFTsYK-p12_juf0kw
    ↩︎
  5. 衛生福利部疾病管制署  侵襲性肺炎鏈球菌感染症 疾病介紹(accessed date 2024/03/08)
    https://www.cdc.gov.tw/Category/Page/MEYvHLbHiWOcLfQKKF6dpw
    ↩︎
  6. Pollard, A. J., Perrett, K. P., & Beverley, P. C. (2009). Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nature reviews. Immunology9(3), 213–220. https://doi.org/10.1038/nri2494 ↩︎
  7. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP) (cdc.gov) (accessed date 2023/12/15) https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6434a4.htm ↩︎
  8. 衛生福利部疾病管制署 為提升民眾免疫保護力,10月2日起分三階段擴大65歲以上民眾公費接種肺炎鏈球菌疫苗(accessed date 2024/03/08) https://www.cdc.gov.tw/Bulletin/Detail/q9_r5mAOvcpIPSUvrjGFpw?typeid=9 ↩︎
  9. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)
    https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎
  10. 衛生福利部疾病管制署 肺炎鏈球菌疫苗 (Pneumococcal Vaccine) (accessed date 2023/12/15)https://www.cdc.gov.tw/Category/Page/ORBnRmMgImeUqPApKawmwA ↩︎

本衛教文章由台灣輝瑞協助刊登(PP-PRV-TWN-0166-202404)

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----