0

13
1

文字

分享

0
13
1

當科學家也懂斗內,帶乾爹露營、登上 Science!通通不是問題!

羅夏_96
・2021/05/21 ・3320字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你能想像嗎?科學家透過一篇「斗內」來的研究發現,驢子不僅會自己在沙漠中挖水井,甚至會「無私分享」給大家飲用,並增加當地環境的生態多樣性1!這個讓人驚艷不已的研究近期已發表在 Science 期刊上,研究過程也非常的戲劇性,接下來,讓我們一起看看這個研究是怎麼開始的吧!

露營的意外發現——挖水井的驢子

這一切,都得從九年前開始說起。

Erick Lundgren 是亞利桑那州立大學的博士生,專門研究鳥類、哺乳動物以及河流生態系統,他經常在亞利桑那州的索諾拉沙漠附近紮營,觀測該地區的生態。

陡峭的峽谷、巨型仙人掌和胡楊,和棲息在此處的許多動物構成了索諾拉沙漠的生態景象。圖/維基百科

在一次露營中,Lundgren 在沙漠中發現了一些不尋常的「洞」,而這些洞的周圍堆滿了被挖出來的沙,就好像是有誰在刻意在此處挖洞一樣,這引起他的好奇心,於是他在洞口附近放置了幾個拍攝動物的錄影機。

-----廣告,請繼續往下閱讀-----

幾天後,他從影像中找到這些洞的始作俑者 —— Burro。在美國,Burro 可以代表任何小型的驢子,包括居住在亞利桑那州和加利福尼亞州的一些野生驢子。

只要靠近洞口就可以發現,這些洞附近的沙子都很「濕潤」,有些的洞表面甚至會有一層乾淨的水。

正在挖洞的驢子。圖/ The Unseen Ecology of the Wild Burro

這些「洞」到底是什麼呢?在此之前,其實科學家早就知道有許多動物會自己「挖水井」,例如北美的野馬和非洲的大象,因此 Lundgren 也認為,驢子不是為了好玩而挖洞,而是為了喝水才創造出這些坑洞。

後續的影像證實了 Lundgren 的想法,在影片中,這些驢子確實會從挖好的洞中喝水。

-----廣告,請繼續往下閱讀-----
野馬(左)和大象(右)也會自己挖水井。圖/參考資料1

不過令他意外的是,不只是驢子會來此喝水,連野馬、野豬、水牛、山羊、鹿和郊狼,都會跑來水井喝水!此外,這些「驢井」也是不少植物如木棉和柳樹喜愛的生長地。

這些發現,讓 Lundgren 想出了一個新計畫。

Wild burros digging wells,來自 Erick Lundgren 的 Youtube 頻道。

事實上,驢子(Equus asinus)長期以來普遍被美國科學界認為是「有害」的外來種,因此科學家大多關注並且研究驢子對當地植被的危害、驢子與原生物種的競爭關係。

然而,在 Lundgren 眼中,驢子所挖的驢井卻能夠讓當地不少動、植物都受惠,也就是說,驢子其實不像大家所認為的只會對環境帶來破壞,因此,Lundgren 決定開始深入了解驢井對當地生態系的貢獻。

-----廣告,請繼續往下閱讀-----

你斗內,我研究!

2015 年,Lundgren 向亞利桑那州立大學提出研究計畫,得到研究經費後,他用這些經費買了幾台狩獵用跟蹤攝影機,並觀察到了 13 種動物到驢井飲水的畫面。

但無奈的是,這個研究計畫要觀察的區域非常的廣,也需要花費一定的時間才能看出驢井對當地生態的影響,相比起來,大學給的經費實在是杯水車薪,無法負荷如此龐大又耗時的計畫。

在申請不到更多經費的情況下,Lundgren 決定另闢蹊徑!

2016年,Lundgren 將自己的研究計畫放到美國最大的募資平臺 Indiegogo 上,希望大家能「斗內」自己的驢井生態學研究。

當然,斗內不是白給的:

-----廣告,請繼續往下閱讀-----
  • 捐贈 150 美元,可以獲得團隊贈予的 8*10 英寸的驢子照片一張
  • 捐贈 500 美元,則能獲得 16*20 英寸的驢子照片一張
  • 如果捐贈 1500 美元,就能和研究團隊一起到野外露營,和驢井近距離接觸,而且包吃、包住、包交通!

Lundgren 在 Indiegogo 上設定的募資目標為 1000 美元(雖然他表示 8000 美元較為理想),最終成功募到了 4790 美元。

Lundgren 當時在 Indiegogo 上的募資計畫,現在上網仍能看到。圖/The Unseen Ecology of the Wild Burro

他用募資的錢購買了數十台狩獵用跟蹤攝影機,並帶著斗內的乾爹們一起去各個地點布置攝影機,而這一拍就是數年,順利蒐集了珍貴的研究資料。

只是多了幾口井,真的有那麼重要嗎?

「水資源」是沙漠生態系統內,影響生物間相互作用的重要因素,當動物沒有足夠的飲水時,牠們只能選擇直接通過食物來解決水的攝取,例如狼群會捕捉更多的獵物、食草動物會食用更多的植物。

對水的激烈爭奪會讓該地區只剩少數物種能存活,最終使該地區的生物多樣性降低。

根據 Lundgren 的研究顯示,驢井確實對沙漠地區的生態系統有很大的幫助,主要體現在幾點上:

-----廣告,請繼續往下閱讀-----
  1. 驢井能為環境提供額外 74% 的水資源
  2. 驢子頻繁的挖井,讓動物為了獲得水資源所移動的距離減少 65%
  3. 除了驢子外,有 59 種脊椎動物會來到水井附近,其中 57 種會飲水。這些動物從鳥類到大型哺乳類都有。
  4. 比起有洪水侵襲的河岸邊,驢井更適合樹木幼苗的發芽與生長,而這些幼苗的生長未來很可能會形成小型林地,讓該區域更有能力保住水資源
驢井也是不少植物喜愛的生長地。圖/ The Unseen Ecology of the Wild Burro

Lundgren 認為,隨著驢井的出現,某些區域生物們會減少因水資源而發生的鬥爭,並讓生物多樣性上升。

為了再次確定他的假設,他觀察並比較了「有驢井」、「沒有驢井」的區域,研究結果和他的假設一致:比起沒有有驢井的區域,有驢井區域的生物多樣性多出 64%!

這代表著,動物們不僅會主動地前往有驢井的地方,驢井也會降低了生物間為了爭奪水資源所產生的矛盾,並讓生物多樣性上升,可謂「驢子挖水井,眾生物受惠。」

感恩乾爹、讚嘆乾爹!

2017 年,也就是 Lundgren 收到斗內一年後,他回到 Indiegogo 平台上發文感謝大家,他在文中表示,借助大家斗內的資金,他所收集來的資訊已經寫成四篇科學文章,其中一篇甚至被頂尖期刊 Ecography 接受、刊登。

-----廣告,請繼續往下閱讀-----

而在這之後的四年,Lundgren 陸續補充更多資料,最終就連 Science 也刊登了這項「斗內來的」驢井綜合性生態研究。

Lundgren在Indiegogo上感謝大家的貼文。圖/The Unseen Ecology of the Wild Burro

一起為驢子正名!

在索諾拉沙漠中,這種會挖驢井的驢子其實屬於外來物種,因此當地居民和政府單位都認為牠們會破壞植被與環境,多年來,大家都一直想除掉牠們,美國土地管理局甚至會採取獵殺的方式來消滅當地的驢子。

此外,由於主流的生態學研究對外來種大多是持負面態度,因此就連科學界也不待見這些驢子。

但 Lundgren 的研究顯示,外來種並非只會對當地環境帶來破壞,這些驢子所挖的驢井不但能提供更多的水資源,更有助於穩定該地區的生態系統。若把牠們都除掉,恐怕該地區的動物們又會陷入水資源的爭奪戰,讓生態系統再次不穩定。

-----廣告,請繼續往下閱讀-----
收斗內的作者 Erick Lundgren。圖/University of Technology Sydney

不知道看到這邊,你對這篇研究有甚麼想法?

對筆者來說,除了知道驢子會挖水井、外來種也可能對當地生態系統有正面幫助的新知識外,最讓筆者印象深刻的其實是 Lundgren 為了研究經費而想出的「奇招」。

一般研究人員面對經費不足的情況時,往往只會忍痛放棄計畫,但俗話說:「山不轉路轉,路不轉人轉。」,Lundgren 為了繼續研究而想出「收斗內」的辦法,真的讓筆者大開眼界!

很多人都以為科學家是沉悶、沒有創意的,但許多科學研究往往是研究人員一時的靈感與創意造就的,而這篇研究就是很好的體現。其實不只科學研究,在生活中有時只要我們多花點心思,也許就能開創新的道路!

參考資料

  1. Lundgren EJ, Ramp D, Stromberg JC, Wu J, Nieto NC, Sluk M, Moeller KT, Wallach AD. Equids engineer desert water availability. Science. 2021 Apr 30;372(6541):491-495.
  2. https://www.indiegogo.com/projects/the-unseen-ecology-of-the-wild-burro#/
文章難易度
羅夏_96
52 篇文章 ・ 870 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
全球與台灣面臨怎樣的水資源困境?有解方嗎?【2023 臺灣國際水論壇】
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・3777字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 經濟部水利署 委託,泛科學企劃執行。

人體有 70% 是水,而地球表面亦有 70% 被水覆蓋。「水」對人類來說,是賴以為生的必要資源,又因「水」相對容易取得,讓人們不易察覺水的珍貴。

在近年氣候變遷衝擊下,旱澇交替已成常態,經濟部水利署賴建信署長接受泛科學專訪時亦表示,依據聯合國政府間氣候變遷專門委員會(IPCC)第 6 次評估報告(AR6)分析,未來臺灣連續不降雨日數及最大暴雨強度將明顯增加,對於水資源及水環境帶來嚴峻挑戰。

具體來說,未來降雨將會更集中在特定時間與地點,在降雨地區造成更嚴重的洪災,讓非降雨地區的缺水情形更加嚴重。結果是降雨地區的水庫會不斷洩洪,無法有效收集雨水,而非降雨地區的水庫又會完全沒水。

-----廣告,請繼續往下閱讀-----

這情景也預示著我們平常容易取得的「水」,將轉變為更稀缺珍貴的資源;然而,水又是人生存所必須,若現在不採取行動,水資源終將成為人類生存的最大束縛。

為了讓企業、政府、學術單位能更重視未來所面臨的水資源問題,水利署於 10 月 23 日舉辦的「2023 臺灣國際水論壇」以「水未來」(Vision for Water)為主題,針對「水與企業永續」、「水與能源鏈結」、「水與自然解方」、「水與減碳科技」,希望形成創新的漣漪,向外擴散,激盪出國內外產、官、學界合作契機。

由於氣候變遷,看似唾手可得的乾淨用水,已逐漸成為稀缺資源。圖/Pexels

而擔任「水與ESG-厚植企業永續競爭力」場次的講者,是來自東海大學國際學院永續科學與管理學士學位學程的 Aleksandra Drizo 教授,她以數據與實際案例,揭露水資源短缺到底有多麼迫在眉睫。

全球有35億人,沒有安全與衛生的水可用

Drizo 指出,聯合國 2023 年公布的 SDGs 第六項「確保所有人都能享有水、衛生及其永續管理」報告中,指出世界上 35 億人缺乏乾淨用水與基本衛生條件,並強調:「獲得安全用水,環境衛生和個人衛生是人類健康與福祉的最基本需求。」而若要達到 SDGs 的 其他目標,又以第六項為最重要的核心,因為唯有確保人人都能用上乾淨的水,才有路徑完成其他目標,例如:第二項「終止飢餓」,就必須在確保有穩定乾淨的水源情況下,才可能達成。

-----廣告,請繼續往下閱讀-----
水資源為 SDGs 中的核心,所有指標與其息息相關。圖/Aleksandra Drizo 簡報
聯合國 2023 年的報告指出, 2022 年仍有 35 億人沒有乾淨用水與衛生環境,其中 19 億人連基本用水門檻與衛生條件都無法達到。圖/Aleksandra Drizo 簡報

Drizo 進一步指出,近幾十年來,儘管在改善飲用水和衛生條件方面有所進步,但仍有大量人口無法獲得安全飲用水和基本衛生設施。根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,對水資源的調度與供給造成了巨大壓力。而在 2023 年世界衛生組織提供的乾淨飲用水調查資料中,直到2022年,仍有 22 億人口無法獲得安全飲用水,也與前面聯合國 2023 年的調查報告呼應,再次呈現水資源問題日益棘手的趨勢。

根據聯合國發布的 《Development and Globalization: Facts and Figures 2016》 資料,從 1990 年到 2015 年間,全球人口增長了 26 億,而未開發國家有近三分之一的人,無法確保乾淨用水。圖/Aleksandra Drizo 簡報

水資源困境並非全是全球人口成長惹的禍,全球氣候變遷造成更加頻繁的極端天氣事件,正讓全球面對過往不曾出現的乾旱。《衛報》2022 年報導歐洲面臨前所未見的熱浪與旱災,法國、荷蘭、比利時、瑞士、義大利、西班牙的河流,已經能直接看到河床,當時西班牙政府宣布限水,表示全國儲水量已達歷史新低,只有總儲水量的 40%,且每周都以 1.5% 的速率持續下降。

2022 年歐洲各地都傳出規模不一的旱災災情,如今西班牙缺水問題仍持續影響當地人民的生活。圖/Aleksandra Drizo 簡報

如今全球氣候變遷造成的水資源問題,也逐漸成為常態,《紐約時報》2023 年 10 月報導,如今西班牙仍處於缺水中,西班牙南部的水龍頭已經流不出水了,甚至連水井都已經枯竭,不只農業無法正常發展,民眾還必須仰賴水罐車或罐裝水維生,根據西班牙政府的報告,若缺水成為常態,則本世紀末將有近 74% 的西班牙國土,將面臨沙漠化的問題。

臺灣也面臨缺水問題

臺灣也未能逃離缺水的命運。2021 年春天,發生了 56 年來最嚴重的乾旱,當時外國媒體全都持續關注這場旱災,深怕缺水影響新竹科學園區的產線。而水利署搶先在 2021 年開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,才讓外媒的擔心沒有成真。

-----廣告,請繼續往下閱讀-----
2021年臺灣大缺水,外國媒體都十分關注。圖/Aleksandra Drizo 簡報

此外,臺灣水污染與地下水過度開採也導致水資源匱乏。要扭轉這一局面,則需要從多方面著手,水利署也已經開始建置相關工程並陸續投入使用,例如:高屏溪的「伏流水」與臺中水楠經貿園區淨化污水再利用的「再生水」,為地方開創多元水源,創造更有保障的用水環境。

Drizo 表示,臺灣的水庫也因氣候變遷面臨「優氧化」問題。由於水庫的水停滯過久,營養物質(氮和磷的化合物,相當於肥料)逐漸累積在水中,加上近年溫度上升,讓水中藻類與浮游生物孳生。在 2023 年的水利署水質檢測報告中,全國 20 個主要水庫中有 8 個水庫的水質已經優養化,這些優養化的水會對淨水廠造成額外負擔,而過濾出來的廢棄物處理也是個難題。

2023 年 7 月,水利署發布的水質調查報告指出,臺灣水庫有水質優養化問題。圖/Aleksandra Drizo 簡報

而 Drizo 針對優養化問題,提出以自然為本的解決方案(Nature-based Solutions, NbS)),並分享過去在各地施行的案例,例如:在 2009 至 2011 年與屏東科技大學的研究計畫,架設的社區小型污水淨水廠,以及用在美國俄亥俄州的農業污水淨水方案。最後 Drizo 分享了將廢棄物轉化生成富營養肥料等高附加價值產品的相關技術研發。也就是說,在淨水的同時,還能把廢棄物轉換為有價值的肥料,這不僅可以提高水資源利用效率,也具有重要的環保意義。

Drizo 的演講代表了學界在水資源問題上的重視,也提到了水利署正一步一腳印地改善臺灣用水環境,那麼身為用水大戶的企業,又有什麼作為呢?

-----廣告,請繼續往下閱讀-----

企業面臨的永續發展難題

臺灣美光記憶體的環安衛、風險管理暨永續發展處處長江頴俊在「水與ESG-厚植企業永續競爭力」場次分享該公司的實際經驗,臺灣美光記憶體透過「綠色基礎設施」、「流程優化」和「設備更新」的措施,成功達成每一滴水重複利用三次的目標,這項措施每年節省約 6000 萬立方公尺的水,相當於 6500 座奧運游泳池的水量。

然而,像美光這樣能提出具體目標與可信成果的企業並不多見,一同演講的法國北方高等商學院基礎建設研究中心 (EDHEC infra)的資深研究工程師 Nishtha Manocha,則說明大部分企業的永續發展目標缺乏 「設定具體可行的環保目標」以及「準確量化環保成果」。

許多企業的永續發展目標僅停留在概念階段,並沒有具體的達成路徑與量化檢核指標,這種模糊不清的目標將無法帶領企業持續行動。而更嚴重的是在量化成果這塊,目前企業仍多以內部數據來評估成效,缺乏第三方機構的驗證,資料的真實性可能會遭到質疑,也衍生出了「漂綠」的相關問題。

同場演講者—資誠聯合會計師事務所所長暨執行長周建宏,則表示「永續發展」已經是熱門的投資標的,投資人也害怕自己把錢給了「漂綠」的公司,最後虧得血本無歸。因此,在投資人的引導下,企業的永續發展目標會更為清晰,加上相關監管機構陸續成立,企業勢必將花更多心思在財報與資料呈現上,不能再打著永續發展的大旗,來跟投資者畫大餅。

-----廣告,請繼續往下閱讀-----

打造全球水未來

在「水與ESG-厚植企業永續競爭力」這場演講中,我們看到政府、企業、學界一同合作,共同討論如何解決水資源匱乏的難題。無論是學界針對水質優養化問題所提出的解決方案,抑或是透過投資人監督,讓企業能落實永續發展目標,都能看見世界正迅速朝永續水資源管理轉型。然而,各項監測指標仍顯示氣候變遷亦在加速,將我們推入未知領域,我們必須加快行動,才不會讓更嚴峻的水資源稀缺成為未來世代的枷鎖。

參考文獻

討論功能關閉中。

1

1
2

文字

分享

1
1
2
遊蕩犬貓攻擊保育類動物!怎麼防止外來入侵種和原生種的資源爭奪?動保與野保之間能取得平衡嗎?
PanSci_96
・2023/11/12 ・6100字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

你能接受移除外來種嗎?

但要是今天移除的是狗狗好朋友跟貓貓主子呢?

泛糰們知道嗎?5 月 11 日晚間 6 點,有一隻失親的小石虎被發現,發現的民眾還傳送了小石虎健康的萌照給縣府人員。但就在 2 個小時後,卻被送到特生中心的野生動物急救站,確定小石虎已經死了,死因是遭到遊蕩貓的攻擊,頸部大量出血而死。

這是台灣僅剩下約 400-600 隻的野生石虎族群的生活日常。

-----廣告,請繼續往下閱讀-----

不僅如此,進入急救站的保育類穿山甲,也有高達五成是因為被遊蕩犬咬傷了尾巴。而且可別以為遊蕩犬只會欺負小動物,前陣子陽明山有遊客拍到遊蕩犬群起圍攻水鹿的畫面。壽山附近的山羌,更因牠們而出現區域性的滅絕危機。

這死傷越來越慘重的尾巴衝突,你說怎麼辦?

台灣土狗不是原生種嗎?

小等一下 (Sió-tán–tsi̍t-ē)!為什麼講的好像狗不是台灣原生動物一樣?我們不是有台灣土狗這個品種嗎?

其實啊,這只是名字衍生的誤會,全世界沒有一個地方的「狗」是原生種。因為早在兩三萬年前,人類就已經從灰狼馴化出「狗」這個物種,無論在哪個生態系,牠都屬於外來種。例如澳洲野犬也是 3000 年前被人類帶到澳洲的,台灣本來就沒有原生犬科動物,因此「烏狗 (oo-káu)」不能鳩佔鵲巢說自己是本土原生種。既然不是原生動物,那麼流浪狗算是怎樣的存在呢?

-----廣告,請繼續往下閱讀-----

科學家其實會用「野化動物」來形容這些並非野生動物,也非寵物的動物們。也就是原本馴養的動物,脫離人類飼養環境後,在野外棲息並且繁衍的情況,像是被棄養的狗狗。除此之外,在台灣鄉間常見「放養」的狗兒們,基本上吃飯以外的時間都在野外淺山環境晃蕩,我們統稱叫作「遊蕩犬隻」。這個數量一大,對於野生動物就造成不小的威脅。包括咬死咬傷野生動物、競爭野外棲息地、傳播疾病等等。

根據 2017 年在《Biological Conservation》所發表的研究,遊蕩犬已成為全球至少 188 種瀕臨絕種動物的主要威脅。而在台灣 2022 年農業部的統計數據顯示,全國遊蕩犬估計有 15 萬 9697 隻,牠們的數量超過了台灣任何原生食肉哺乳動物。特生中心的林育秀研究員指出,或許只有台灣鼬獾的數量能與遊蕩犬相提並論。

雖然遊蕩犬滿街跑,但看起來狗狗們都融入生活中,頭好壯壯沒什麼問題嘛!如果你這樣講,那就大錯特錯了。遊蕩犬在野外環境要活下去,就得跟野生生物爭奪資源,並面對很多生存困境。根據清華大學的顏士清助理教授 2016 到 2018 年在陽明山國家公園進行的研究,在那個區域裡的遊蕩犬普遍存在不同程度的血檢異常。大約一到兩成具有斷腳或皮膚病,導致牠們每年的存活率不到一半。而許多跨物種的傳染病如:焦蟲病、犬瘟熱、犬小病毒等,更是同時危害遊蕩犬跟野生動物們,更別提可能有狂犬病。

圖/pexels

所以其實我們必須認知一個前提,那就是遊蕩動物在外頭並不是天堂,毛孩子們應該要有個家。

-----廣告,請繼續往下閱讀-----

另一方面儘管犬貓在國際上是被國際自然保育聯盟(IUCN)認定的外來入侵種,但我們台灣是一直到去年 2022 年,在中研院的台灣物種名錄上才將犬貓從「外來種」更新為「外來入侵種」,和埃及聖䴉、綠鬣蜥並列。

外來種與外來入侵種

外來種跟外來入侵種有怎樣的差別呢?一般外來種就像是開心農場裡的水豚、實驗室的白老鼠,這些雖然是人類特意引入的物種,但在管理之下對當地生態的影響相對可控,就算是那隻跑出來名揚一時的東非狒狒也不例外。這之中最大的差異是:外來入侵種會捕獵原生動物或瓜分其生存資源,對原生生態造成負面影響。而名列為外來入侵種的遊蕩犬,不僅嚴重影響石虎、水鹿、穿山甲等野生動物的生存,還有可能會增加野外傳播疾病的速率。

顏士清老師 2019 年發表在《Scientific Reports》的研究指出,大台北地區包括陽明山國家公園遊蕩犬的出現,確實導致了野生動物的多樣性下降。穿山甲、麝香貓、山羌、山豬、鼬獾、白鼻心跟野兔等動物為了生存,都必須避免與遊蕩犬接觸。這這這……我們該怎麼處理呢?

早在十多年前,台灣許多動保組織就引入了一種族群控制方式,NT……啊不是,我是說 TNvR。TNvR 是英文 Trap、Neuter、Vaccine、Return 四個字的縮寫,目的是透過降低母狗的生育率來處理遊蕩犬過多的問題。TNvR 的操作手法是先用籠子跟罐頭吸引遊蕩犬進入,以母狗為主,進行輸卵管或卵巢移除手術結紮並且施打疫苗、剪耳標記後再回置原棲地。

-----廣告,請繼續往下閱讀-----

先等等,既然目的是減少遊蕩犬,都捕捉了為什麼要放回原地呢?

原來第四步的 Return 是利用犬類強烈的領域性,回置後可以有效阻止其他遊蕩犬進入占地盤,避免「真空效應」的出現——也就是流浪犬貓被移除後,周遭區域的其他流浪動物看中這個地盤,吸引而來填補空缺。

Return 是為避免「真空效應」的出現——也就是流浪犬貓被移除後,周圍出現更多流浪動物來填補空缺。圖/YouTube

印度齋浦爾市是一個經常被拿來當作 TNvR 成功案例,從 1994 年到 2002 年 長達八年的時間,總計 TNvR 了近兩萬五千隻的遊蕩犬。印度在此計畫中幫 65% 的母狗進行了絕育和疫苗接種手術,雖然最終族群的數量只下降了 28%,但當地人類狂犬病例下降到零,蔚為美談。除此之外,在泰國曼谷、伊朗克爾曼市也都有正面的案例。只可惜,不是每個案例都是成功的。也有不少 TNvR 經過了十多年的施行還是宣告失敗,例如被認定是台灣 TNvR 示範區——台南漁光島。

原本島上有 80 多隻遊蕩犬,2011 年在市府幫助之下開始啟動 TNvR 計畫,經過 4 年時間的努力,到了 2015 年,漁光島的流浪犬族群已經減少到 50 隻以下了,而且剩餘的犬隻大多數都已經經過 TNvR 的處置,不會在當地繼續繁殖。但好景不常,後續這個「狗島」的浪犬回置印象,反而變成了飼主暗地棄養犬的地點。而這個「人犬衝突」最終還是由當地居民承受,造成攻擊家畜、追逐車輛、影響用路人等等問題,居民不勝其擾。

-----廣告,請繼續往下閱讀-----

過多的愛是一種負擔?

不過呢,對科學家來說,最關切的就是可再現性。因此非得問的問題是:「為什麼台灣施行 TNvR 的場域都沒有成功,遊蕩犬問題到現在越演越烈呢?」人類沒辦法讓遊蕩犬少子化原因不是遊蕩犬不用擔心高房價,其實答案就在地理課本之中。

如果你還有記憶的話,高中地理有教過人口變化的四大要素:出生、死亡、移入、移出。我們把這個模型放到漁光島,發現透過 TNvR 可以降低出生率,因為漁光島是一個沙洲島,除了漁光大橋之外不太受到外界干擾,等同是一個生態學上的「封閉族群」。但若放到台北市、新竹市、台中市這些四通八達的都會, TNvR 的努力成果就很有限。因為難以阻絕外來遊蕩犬跟棄養犬遷入,即使降低出生率也沒用。

換言之,TNvR 不是單一解方,必須同時搭配小族群且封閉的場域才容易有成果。只要一直有新的移入族群,那麼想要利用無生殖力的絕育犬降低遊蕩的數量,就只是緣木求魚,結果來的都是狗。而且這些地方還面對另一個挑戰——人類的愛。被稱為愛爸愛媽的民眾真的很有愛,這些熱心民眾覺得流浪動物很可憐,因此每天定時定量地提供飼料或廚餘。不過我們若是希望流浪動物越少越好,可得好好參考在《美國獸醫學會期刊》發表的這篇研究

圖/pexels

當人類對城市中的流浪貓進行 TNR 並持續供應食物,貓貓的數量不僅沒有減少,反而增加了。這主要是因為穩定的食物供應使得貓貓覓食的壓力消失了,反而吸引附近周圍的新貓移入。這也意味 TNR 所稱的「真空效應」其實取決於食物多寡,並不是回置動物就可以阻擋周圍流浪動物移入。雖然部分絕育母貓無法生寶寶,但其他未絕育母貓的繁殖競爭壓力反而變小,加上有充足營養來哺育,新生幼貓與成貓的死亡率下降,結果最後就是流浪貓變得更多。

-----廣告,請繼續往下閱讀-----

絕育方案花了好大的力氣想要把「出生」這一個新貓入口給堵上,但餵食卻是一次達成「移入提升、移出減少、出生提升、死亡降低」,換言之只要人類餵食,所有努力都將付諸流水。少貓狗化大失敗,最大的問題是:我們對浪浪的愛心,將直接轉變為對野生動物的殘忍;讓牠們更有力氣也更有本錢和野生動物競爭,讓野生動物更容易遭到攻擊。這也是為何野保人士希望能夠禁止餵食的主因。

動保和野保究竟在吵什麼?

在這個複雜的議題戰場中,看似野保和動保兩派一直在互相較勁。野保人士訴諸科學面和野生動物滅絕的急迫,主張 TNvR 無效,回置和餵食遊蕩犬都只會傷害野生動物,因此偏向移除或禁止餵食的路線,甚至認為結紮後回置無助於解決野生動物領域被侵犯的根本問題,不如重新考慮對付外來入侵種的標準 SOP——「撲殺」;而動保人士則主張毛孩是人類的責任,浪浪在外面遊蕩不是牠們願意的,認同繼續強化 TNvR 的範圍和乾淨餵食,也不支持移除或十二夜的安樂死悲劇再次發生,反過來指責野保人士殘忍無情。

但撇開二元對立的框架,兩方其實都是關心動物的人。多年來不同路線的爭論讓情況完全膠著,雙方越來越極端化,背後根本原因是——台灣沒有進行飼主責任教育或寵物管制,導致遊蕩犬貓持續增加。加上這個議題位於野保法和動保法之間的灰色地帶,既有的管理措施執行力也不足,例如:許多風景區禁止餵食野生動物和遊蕩動物的告示牌形同虛設、許多養育寵物的飼主沒有登記也沒有打晶片,最令人為難的是,就算政府想出面,也只能對著無米之炊瞪著眼嘆氣。

電影《十二夜》海報。圖/wikimedia

最知名的例子就是十年前的電影《十二夜》,上映之後轟動一時,政府順應輿論和動保團體的倡議,從 2017 年開始對遊蕩犬採取了收容零撲殺的立場,廢除掉 12 夜——也就是公告滿 12 天之後未有人領養或是收養,就採取人道處理。由於對於「安樂死」的污名化,使得收容所執行安樂死變得很敏感。儘管面對重病重傷或是嚴重傳染性疾病,很多收容所也不太敢真正執行安樂死,只好任其「自然死亡」。包含台北市動物之家在內,全台有 8 個收容所超額收容。骨牌效應下,就算想移置石虎生態熱區的遊蕩犬,也沒地方放。而因為安樂死這三字背負的原罪實在太重,即使有些動保團體已經意識到這樣可怕的收容環境,恐怕比路殺或是野外移除還要「不人道」,卻也無計可施。

-----廣告,請繼續往下閱讀-----

最後我們要來談談政府的角色,自從石虎永哥被遊蕩犬殺死,農業部正準備推動「台灣原生種野生動物受遊蕩犬侵擾改善試辦專案計畫」,預計先在苗栗、台中跟南投針對九大石虎受侵擾的熱區,推動禁止餵養犬貓。苗栗目前已就「禁止餵養遊蕩犬貓自治條例草案」進行公聽會,並展開移除遊蕩犬,也和動保團體溝通,這個移除絕對不是撲殺,而是收容後不回置。也會編列預算改善收容所的設施,並辦理領養活動。即使如此仍然受到雙方立場夾殺,野保人士人士認為:三千萬的經費根本不足以守護九個熱區;動保人士人士要求:至少要有大型開放性安置中心的規劃等等。

農業部有如深陷電車難題啊!可見遊蕩犬的問題早就已經超越科學問題,成了政治問題。政治是妥協,也許我們不該追求最好,而是相對更好的解才走得下去。例如對收容動物適度的安樂死、提升整體收容動物的福祉,更多的人開始呼籲 TNR 的處置手段應該升級為 TNSA,也就是將回置的 R 改為收容 S 以及領養的 A,才能邁向更長遠的源頭控制,重新落實飼主責任。

例如 10/29 剛舉辦完的「為野生動物而走」遊行活動的訴求,就是讓犬貓有人類溫暖的家;野生動物有自然的環境。這樣的台灣,才是以生物多樣性為傲的美麗之島!

一如開頭所說,複雜的問題沒有簡單的答案。你認為在資源有限的情況下,還有什麼方法是處理遊蕩犬貓的相對好的方法呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。