0

0
0

文字

分享

0
0
0

熊蜂的瘟疫

葉綠舒
・2012/09/15 ・1116字 ・閱讀時間約 2 分鐘 ・SR值 400 ・四年級

-----廣告,請繼續往下閱讀-----

相信見過熊蜂(bumblebee)的人應該都印象深刻,畢竟黃黑相間的條紋加上碩大的體型,看到了很難不留下印象。當然,最近這幾年比較出名的「熊蜂」是「變形金剛」。

熊蜂主要分佈在北半球,不過也有些是南半球原產;比方說Bombus dahlbomii這種熊蜂,就是原產於南美洲,而且在南美洲南端,他是唯一的熊蜂。這種熊蜂是目前全世界體型最大的。

但是,Bombus dahlbomii目前正遇到空前的危機(1)。而這個危機,與當地的人引進了新種的熊蜂(白尾熊蜂,B. terrestris)有關。

白尾熊蜂(B. terrestris),圖片連結

熊蜂身上帶有一種單細胞的寄生蟲Apicystis bombi,這種寄生蟲會使感染的熊蜂死亡。過去南美洲的幾種熊蜂體內從來沒有檢出這種寄生蟲,而在2006年–當這些刻意被引進在溫室中擔任授粉者的白尾熊蜂第一次出現在南美洲南端時–以後收集的樣本,卻檢出了這種寄生蟲的DNA。

-----廣告,請繼續往下閱讀-----

也差不多在2006年,當白尾熊蜂出現在南美洲南端時,南美原產的熊蜂開始消失。奇妙的是,在歐洲的白尾熊蜂,只有1%到8%體內檢出寄生蟲;但是在南美洲的白尾熊蜂,幾乎有半數都檢出。難道有什麼生存競爭嗎?

但是,這兩種熊蜂的消長,並不能以單純的「生存競爭」來解釋;畢竟南美洲原產的熊蜂具有相當長的舌頭,而因為這樣,他採食的花和白尾熊蜂的花不一樣。

唯一的解釋就是:因為南美洲原產的熊蜂,對歐洲來的兄弟身上的病菌沒有抵抗力,所以只要踩過歐洲來的兄弟踩過的花、葉,南美洲的熊蜂就危乎殆哉了。感染有多嚴重?目前在南美洲,已經有80%的區域看不到原產的熊蜂了。

科學家預測,不出幾年南美洲的熊蜂就要絕種;而這會使得安地斯山脈(Andes)的許多植物絕種,因為Bombus dahlbomii是他們的主要授粉者,尤其是對於具有長管狀花的植物,因為只有Bombus dahlbomii有夠長的舌頭,所以Bombus dahlbomii的消失,對這些植物肯定是個極壞的消息。

-----廣告,請繼續往下閱讀-----

這類的新聞隔一段時間就會出現,每次看見時總是讓筆者慨嘆良久。記得上次聽到廣播裡面有位專家說:人類是地球上唯一會改變環境來適應自己的動物,但是人類往往把環境改變到讓附近的生物無法生存。為了要讓溫室裡的植物能容易地被授粉,南美洲的人由歐洲引進了白尾熊蜂,如今卻使得原產的熊蜂即將絕種,接著影響到當地的植物,然後呢?人類常以為自己可以操控自然,但如不懷抱敬天愛地的精神,最後自然總還是會來反撲的。為何人類還不能覺悟呢?

參考資料:Anthony King. 2012. Plight of the Bumblebee – ScienceNOW

文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

1

1
1

文字

分享

1
1
1
遊蕩犬貓攻擊保育類動物!怎麼防止外來入侵種和原生種的資源爭奪?動保與野保之間能取得平衡嗎?
PanSci_96
・2023/11/12 ・6100字 ・閱讀時間約 12 分鐘

你能接受移除外來種嗎?

但要是今天移除的是狗狗好朋友跟貓貓主子呢?

泛糰們知道嗎?5 月 11 日晚間 6 點,有一隻失親的小石虎被發現,發現的民眾還傳送了小石虎健康的萌照給縣府人員。但就在 2 個小時後,卻被送到特生中心的野生動物急救站,確定小石虎已經死了,死因是遭到遊蕩貓的攻擊,頸部大量出血而死。

這是台灣僅剩下約 400-600 隻的野生石虎族群的生活日常。

-----廣告,請繼續往下閱讀-----

不僅如此,進入急救站的保育類穿山甲,也有高達五成是因為被遊蕩犬咬傷了尾巴。而且可別以為遊蕩犬只會欺負小動物,前陣子陽明山有遊客拍到遊蕩犬群起圍攻水鹿的畫面。壽山附近的山羌,更因牠們而出現區域性的滅絕危機。

這死傷越來越慘重的尾巴衝突,你說怎麼辦?

台灣土狗不是原生種嗎?

小等一下 (Sió-tán–tsi̍t-ē)!為什麼講的好像狗不是台灣原生動物一樣?我們不是有台灣土狗這個品種嗎?

其實啊,這只是名字衍生的誤會,全世界沒有一個地方的「狗」是原生種。因為早在兩三萬年前,人類就已經從灰狼馴化出「狗」這個物種,無論在哪個生態系,牠都屬於外來種。例如澳洲野犬也是 3000 年前被人類帶到澳洲的,台灣本來就沒有原生犬科動物,因此「烏狗 (oo-káu)」不能鳩佔鵲巢說自己是本土原生種。既然不是原生動物,那麼流浪狗算是怎樣的存在呢?

-----廣告,請繼續往下閱讀-----

科學家其實會用「野化動物」來形容這些並非野生動物,也非寵物的動物們。也就是原本馴養的動物,脫離人類飼養環境後,在野外棲息並且繁衍的情況,像是被棄養的狗狗。除此之外,在台灣鄉間常見「放養」的狗兒們,基本上吃飯以外的時間都在野外淺山環境晃蕩,我們統稱叫作「遊蕩犬隻」。這個數量一大,對於野生動物就造成不小的威脅。包括咬死咬傷野生動物、競爭野外棲息地、傳播疾病等等。

根據 2017 年在《Biological Conservation》所發表的研究,遊蕩犬已成為全球至少 188 種瀕臨絕種動物的主要威脅。而在台灣 2022 年農業部的統計數據顯示,全國遊蕩犬估計有 15 萬 9697 隻,牠們的數量超過了台灣任何原生食肉哺乳動物。特生中心的林育秀研究員指出,或許只有台灣鼬獾的數量能與遊蕩犬相提並論。

雖然遊蕩犬滿街跑,但看起來狗狗們都融入生活中,頭好壯壯沒什麼問題嘛!如果你這樣講,那就大錯特錯了。遊蕩犬在野外環境要活下去,就得跟野生生物爭奪資源,並面對很多生存困境。根據清華大學的顏士清助理教授 2016 到 2018 年在陽明山國家公園進行的研究,在那個區域裡的遊蕩犬普遍存在不同程度的血檢異常。大約一到兩成具有斷腳或皮膚病,導致牠們每年的存活率不到一半。而許多跨物種的傳染病如:焦蟲病、犬瘟熱、犬小病毒等,更是同時危害遊蕩犬跟野生動物們,更別提可能有狂犬病。

圖/pexels

所以其實我們必須認知一個前提,那就是遊蕩動物在外頭並不是天堂,毛孩子們應該要有個家。

-----廣告,請繼續往下閱讀-----

另一方面儘管犬貓在國際上是被國際自然保育聯盟(IUCN)認定的外來入侵種,但我們台灣是一直到去年 2022 年,在中研院的台灣物種名錄上才將犬貓從「外來種」更新為「外來入侵種」,和埃及聖䴉、綠鬣蜥並列。

外來種與外來入侵種

外來種跟外來入侵種有怎樣的差別呢?一般外來種就像是開心農場裡的水豚、實驗室的白老鼠,這些雖然是人類特意引入的物種,但在管理之下對當地生態的影響相對可控,就算是那隻跑出來名揚一時的東非狒狒也不例外。這之中最大的差異是:外來入侵種會捕獵原生動物或瓜分其生存資源,對原生生態造成負面影響。而名列為外來入侵種的遊蕩犬,不僅嚴重影響石虎、水鹿、穿山甲等野生動物的生存,還有可能會增加野外傳播疾病的速率。

顏士清老師 2019 年發表在《Scientific Reports》的研究指出,大台北地區包括陽明山國家公園遊蕩犬的出現,確實導致了野生動物的多樣性下降。穿山甲、麝香貓、山羌、山豬、鼬獾、白鼻心跟野兔等動物為了生存,都必須避免與遊蕩犬接觸。這這這……我們該怎麼處理呢?

早在十多年前,台灣許多動保組織就引入了一種族群控制方式,NT……啊不是,我是說 TNvR。TNvR 是英文 Trap、Neuter、Vaccine、Return 四個字的縮寫,目的是透過降低母狗的生育率來處理遊蕩犬過多的問題。TNvR 的操作手法是先用籠子跟罐頭吸引遊蕩犬進入,以母狗為主,進行輸卵管或卵巢移除手術結紮並且施打疫苗、剪耳標記後再回置原棲地。

-----廣告,請繼續往下閱讀-----

先等等,既然目的是減少遊蕩犬,都捕捉了為什麼要放回原地呢?

原來第四步的 Return 是利用犬類強烈的領域性,回置後可以有效阻止其他遊蕩犬進入占地盤,避免「真空效應」的出現——也就是流浪犬貓被移除後,周遭區域的其他流浪動物看中這個地盤,吸引而來填補空缺。

Return 是為避免「真空效應」的出現——也就是流浪犬貓被移除後,周圍出現更多流浪動物來填補空缺。圖/YouTube

印度齋浦爾市是一個經常被拿來當作 TNvR 成功案例,從 1994 年到 2002 年 長達八年的時間,總計 TNvR 了近兩萬五千隻的遊蕩犬。印度在此計畫中幫 65% 的母狗進行了絕育和疫苗接種手術,雖然最終族群的數量只下降了 28%,但當地人類狂犬病例下降到零,蔚為美談。除此之外,在泰國曼谷、伊朗克爾曼市也都有正面的案例。只可惜,不是每個案例都是成功的。也有不少 TNvR 經過了十多年的施行還是宣告失敗,例如被認定是台灣 TNvR 示範區——台南漁光島。

原本島上有 80 多隻遊蕩犬,2011 年在市府幫助之下開始啟動 TNvR 計畫,經過 4 年時間的努力,到了 2015 年,漁光島的流浪犬族群已經減少到 50 隻以下了,而且剩餘的犬隻大多數都已經經過 TNvR 的處置,不會在當地繼續繁殖。但好景不常,後續這個「狗島」的浪犬回置印象,反而變成了飼主暗地棄養犬的地點。而這個「人犬衝突」最終還是由當地居民承受,造成攻擊家畜、追逐車輛、影響用路人等等問題,居民不勝其擾。

-----廣告,請繼續往下閱讀-----

過多的愛是一種負擔?

不過呢,對科學家來說,最關切的就是可再現性。因此非得問的問題是:「為什麼台灣施行 TNvR 的場域都沒有成功,遊蕩犬問題到現在越演越烈呢?」人類沒辦法讓遊蕩犬少子化原因不是遊蕩犬不用擔心高房價,其實答案就在地理課本之中。

如果你還有記憶的話,高中地理有教過人口變化的四大要素:出生、死亡、移入、移出。我們把這個模型放到漁光島,發現透過 TNvR 可以降低出生率,因為漁光島是一個沙洲島,除了漁光大橋之外不太受到外界干擾,等同是一個生態學上的「封閉族群」。但若放到台北市、新竹市、台中市這些四通八達的都會, TNvR 的努力成果就很有限。因為難以阻絕外來遊蕩犬跟棄養犬遷入,即使降低出生率也沒用。

換言之,TNvR 不是單一解方,必須同時搭配小族群且封閉的場域才容易有成果。只要一直有新的移入族群,那麼想要利用無生殖力的絕育犬降低遊蕩的數量,就只是緣木求魚,結果來的都是狗。而且這些地方還面對另一個挑戰——人類的愛。被稱為愛爸愛媽的民眾真的很有愛,這些熱心民眾覺得流浪動物很可憐,因此每天定時定量地提供飼料或廚餘。不過我們若是希望流浪動物越少越好,可得好好參考在《美國獸醫學會期刊》發表的這篇研究

圖/pexels

當人類對城市中的流浪貓進行 TNR 並持續供應食物,貓貓的數量不僅沒有減少,反而增加了。這主要是因為穩定的食物供應使得貓貓覓食的壓力消失了,反而吸引附近周圍的新貓移入。這也意味 TNR 所稱的「真空效應」其實取決於食物多寡,並不是回置動物就可以阻擋周圍流浪動物移入。雖然部分絕育母貓無法生寶寶,但其他未絕育母貓的繁殖競爭壓力反而變小,加上有充足營養來哺育,新生幼貓與成貓的死亡率下降,結果最後就是流浪貓變得更多。

-----廣告,請繼續往下閱讀-----

絕育方案花了好大的力氣想要把「出生」這一個新貓入口給堵上,但餵食卻是一次達成「移入提升、移出減少、出生提升、死亡降低」,換言之只要人類餵食,所有努力都將付諸流水。少貓狗化大失敗,最大的問題是:我們對浪浪的愛心,將直接轉變為對野生動物的殘忍;讓牠們更有力氣也更有本錢和野生動物競爭,讓野生動物更容易遭到攻擊。這也是為何野保人士希望能夠禁止餵食的主因。

動保和野保究竟在吵什麼?

在這個複雜的議題戰場中,看似野保和動保兩派一直在互相較勁。野保人士訴諸科學面和野生動物滅絕的急迫,主張 TNvR 無效,回置和餵食遊蕩犬都只會傷害野生動物,因此偏向移除或禁止餵食的路線,甚至認為結紮後回置無助於解決野生動物領域被侵犯的根本問題,不如重新考慮對付外來入侵種的標準 SOP——「撲殺」;而動保人士則主張毛孩是人類的責任,浪浪在外面遊蕩不是牠們願意的,認同繼續強化 TNvR 的範圍和乾淨餵食,也不支持移除或十二夜的安樂死悲劇再次發生,反過來指責野保人士殘忍無情。

但撇開二元對立的框架,兩方其實都是關心動物的人。多年來不同路線的爭論讓情況完全膠著,雙方越來越極端化,背後根本原因是——台灣沒有進行飼主責任教育或寵物管制,導致遊蕩犬貓持續增加。加上這個議題位於野保法和動保法之間的灰色地帶,既有的管理措施執行力也不足,例如:許多風景區禁止餵食野生動物和遊蕩動物的告示牌形同虛設、許多養育寵物的飼主沒有登記也沒有打晶片,最令人為難的是,就算政府想出面,也只能對著無米之炊瞪著眼嘆氣。

電影《十二夜》海報。圖/wikimedia

最知名的例子就是十年前的電影《十二夜》,上映之後轟動一時,政府順應輿論和動保團體的倡議,從 2017 年開始對遊蕩犬採取了收容零撲殺的立場,廢除掉 12 夜——也就是公告滿 12 天之後未有人領養或是收養,就採取人道處理。由於對於「安樂死」的污名化,使得收容所執行安樂死變得很敏感。儘管面對重病重傷或是嚴重傳染性疾病,很多收容所也不太敢真正執行安樂死,只好任其「自然死亡」。包含台北市動物之家在內,全台有 8 個收容所超額收容。骨牌效應下,就算想移置石虎生態熱區的遊蕩犬,也沒地方放。而因為安樂死這三字背負的原罪實在太重,即使有些動保團體已經意識到這樣可怕的收容環境,恐怕比路殺或是野外移除還要「不人道」,卻也無計可施。

-----廣告,請繼續往下閱讀-----

最後我們要來談談政府的角色,自從石虎永哥被遊蕩犬殺死,農業部正準備推動「台灣原生種野生動物受遊蕩犬侵擾改善試辦專案計畫」,預計先在苗栗、台中跟南投針對九大石虎受侵擾的熱區,推動禁止餵養犬貓。苗栗目前已就「禁止餵養遊蕩犬貓自治條例草案」進行公聽會,並展開移除遊蕩犬,也和動保團體溝通,這個移除絕對不是撲殺,而是收容後不回置。也會編列預算改善收容所的設施,並辦理領養活動。即使如此仍然受到雙方立場夾殺,野保人士人士認為:三千萬的經費根本不足以守護九個熱區;動保人士人士要求:至少要有大型開放性安置中心的規劃等等。

農業部有如深陷電車難題啊!可見遊蕩犬的問題早就已經超越科學問題,成了政治問題。政治是妥協,也許我們不該追求最好,而是相對更好的解才走得下去。例如對收容動物適度的安樂死、提升整體收容動物的福祉,更多的人開始呼籲 TNR 的處置手段應該升級為 TNSA,也就是將回置的 R 改為收容 S 以及領養的 A,才能邁向更長遠的源頭控制,重新落實飼主責任。

例如 10/29 剛舉辦完的「為野生動物而走」遊行活動的訴求,就是讓犬貓有人類溫暖的家;野生動物有自然的環境。這樣的台灣,才是以生物多樣性為傲的美麗之島!

一如開頭所說,複雜的問題沒有簡單的答案。你認為在資源有限的情況下,還有什麼方法是處理遊蕩犬貓的相對好的方法呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

10
2

文字

分享

1
10
2
鹹味小知識:蜜蜂比較喜歡鹹鹹的花蜜?
椀濘_96
・2022/04/26 ・3413字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

民以食為天。日常裡,我們習慣以鹹食作為正餐,可想而知,鹹的味覺感知一定有著其必要性,使得我們懂得去尋找並補充帶有鹹味的食物。

食鹽長怎樣?

聰明的你或許已經想到了!關於鹹味,那就不得不提——鹽。

現代人類在食物中添加鹽作為調味劑,統稱為食鹽。我們常使用的餐桌鹽為一種含有 97~99% 氯化鈉(NaCl)的精製鹽。

常見的食鹽,餐桌鹽。圖/維基百科

氯化鈉是一種常見的離子化合物,在多數情況下呈現白色粉末狀,其結晶為半透明的立方體;其內部結構為史上第一個測試的晶體結構,由帶正電荷的 Na+ 和帶負電荷的 Cl所組成。Na+ 與 Cl在相互垂直的 3 個方向平面上,以 1:1 的比例均勻分布,如下圖所示。

圖中的綠色圓球為氯離子(Cl-),紫色為鈉離子(Na+)。圖/維基百科

鹽含有維持生理機能的所需物質,除了用來增添風味、滿足口腹之慾以外,也能讓我們從中獲取所需的營養。適當攝取氯化鈉對健康有許多好處,不僅有助於使肌肉鬆弛,也能幫助細胞吸收養分。

-----廣告,請繼續往下閱讀-----

而氯化鈉當中的鈉離子,更是在人體中扮演著重要角色!

「鈉」很重要,「鈉」很重要,「鈉」很重要!

鈉離子為體液中重要的電解質,可以維持神經和肌肉正常活動;血液中的鈉離子濃度影響著神經傳導物質的信號;而鈉離子也幫助代謝、維持體內滲透壓,以及穩定酸鹼平衡等重要生理活動。

除此之外,鹹味的感受主要也是透過鈉離子觸發的

這邊我們額外提一下,味覺的感受可分為兩種:一種是透過 G 蛋白耦合受體獲得的,也就是讓味覺感受器及味道分子耦合味蕾上的 G 蛋白味導素(Gustducin),進而產生甜味、苦味、鮮味;另一種則是離子(如:H+、Na+ 等)通過味覺細胞上的離子通道,導致細胞的膜電位產生變化,進而引發神經刺激,產生酸味和鹹味。

酸與鹹的感受像是離子通過安檢閘門;而苦、甜、鮮則像是積木,需兩兩吻合才能結合。圖/NIH[1]

回到鹹味的感受,當鈉離子經由味覺細胞頂端微絨毛表面的鹹味受體——上皮鈉離子通道(epithelial sodium channel)進入細胞後,就會造成細胞內的膜電位改變,促使味覺細胞釋出神經傳導物質,刺激感覺神經末稍,將神經動作電位傳達至腦部,感受出鹹味。

-----廣告,請繼續往下閱讀-----

人體一旦缺乏鹽分,或者說是缺乏鈉時,會造成體內電解質失衡。頭痛、暈眩、懶散等初期症狀較不易察覺;然而,嚴重的話,則可能引發肌肉痙攣、血壓下降,甚至心臟衰竭而死亡。

另外,我們也需要知道,不只是人類,對於所有動物而言,鹽分的攝取是非常必要的。

只要是動物都需要鹽哦!

動物如何攝取鹽分與飲食方式有關。牠們會想方設法尋覓鹽分,如肉食性動物可透過捕食獵物獲得,肉品中的鈉含量足以供牠們維持生理運作;然而,植物無法提供足夠的鹽分,因此,野外的草食性動物會大群移動、遷移尋找有鹽分的地方,如鹽土、天然礦鹽等,而圈養型的飼主則需提供鹽磚,讓動物透過舔舐含鹽物質,滿足自身所需的營養。

野外的草食性動物會大群移動、遷移尋找有鹽分的地方,如鹽土、天然礦鹽等。圖/Pixabay

當然,那些在植物周圍打轉的昆蟲也不例外——牠們亦須設法獲取鹽分。

-----廣告,請繼續往下閱讀-----

近期,皇家學會(Royal Society)《生物學報》(Biology Letters)發布了一篇與動物攝取鹽分相關的報告。研究發現,蜜蜂這類會幫助植物授粉的物種(pollinator,可譯為傳粉者)會在吸食花蜜時,選擇含鹽量較高的植物,藉此補充自身所需的鈉。

蜜蜂比較喜歡鹹鹹的花蜜?

過去就有研究表明,蜜蜂主要吸食的花蜜僅含有少許營養素,而所採集的花粉中,主要為鉀、鈣、鎂等礦物質,其含量在夏秋兩季之間會有所不同。

由此可知,僅靠花卉飲食並不足以維持個體生命,甚至是支撐起整個蜂群,因此蜜蜂會透過其他攝食方式來補足所需的礦物質,其中則包括鈉。例如:比起在乾淨的水源中覓食,蜜蜂反而更喜歡「骯髒」(這裡的骯髒是指富含化合物)的水,又或者是食用腐爛的水果、肉品,從中取得鈉。上述兩個例子也在實驗中發現,比起攝取其他礦物質,蜜蜂更偏愛鈉

綜上所述,再回到生物學報上的研究報告,該研究團隊試著證明比起髒水及腐食,花蜜中的鈉含量若是足夠,或許也會受牠們青睞,進而從中獲取營養。於是,團隊提出了這樣的問題:「花蜜含鈉量的多寡,是否會影響蜜蜂吸食時選擇的花卉?」換句話說,就是「含鈉量越高的花蜜,是否更能吸引蜜蜂拜訪?」

-----廣告,請繼續往下閱讀-----
含鈉量越高的花蜜,是否更能吸引蜜蜂拜訪呢?圖/Pixabay

實驗過程及結果

該研究團隊選擇了五種原產於佛蒙特州(該實驗室位置)的開花植物,其中包括蓍草和紫錐花,並種植在面積約一個籃球場大的溫室裡。

在每個溫暖、有陽光、適合授粉的日子裡,研究人員都會使用微型手動泵,將原有的花蜜從花中吸出,改以含糖溶液代替。每一種植物中,有一半被注入含有 1% 鹽的人造花蜜,而另一半則不含鹽;隨後,全天觀察植物,追蹤前來拜訪花朵採蜜的蜜蜂、螞蟻和蝴蝶。實驗從 2021 年 7 月開始進行,為期一個月。

實驗結果發現,對於任一種花而言,被含鹽花蜜的花所吸引的各類傳粉者,為僅含糖的兩倍;進一步說明,花蜜中的鈉含量多寡,確實影響了傳粉者對於花卉個體的選擇。

現代植物已經演化出許多種方法來吸引傳粉者,其中包括產出含有傳粉者必需的營養物質之花蜜,吸引牠們前來幫助授粉。

鈉是傳粉者必需的礦物質。考量到植物的花蜜中通常含有少量鈉,而在同一物種中,鈉的含量可能因個體而異,加上現階段關於花蜜與傳粉者間的相關研究較少;因此該團隊人員就實驗結果討論出:花蜜中的鈉可能在植物—傳粉者相互的生態和演化中,發揮著重要但仍未被重視的作用

-----廣告,請繼續往下閱讀-----
實驗結果發現,花蜜中的鈉含量多寡,確實影響了傳粉者對於花卉個體的選擇。圖/Pixabay

結語

筆者認為,動物均有尋找鹽分的能力,若花蜜中含有足夠的鈉,那麼就近取得確實容易許多,似乎就不用倚靠其他方式來攝取鈉。筆者也期待未來能有更深入的研究,進一步確認兩者間的相關性,甚至是演化趨勢。

最後,不忘提醒讀者,現代社會中鹽分的攝取非常容易,人類膳食中大多數的鈉來自食鹽,而在一般情況下,人體所需的鈉含量不易缺乏。根據世界衛生組織建議,成年人每天應攝取少於 2,000 毫克的鈉,相當於 5 公克的食鹽。因此,在享用美食的同時,應謹記鹽攝取量不宜超過每日所需。高鹽飲食可能出現高血壓、中風、心臟病等健康危機。

註解

  1. Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Taste Receptors and the Transduction of Taste Signals.

參考資料

  1. Pollinators like their flowers with a dash of salt—Science news
  2. Finkelstein Carrie J., CaraDonna Paul J., Gruver Andrea, Welti Ellen A. R., Kaspari Michael and Sanders Nathan J. (2022). Sodium-enriched floral nectar increases pollinator visitation rate and diversity. Biology Letters. 18:20220016
  3. Bonoan, R.E., Tai, T.M., Tagle Rodriguez, M., Feller, L., Daddario, S.R., Czaja, R.A., O’Connor, L.D., Burruss, G. and Starks, P.T. (2017). Seasonality of salt foraging in honey bees (Apis mellifera). Ecological Entomology, 42: 195-201.
  4. Dorian, N.N. and Bonoan, R.E. (2021). Stingless bees (Apidae: Meliponini) seek sodium at carrion baits in Costa Rica. Ecological Entomology, 46: 492-495.
  5. Insects & Pollinators
  6. 新竹市立動物園—草食動物營養知識 / 需要吃鹽?
  7. 鹽的故事:妙不可「鹽」–鹽的重要性與應用—科技大觀園
  8. 味覺產生的分子機制上(Taste)—科學 Online
  9. 味覺產生的分子機制下(Taste)—科學 Online
  10. 氯化鈉—科學 Online
  11. 食鹽—維基百科
  12. 氯化鈉—維基百科
所有討論 1
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

2

17
2

文字

分享

2
17
2
世界最小微型電腦,揭開蝸牛躲過大屠殺的可能原因!
羅夏_96
・2021/07/05 ・3890字 ・閱讀時間約 8 分鐘

生物滅絕是我們所不樂見的,當我們在新聞報導上看到某些物種滅絕,或者瀕臨滅絕,總會感到痛心疾首。不過你知道在過去 50 年間,有一群生物經歷了近乎完全滅絕的慘案,但卻不太為人所知嗎?接下來讓我們一起了解這個悲劇的始末,與殘留的生物究竟是怎樣躲過滅絕的。

太平洋島嶼的蝸牛多樣性世界第一

一般大眾可能對蝸牛的興趣不大,不過在太平洋的眾多島嶼上 (從法屬玻利維亞群島到夏威夷群島),當地原住民就對蝸牛非常感興趣。這是因為這些島上的原生種蝸牛,許多都有著鮮豔的外殼。像大溪地和夏威夷的原住民會收集並加工這些漂亮的蝸牛殼,做為展示地位象徵的首飾與裝飾品。

根據研究,太平洋群島上的蝸牛多樣性是世界上最高的,因此這些蝸牛不只吸引原住民,也吸引不少研究生物多樣性的專家前來朝聖。

而一場戰爭的到來,不僅打亂了島上居民的生活,也為這些在島上平穩生活的蝸牛們帶來意想不到的腥風血雨。

夏威夷蝸牛- 维基百科,自由的百科全书
被當作裝飾品賣的夏威夷蝸牛殼。圖/Wikipedia

外來種大亂鬥,原生種蝸牛遭池魚之殃

二次大戰期間,非洲大蝸牛 (Lissachatina fulica) 作為戰備糧食,被大量引進到這些太平洋島嶼1。而在戰爭後,這些非洲大蝸牛很快就成為當地島嶼的隱患。

-----廣告,請繼續往下閱讀-----

非洲大蝸牛是對農業有嚴重危害的外來種,牠們的食量大且食性雜,從農作物、花卉到林木都是牠們的食物,而且牠們的繁殖速度極快,這讓島上很快就遍布非洲大蝸牛。雖然非洲大蝸牛沒有威脅到原生種蝸牛的生存,但數量龐大且食量巨大的非洲大蝸牛,很快就威脅到島上的農作物生產。為了對抗非洲大蝸牛,人類決定用「生物防治法」除掉牠們。而這個決定,敲醒了島上原生種蝸牛滅絕的喪鐘。

Achatina fulica Thailand.jpg
非洲大蝸牛。圖/Wikipedia

生物防治法簡單來說就是利用自然界生物間的平衡力量,也就是利用各種天敵如捕食性昆蟲以及殺蟲微生物等生物性方法消滅外來種。而人類為了對抗非洲大蝸牛,所使用的生物防治法是引進另一外來種——玫瑰蝸牛 (Euglandina rosea)。

玫瑰蝸牛是一種原產於北美南部森林的中等體型蝸牛。和一般蝸牛的草食性不同,玫瑰蝸牛是專吃其他蝸牛的肉食性蝸牛!因此人們想靠玫瑰蝸牛來吃光島上的非洲大蝸牛。1955 年,美國政府開始將玫瑰蝸牛引進夏威夷群島,而其他太平洋島嶼也於 1958 年開始陸續跟進這個做法2。但玫瑰蝸牛引進後,人們很快就發現事情大條了。

Euglandina rosea.jpg
玫瑰蝸牛。圖/Wikipedia

首先,非洲大蝸牛的數量並沒有減少,牠們還是大肆地破壞農作物。接著,島上原生種蝸牛的數量越來越少了。後來研究發現,比起來非洲大蝸牛,玫瑰蝸牛更愛吃原生種蝸牛。而原生種蝸牛面對玫瑰蝸牛這種兇猛的外來殺手,根本毫無抵抗力,只能等著被宰。

-----廣告,請繼續往下閱讀-----

當人們終於意識到問題的嚴重性並準備做出干預手段時,卻為時已晚。根據研究,夏威夷群島本來有 81 種原生蝸牛。但在引進玫瑰蝸牛的十年後,島上 90% 的原生種蝸牛都被玫瑰蝸牛屠戮殆盡,而夏威夷政府和科學界根本無力阻止這場恐怖的屠殺,最後只能將剩餘的原生種蝸牛移到動物園或保護區做保護。2019 年,世上最後一隻金頂夏威夷樹蝸 (Achatinella apexfulva) — 「喬治」逝世,這標示著又一夏威夷原生種蝸牛滅絕3。而其他太平洋群島狀況也好不到哪去,以大溪地為例,島上本來有 61 種原生蝸牛。在玫瑰蝸牛引進的十年內,56 種原生蝸牛就被消滅殆盡4

這個引進玫瑰蝸牛的決策,可謂是生物防治法上的重大「失敗」案例,不僅消滅不了非洲大蝸牛,還對原生種蝸牛造成毀滅性的打擊。這個案例也告誡人們,未來想要再使用生物防治法時,務必要審慎思考。

不過在這種絕望的情況下,至今仍有少數的原生種蝸牛堅強地在野外生存。這就引起不少科學家的好奇心,想了解這些原生種蝸牛究竟是怎麼逃過玫瑰蝸牛的毒手。而來自密西根大學的生物學家和工程學家,就組成一個跨領域的研究團隊,一起攜手研究出可能的原因5

蝸牛怎麼逃離致命殺手,難道是靠反光?

Partula hyaline (P. hyalina) 是少數仍存活在大溪地森林中的原生種蝸牛,牠們有著白色的外殼,並且大多生活在樹林邊緣。而這兩條線索,讓密西根大學生態學系的兩個專門研究太平洋群島蝸牛滅絕的科學家 —— Cindy Bick 博士和其指導教授Diarmaid Ó Foighil 博士,有了一個 P. hyalina 逃過玫瑰蝸牛追殺的假設。

-----廣告,請繼續往下閱讀-----
A Partula hyalina snail resting on a wild red ginger leaf next to a Michigan Micro Mote computer system in a forest edge habitat in Tahiti. Image credit: Inhee Lee
睡覺的P. hyaline (左)和 M3 微型電腦 (右)。圖/news.umich.edu

蝸牛一般生活在比較潮濕,躲避太陽直曬的地方,這是因為蝸牛要維持其皮膚上的黏液。如果在太熱的地方,會讓其皮膚失去黏液,而這對蝸牛來說是致命的。P. hyalina 生活在樹林邊緣,這表示牠生活的環境會比生活在樹林中的玫瑰蝸牛,接受到更多的日照,溫度也更高。而這樣的環境會讓玫瑰蝸牛因過熱而失去黏液,讓玫瑰蝸牛不想接近。

但這樣的環境,對 P. hyalina 而言不會太熱嗎?由於 P. hyalina 的殼是白色的,讓牠能反射更多日光,這樣就能降低日照對牠的影響。因此 Bick 和 Foighil 認為,P. hyalina 因有著白色外殼而能生活在高日照地區,藉此躲避玫瑰蝸牛的追殺。

要驗證這個想法,只需要在蝸牛身上裝上光照感測器,測量並比較 P. hyalina 和玫瑰蝸牛生活環境的光照數值就行了。恩,講得容易,但做起來不簡單。

因為現有的光照感測器都必須裝上鈕扣型電池,這導致感測器的大小 (12*5*4 mm) 會嚴重影響蝸牛的行動。如果會影響蝸牛的行動,就很難還原牠們真實的生活模式,這樣得到光照數值就不會準確。

-----廣告,請繼續往下閱讀-----

微型電腦的神助攻

正當 Bick 和 Foighil 苦惱於沒有好的光照感測器時,Bick 得知了一個消息:密西根大學開發出目前公認最小的微型電腦 —— Michigan Micro Mote ( M3 )6,大小只有 2*5*2 mm,而這個大小放在蝸牛身上,非常合適。於是她立刻與 M3 的研發團隊聯繫,希望他們能提供協助。而 M3 的研發團隊在深入了解 Bick 和 Foighil 的需求後,決定與 Bick 和 Foighil 組成聯合研究團隊。他們修改了 M3 的程序,並將其改造成能以太陽能發電的微型光照感測器。

研究團隊先在密西根野外測試 M3 安裝在玫瑰蝸牛身上後,並不會影響玫瑰蝸牛的行動,同時 M3 也能長時間的偵測光照數值。確認一切妥當後,他們便前往大溪地進行實驗。

研究團隊成功在野外測試將 M3 安裝在玫瑰蝸牛身上。影片來源:參考資料 5

到了大溪地後,他們遇到一個問題,那就是不能在 P. hyalina 身上安裝 M3 。因為P. hyalina 是受保護的瀕危物種,不允許任何可能傷害牠們的行為,於是研究團隊採用間接的方法。由於 P. hyalina 是夜行動物,白天牠們會附在樹葉的背面睡覺,因此研究團隊就將 M3 安裝在 P. hyalina 休息的葉片頂端和底部,來觀察其生活環境的光照數值。研究團隊另外將 M3 安裝在玫瑰蝸牛身上,藉此比較兩者生活環境的光照數值。

(b) M3 安裝在 P. hyalina 附近。(c) M3 直接安裝在玫瑰蝸牛身上。圖/參考資料 5

結果顯示,白天 P. hyalina 所休息的環境中,其照度註1 ( 7674-9072 lux )遠超玫瑰蝸牛所能容忍的 ( 540-772 lux )。而這個結果符合 Bick 和 Foighil 的假設,即 P. hyalina 能生活在高日照地區,以此躲避玫瑰蝸牛的追殺。

-----廣告,請繼續往下閱讀-----

不過可能會有人好奇,玫瑰蝸牛難道不會在清晨光照較弱的時候,去捕食 P. hyalina 嗎? 

研究團隊在野外觀察發現,P. hyalina 大約在上午 9 點左右就寢。此時的光照量雖然仍在玫瑰蝸牛的忍受範圍內,但等牠們捕食完再移動回到陰暗處,時間會到上午10 點,而此時的光照量就遠超玫瑰蝸牛的最高容忍值了。因此玫瑰蝸牛若要去捕食 P. hyalina,很可能吃飽後就死在半路上了。

雖然藉著 M3 的協助,證實了 P. hyalina 能生存在光照量較高的環境,但是否光照量是決定 P. hyalina 不被玫瑰蝸牛所捕食的原因,仍需要很多實驗驗證。不過研究團隊表示,這個實驗開啟了研究無脊椎動物的新世界,因為 M3 這種微型電腦的發明,讓隨時監控這些無脊椎動物的生態與行為變成可能。

或許未來隨著 M3 對玫瑰蝸牛與原生種蝸牛的有更多認識的同時,也能找出拯救這些瀕危蝸牛的新方法。甚至隨著微型電腦的廣泛應用,能讓我們看到小型動物更多的生態與行為,大大開啟科學研究的新視野!

-----廣告,請繼續往下閱讀-----

註釋

  1. 照度:是每單位面積所接收到的光通量,SI 制單位是勒克斯 (lux)。居家的照度一般在 300-500 勒克斯之間。

參考資料

  1. 非洲大蝸牛
  2. 玫瑰蝸牛
  3. 世上最後一隻金頂夏威夷樹蝸「孤獨喬治」逝世,終年14歲
  4. Régnier C, Fontaine B, Bouchet P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol. 2009 Oct;23(5):1214-21. doi: 10.1111/j.1523-1739.2009
  5. Bick CS, Lee I, Coote T, Haponski AE, Blaauw D, Foighil DÓ. Millimeter-sized smart sensors reveal that a solar refuge protects tree snail Partula hyalina from extirpation. Commun Biol. 2021 Jun 15;4(1):744.
  6. Michigan Micro Mote (M3) makes history as the world’s smallest computer
  7. Snails carrying the world’s smallest computer help solve mass extinction survivor mystery
所有討論 2
羅夏_96
52 篇文章 ・ 821 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟