Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

男人為何要買名車?因為女人總是被彰顯地位的產品吸引

cleo
・2012/09/14 ・720字 ・閱讀時間約 1 分鐘 ・SR值 582 ・九年級

再一次,性交行為影響了我們的消費行為。

我們都知道遇到中年危機的中年男子總是會說他們要買名車Corvette來度過危機。當男人漸漸失去男子氣概及魅力時,他們總是想辦法證明他們還是優秀的伴侶人選。在演化中這稱為代價信號理論(costly signaling)。男人發出信號,表示他們依舊可成為優秀的伴侶。

所以為什麼男人要買名車呢?因為女人總是被彰顯地位的產品吸引。

首先,荷蘭的研究人員發現,只要提醒男人他們能夠性交的機會(藉由讓他們看迷人女人的照片),他們購買能彰顯身分的產品的慾望就會提高。當男人想與迷人女人交配時,他們就會想買可以展現伴侶價值的產品。

-----廣告,請繼續往下閱讀-----

第二,研究人員發現當男人進行炫耀性消費(conspicuous consumption)時-例如購買Corvette-他們確實能感到睪丸酮的上升。事情愈來愈有趣了!不過真正的問題是:女人真的有注意到,或是在意嗎?

總之,沒錯,她們在意。近期一個由比利時科學家進行的研究指出,在女性排卵期時,她們會更加注意且容易被彰顯身分的產品吸引。而非排卵期的女性則不會。服藥的女性(會打亂經期)也不會太注意彰顯身份的消費行為。排卵期的女性也較常欺騙伴侶,但只有在伴侶比真正交往對象更具魅力時。

所以,我們現在知道當男人想起他們能性交的機會時,他們就會透過炫耀性消費發出他們自身是優秀伴侶的信號;我們也知道,當他們這樣做時,他們已準備好要性交。最後,不論我們覺得這樣的策略有多膚淺及糟糕,這策略的確實非常有效,因為排卵期的女性確實較易受到炫耀性消費擺佈。

再一次,性交行為-或是可能的性交行為以我們沒意識到的方式,影響了我們的消費行為。

-----廣告,請繼續往下閱讀-----

資料來源:Why Do Men Buy Corvettes? Because Women Are Attracted to High-Status Products  [13 SEPTEMBER 2012]

-----廣告,請繼續往下閱讀-----
文章難易度
cleo
49 篇文章 ・ 1 位粉絲
是個標準的文科生,最喜歡讀的卻是科學雜誌。一天可以問上十萬個為什麼。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
0

文字

分享

1
4
0
現金和消費券差在哪?普發到底好不好?
PanSci_96
・2023/04/10 ・3051字 ・閱讀時間約 6 分鐘

過去也有多次政府發錢刺激消費的作法,但他們發的不是錢,而是有使用限制的「消費券」。

既然可以發錢,為什麼之前要發消費券呢?這次又為什麼要發現金?

從經濟學的角度來看,過往的消費券到底是什麼,與這次發現金的使用情境有什麼不一樣?

什麼是消費劵

對消費者來說,消費券就是被限定用途的紙鈔或者是折價券;但從政府的角度,或從經濟學的角度來看,消費券並非這麼簡單。在了解消費券前,要先有兩個概念:「經濟活動循環」及「景氣循環」。

在最簡單的經濟行為流程裡,我們看的是「家計部門」與「廠商」,也就是消費者與生產者之間的互動。「家計部門」需要買各式各樣的產品維持生存或生活品質,「廠商」則提供這些產品,這兩者組成了「產品市場」;「廠商」為生產商品所需的勞動力,就由「家計部門」提供,形成了「勞動市場」或是「生產要素市場」。

-----廣告,請繼續往下閱讀-----

將上述概念再加入相反的資金流向,如:購買產品的消費支出、提供勞動力的薪水所得等,就可繪製成「經濟活動循環圖」。

經濟活動循環圖。圖/PanSci YouTube

而在一次的「景氣循環」中,會分別經歷擴張期與收縮期;根據國家發展研究院的定義,每個時期所持續時間的至少為 5 個月,走完一次循環則需至少 15 個月。

在擴張期中會先經歷探底復甦,接者是穩定成長,最後來到高峰繁榮期;在這之後就會進入收縮期,開始經濟衰退,直到觸底復甦進入新循環。

舉一個不遠的經濟衰退案例,那就是 2008 年全球金融危機。當時由於美國房地產市場崩潰,房價急劇下跌,許多人失去了房屋資產,造成負債問題;導致消費者信心下降、消費減少,進而使生產減少。此外,由於銀行與金融機構資產負債問題激增,使得貸款停止,造成資金不流動;這麼一來企業也必須減少生產,進而裁員、倒閉,失業率隨之攀升。 

-----廣告,請繼續往下閱讀-----
景氣循環週期。圖/PanSci YouTube

有了「經濟活動循環」和「景氣循環」概念,我們可以幫消費券下個定義了:就是透過增加家庭的消費支出,來復甦產品市場;通常在經濟衰退時使用。也就是說,消費券是政府發給我們的消費工具,希望再補點錢把廠商的庫存清光,增加消費來維持市場穩定,避免持續經濟衰退。

發消費券與現金的成效

那麼,直接發錢跟消費券的功能一樣嗎?發現金也會刺激消費,但消費券刺激的力道理論上會再強一些。

由於消費券在設計上會「排除基本必須開支」,這麼一來便會減少用於「消費替代」的機會,像是水電費、勞健保費、或是繳稅跟罰金,而消費券的各種優惠跟加碼活動,都激勵我們花超過原本支出的錢。另外,「限時用完」、「不找零」、「排除儲值跟預付類消費」都是消費券的關鍵設計,目的就是要在短時間內激發經濟流動性。

反過來說,發現金不像消費券,有明確的優惠活動可以刺激我們亂花錢,在沒有使用期限跟排除開支項目的情況下,這些錢還可以自由分配到每個月的日常支出裡;假如沒有多花一些錢,發的現金將不會幫助消費增長。

-----廣告,請繼續往下閱讀-----

新冠疫情影響下,美國在 2020 年普發現金:成人發 1200 美元、兒童 500 美元,年底再加碼 600 美元,2021 年又發 1400 美元。根據美國聯準會紐約分行研究,截至 2020 年 6 月底,民眾取得的現金補助中,有 36% 為儲蓄、35% 償還債務,僅 29% 用於消費,民眾甚至表示,在收到 2021 年的補助金後,會花更多錢去還債。

新冠疫情下,美國在 2020 年普發紓困現金。圖/Envato Elements

而日本則於 2021 年底,向全民普發 10 萬日圓的特別定額給付金,日本 Money Forward Lab、早稻田大學與澳洲昆士蘭大學的共同研究研究指出,給民眾的給付金中,只有 6% 到 27% 用於消費,其中非日常用品的支出沒有明顯改變。

那消費券的成效呢?根據經濟部對 2020 發放的振興三倍券評估成效,考量印製、宣傳與行政,包含發給我們的 2000 元,總成本為 510.5 億元,以領取率接近 100% 來計算,大約就是 2300 萬人去攤這 510.5 億,政府在每一個人身上花約 2220 元,而每人平均消費了 5785 元;等於政府花 1 元能換來 2.6 元的消費,是有效果的。

不過由於使用情境不同,不好將日美發放的現金與我們的振興券相比較。

-----廣告,請繼續往下閱讀-----

日美發放的是「紓困金」,目的是幫助人民度過難關;針對這些「紓困金」得用社會投資報酬率(SROI)來考慮,也就是衡量投入資源,所得到「非財務面」的回饋與報酬,例如社會安全、社會價值等。

搞笑諾貝爾經濟學獎

那這次台灣發現金的目的到底是什麼呢?假設是要振興經濟,應該不是個好方法。若用社會投資報酬率來看,不少人提出更該把要拿來發的 1800 億用於投資科學技術研究、大學經費或減免高等教育學費,而非普發 6000。

讓我們回顧 2022 年搞笑諾貝爾經濟學獎,研究團隊以每隔五年會獲得「政府資金」補助,並在模型裡設計了好幾種情境,除了把經費徹底平均分配的普發式外,還有只補助過去表現好的人的菁英式,一部分重點補助菁英,剩下再普發的折衷式,以及最後一個亂槍打鳥樂透式。每一式再加入補助金額高低變化,總共有 18 種方案。

延伸閱讀:
【2022 年搞笑諾貝爾經濟獎】不想努力的我,把運氣點滿就對了

透過這個人生遊戲模組,若以研究定義的成功率來看,折衷式的其中一種方案讓「高能力族群」的成功率從沒有補助的 32.05% ,一口氣提高到 94.82%,其結果最好,但也是所有方案中最貴的;相較之下,如果採取普發式的其中一種方案,成功率也可以達到 94.40%,政府花費還低了將近一半。

-----廣告,請繼續往下閱讀-----

若不只看成功率,而是看政府每花一塊錢能增加多少高能力族群成功率的效率來判斷,竟然還是普發式的方案結果最好,能用最少的花費,就讓成功率提升到 69.48%!表現最差的方案,都是菁英式,其中只把錢給過往表現前 10% 的極端菁英方案,效率只有最佳普發方案的 1/25。

研究者也提到,在真實世界中,折衷式方案一方面人人有獎,一方面也給表現較好的人鼓勵,可能產生激勵效果,讓所有人都更加努力,發揮更大的整體效果。

再回到一開始討論的,現在政府有一筆多出來的錢,而預期目標是讓人民的生活過得更好,這筆錢該直接給民眾,還是執行特定的菁英投資政策呢?若是按照搞諾經濟學獎,就是直接普發!(難道政府裡也有和我們一樣熱愛搞笑諾貝爾獎的好捧油?XD)

然而,不管是從經濟學基本原理、過往發現金跟消費券的效益評估,還是搞笑諾貝爾經濟學獎的人生遊戲模型,其實都無法替普發 6000 還稅於民的政策效果背書,一時半刻也很難看出效益。

-----廣告,請繼續往下閱讀-----

說到這裡,6000 元你打算怎麼花呢?

歡迎抖內!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

-----廣告,請繼續往下閱讀-----

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

-----廣告,請繼續往下閱讀-----

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

-----廣告,請繼續往下閱讀-----

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

-----廣告,請繼續往下閱讀-----

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

-----廣告,請繼續往下閱讀-----

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

-----廣告,請繼續往下閱讀-----

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

-----廣告,請繼續往下閱讀-----

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。