1

4
0

文字

分享

1
4
0

現金和消費券差在哪?普發到底好不好?

PanSci_96
・2023/04/10 ・3051字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

過去也有多次政府發錢刺激消費的作法,但他們發的不是錢,而是有使用限制的「消費券」。

既然可以發錢,為什麼之前要發消費券呢?這次又為什麼要發現金?

從經濟學的角度來看,過往的消費券到底是什麼,與這次發現金的使用情境有什麼不一樣?

什麼是消費劵

對消費者來說,消費券就是被限定用途的紙鈔或者是折價券;但從政府的角度,或從經濟學的角度來看,消費券並非這麼簡單。在了解消費券前,要先有兩個概念:「經濟活動循環」及「景氣循環」。

在最簡單的經濟行為流程裡,我們看的是「家計部門」與「廠商」,也就是消費者與生產者之間的互動。「家計部門」需要買各式各樣的產品維持生存或生活品質,「廠商」則提供這些產品,這兩者組成了「產品市場」;「廠商」為生產商品所需的勞動力,就由「家計部門」提供,形成了「勞動市場」或是「生產要素市場」。

-----廣告,請繼續往下閱讀-----

將上述概念再加入相反的資金流向,如:購買產品的消費支出、提供勞動力的薪水所得等,就可繪製成「經濟活動循環圖」。

經濟活動循環圖。圖/PanSci YouTube

而在一次的「景氣循環」中,會分別經歷擴張期與收縮期;根據國家發展研究院的定義,每個時期所持續時間的至少為 5 個月,走完一次循環則需至少 15 個月。

在擴張期中會先經歷探底復甦,接者是穩定成長,最後來到高峰繁榮期;在這之後就會進入收縮期,開始經濟衰退,直到觸底復甦進入新循環。

舉一個不遠的經濟衰退案例,那就是 2008 年全球金融危機。當時由於美國房地產市場崩潰,房價急劇下跌,許多人失去了房屋資產,造成負債問題;導致消費者信心下降、消費減少,進而使生產減少。此外,由於銀行與金融機構資產負債問題激增,使得貸款停止,造成資金不流動;這麼一來企業也必須減少生產,進而裁員、倒閉,失業率隨之攀升。 

-----廣告,請繼續往下閱讀-----
景氣循環週期。圖/PanSci YouTube

有了「經濟活動循環」和「景氣循環」概念,我們可以幫消費券下個定義了:就是透過增加家庭的消費支出,來復甦產品市場;通常在經濟衰退時使用。也就是說,消費券是政府發給我們的消費工具,希望再補點錢把廠商的庫存清光,增加消費來維持市場穩定,避免持續經濟衰退。

發消費券與現金的成效

那麼,直接發錢跟消費券的功能一樣嗎?發現金也會刺激消費,但消費券刺激的力道理論上會再強一些。

由於消費券在設計上會「排除基本必須開支」,這麼一來便會減少用於「消費替代」的機會,像是水電費、勞健保費、或是繳稅跟罰金,而消費券的各種優惠跟加碼活動,都激勵我們花超過原本支出的錢。另外,「限時用完」、「不找零」、「排除儲值跟預付類消費」都是消費券的關鍵設計,目的就是要在短時間內激發經濟流動性。

反過來說,發現金不像消費券,有明確的優惠活動可以刺激我們亂花錢,在沒有使用期限跟排除開支項目的情況下,這些錢還可以自由分配到每個月的日常支出裡;假如沒有多花一些錢,發的現金將不會幫助消費增長。

-----廣告,請繼續往下閱讀-----

新冠疫情影響下,美國在 2020 年普發現金:成人發 1200 美元、兒童 500 美元,年底再加碼 600 美元,2021 年又發 1400 美元。根據美國聯準會紐約分行研究,截至 2020 年 6 月底,民眾取得的現金補助中,有 36% 為儲蓄、35% 償還債務,僅 29% 用於消費,民眾甚至表示,在收到 2021 年的補助金後,會花更多錢去還債。

新冠疫情下,美國在 2020 年普發紓困現金。圖/Envato Elements

而日本則於 2021 年底,向全民普發 10 萬日圓的特別定額給付金,日本 Money Forward Lab、早稻田大學與澳洲昆士蘭大學的共同研究研究指出,給民眾的給付金中,只有 6% 到 27% 用於消費,其中非日常用品的支出沒有明顯改變。

那消費券的成效呢?根據經濟部對 2020 發放的振興三倍券評估成效,考量印製、宣傳與行政,包含發給我們的 2000 元,總成本為 510.5 億元,以領取率接近 100% 來計算,大約就是 2300 萬人去攤這 510.5 億,政府在每一個人身上花約 2220 元,而每人平均消費了 5785 元;等於政府花 1 元能換來 2.6 元的消費,是有效果的。

不過由於使用情境不同,不好將日美發放的現金與我們的振興券相比較。

-----廣告,請繼續往下閱讀-----

日美發放的是「紓困金」,目的是幫助人民度過難關;針對這些「紓困金」得用社會投資報酬率(SROI)來考慮,也就是衡量投入資源,所得到「非財務面」的回饋與報酬,例如社會安全、社會價值等。

搞笑諾貝爾經濟學獎

那這次台灣發現金的目的到底是什麼呢?假設是要振興經濟,應該不是個好方法。若用社會投資報酬率來看,不少人提出更該把要拿來發的 1800 億用於投資科學技術研究、大學經費或減免高等教育學費,而非普發 6000。

讓我們回顧 2022 年搞笑諾貝爾經濟學獎,研究團隊以每隔五年會獲得「政府資金」補助,並在模型裡設計了好幾種情境,除了把經費徹底平均分配的普發式外,還有只補助過去表現好的人的菁英式,一部分重點補助菁英,剩下再普發的折衷式,以及最後一個亂槍打鳥樂透式。每一式再加入補助金額高低變化,總共有 18 種方案。

延伸閱讀:
【2022 年搞笑諾貝爾經濟獎】不想努力的我,把運氣點滿就對了

透過這個人生遊戲模組,若以研究定義的成功率來看,折衷式的其中一種方案讓「高能力族群」的成功率從沒有補助的 32.05% ,一口氣提高到 94.82%,其結果最好,但也是所有方案中最貴的;相較之下,如果採取普發式的其中一種方案,成功率也可以達到 94.40%,政府花費還低了將近一半。

-----廣告,請繼續往下閱讀-----

若不只看成功率,而是看政府每花一塊錢能增加多少高能力族群成功率的效率來判斷,竟然還是普發式的方案結果最好,能用最少的花費,就讓成功率提升到 69.48%!表現最差的方案,都是菁英式,其中只把錢給過往表現前 10% 的極端菁英方案,效率只有最佳普發方案的 1/25。

研究者也提到,在真實世界中,折衷式方案一方面人人有獎,一方面也給表現較好的人鼓勵,可能產生激勵效果,讓所有人都更加努力,發揮更大的整體效果。

再回到一開始討論的,現在政府有一筆多出來的錢,而預期目標是讓人民的生活過得更好,這筆錢該直接給民眾,還是執行特定的菁英投資政策呢?若是按照搞諾經濟學獎,就是直接普發!(難道政府裡也有和我們一樣熱愛搞笑諾貝爾獎的好捧油?XD)

然而,不管是從經濟學基本原理、過往發現金跟消費券的效益評估,還是搞笑諾貝爾經濟學獎的人生遊戲模型,其實都無法替普發 6000 還稅於民的政策效果背書,一時半刻也很難看出效益。

-----廣告,請繼續往下閱讀-----

說到這裡,6000 元你打算怎麼花呢?

歡迎抖內!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
用科學定義左邊:當宇稱對稱被顛覆時,物理學如何重新書寫規律?
PanSci_96
・2024/12/16 ・1888字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

揭開宇宙的對稱之謎

如果有人問你:「什麼是左邊?」你可能會說:「左手那邊就是左邊。」但如果對方問:「左手是哪一隻?」你可能回答:「心臟那邊的手就是左手。」這樣的回答對人類來說很容易理解,但如果對方是一個從未見過人類的外星人,該怎麼解釋呢?

這個問題看似簡單,實際上涉及了物理學中的深奧話題。1956 年,三位華人科學家楊振寧、李政道和吳健雄,通過實驗揭示了一個驚人的事實:我們的宇宙對「左」與「右」其實並不完全對稱。這一發現推翻了人類長期以來對對稱性的認識。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

宇稱對稱性:鏡子中的世界會一樣嗎?

要了解這個發現,我們需要先認識「宇稱」的概念。宇稱(Parity)是物理學中用來描述對稱性的一種方法。它的意思是,如果我們把空間中的座標 (x, y, z) 反轉成 (-x, -y, -z),自然界的規律應該還是一樣的。例如,當一顆蘋果從樹上掉下來,我們用鏡子看時,蘋果還是會掉向地面,而不是飛向天空。這說明鏡像中的世界和真實世界是對稱的。

很長一段時間裡,科學家認為這種對稱性適用於所有自然現象,無論是在宏觀還是微觀世界。然而,到了 1950 年代,一些基本粒子的行為挑戰了這種觀點。

-----廣告,請繼續往下閱讀-----

宇稱不守恆:弱交互作用的例外

在物理學中,有四種基本交互作用:重力、電磁力、強交互作用和弱交互作用。弱交互作用是描述粒子衰變的力量,比如中子會通過弱交互作用衰變成質子、電子和一個反微中子。

1956 年,楊振寧和李政道提出一個大膽的假設:在弱交互作用中,宇稱對稱性可能並不成立。他們指出,雖然大多數物理現象在鏡像中是對稱的,但弱交互作用的某些過程可能偏好「左手性」。

楊振寧與李政道提出一個大膽的假設,指出在弱交互作用中可能破壞宇稱對稱性。圖/envato

為了驗證這個假設,他們邀請吳健雄設計了一個關鍵實驗,這就是後來著名的「吳氏實驗」。

吳氏實驗:揭示宇宙偏愛左手性

吳健雄選擇使用鈷-60 原子的 β 衰變作為實驗對象。鈷-60 是一種不穩定的同位素,會釋放出電子和反微中子。她將這些原子冷卻到極低溫,並用強磁場讓它們的自旋方向統一。

-----廣告,請繼續往下閱讀-----

實驗的關鍵是觀察電子的發射方向。如果宇稱守恆,那麼電子應該會均勻地向各個方向發射。然而,吳健雄的實驗結果卻顯示,電子有明顯的偏向,總是傾向於與原子自旋方向相反的方向發射。

這一結果證明,在弱交互作用中,鏡像世界與真實世界並不對稱,宇稱不守恆。而且,它表明自然界偏好「左手性」,或者說弱交互作用是一個「左撇子」。

為什麼這個發現重要?

宇稱不守恆的發現改變了我們對宇宙基本規律的理解。物理學家過去認為自然界的規律應該是完全對稱的,但這一發現表明,在某些情況下,對稱性會被打破。

這項研究還引發了更多的問題。例如,為什麼宇宙會偏愛「左手性」?是否還有其他交互作用也會破壞對稱性?隨後的研究顯示,如果將宇稱(P 對稱)和電荷共軛(C 對稱)結合在一起,則可以恢復某種對稱性,這被稱為「CP 對稱」。

-----廣告,請繼續往下閱讀-----

然而,1964 年的實驗又發現,CP 對稱在某些情況下也會被打破,這進一步推動了對基本物理規律的研究。特別是 CP 對稱破壞可能與宇宙中物質多於反物質的原因有關,這是當代物理學的一個重要課題。

CP 對稱破壞揭示了宇宙偏愛「左手性」與物質多於反物質的可能原因。圖/envato

用科學解釋左與右

回到最初的問題:如果我們需要向外星人解釋「左邊」的概念,該怎麼做呢?現在我們知道,可以通過像吳氏實驗這樣的方法,用弱交互作用來區分左與右。簡單地說,只要觀察粒子的衰變方向,就能定義出哪一邊是「左」。

這個發現讓我們更深入地理解了自然界的基本規律。它不僅是一次物理學的重大突破,也讓我們重新認識到宇宙的奇妙與複雜。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
AI 蛋白質設計革命:2024 諾貝爾化學獎背後的醫學奇蹟
PanSci_96
・2024/12/15 ・2175字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

2024 年諾貝爾化學獎,因為 AI 在蛋白質結構預測上的突破而備受矚目。Google DeepMind 的創辦人之一哈薩比斯(Demis Hassabis)與他的團隊,因開發出能預測蛋白質摺疊的 AlphaFold 系列獲得一半獎金。而另一半獎金則頒給了化學家大衛·貝克(David Baker),他開發出另一套令人驚嘆的工具,甚至突破了 AlphaFold 的極限。這些成就不僅為科學界帶來革命性的改變,更可能大幅加速藥物開發與疾病治療的進程。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

蛋白質摺疊:生命的拼圖

蛋白質作為生命的基石,其結構對其功能至關重要。當蛋白質在細胞內生成時,它由多個胺基酸分子組成的長鏈,會在極短的時間內像折紙般扭曲成特定的三維形狀。這種形狀決定了蛋白質的功能,比如構成細胞的結構、催化化學反應或傳遞訊息。

然而,預測這些複雜的三維結構曾經是生物化學界的一大挑戰。科學家們雖然能夠測量蛋白質序列(即胺基酸的排列順序),但如何從一維的序列準確推測其三維構造,卻是一個需要龐大運算能力和深刻科學理解的難題。

這個挑戰直到 2021 年 AlphaFold 2 的問世才有了質的突破。這套工具運用深度學習技術,能快速準確地預測蛋白質的摺疊方式,其精度已接近實驗室測試的水平。而今年推出的 AlphaFold 3,更進一步預測生物分子如 DNA 和 RNA 與蛋白質的交互作用,為藥物設計提供了重要基礎。

-----廣告,請繼續往下閱讀-----

不止於 AlphaFold:貝克的逆向設計

與 AlphaFold 側重於「順向」預測不同,大衛.貝克帶領的團隊採取了全然相反的路徑。他們開發的工具能夠進行「逆向」工程:不僅能根據已知序列推測結構,還能從需求出發,設計出具有特定功能的蛋白質。這種技術突破意味著,我們可以隨心所欲地設計出抗癌抗體、病毒疫苗,甚至是工業用的環保酵素。

這就像一位技藝超群的主廚,能根據客人的描述,精準還原一道複雜的菜餚,甚至能重新設計出更美味、更符合需求的版本。而貝克團隊的這套技術,則讓這樣的「創造」成為科學事實。

大衛.貝克團隊突破逆向工程技術,能夠設計具特定功能的蛋白質。圖/envato

設計蛋白質的技術演進

早在 1997 年,貝克的團隊就已經開發出 Rosetta,這是一款能模擬蛋白質摺疊的電腦工具。當時,他們利用能量假設,評估一個三維結構的穩定性。然而,由於電腦運算能力的限制,他們不得不採取取巧的方法,例如利用多序列比對(MSA)與蒙地卡羅模擬法來提升效率。這些技術雖然簡單,但在當時已經能顯著縮短運算時間。

隨著深度學習的興起,貝克團隊在 2021 年推出 RoseTTAFold,這套工具採用了三軌神經網路,讓 AI 能從多序列比對、分子距離與原子位置三方面同時學習,進一步提升預測的準確性。而今年最新的 RFdiffusion,更將擴散模型融入其中,讓 AI 不僅能預測,還能根據輸入的需求直接設計蛋白質結構。

-----廣告,請繼續往下閱讀-----

擴散模型的應用就像圖像生成工具 DALL-E 或 Midjourney,能在短時間內生成大量的可能構造,再經過篩選,留下最可能實現的設計。這讓蛋白質設計變得前所未有的靈活和高效。

AI 與疾病的正面交鋒

RFdiffusion 的問世,為生物醫學界帶來了全新的可能性。例如,研究人員已用它設計出數千個抗體,針對癌症、新冠病毒、流感等多種疾病進行測試。雖然目前成功率僅為 1%,但這已經是一個令人振奮的起點。

更重要的是,這些設計並非停留在理論層面。早在 2003 年,貝克團隊就曾成功創造出自然界不存在的蛋白質 Top7,而在 2008 年,他們更進一步設計出能催化化學反應的人造酵素。這些突破證明,人類不僅能理解生命的基本組成,更能重新定義它。

RFdiffusion 開創生物醫學新可能,從設計抗體到人造酵素,重新定義生命的組成。圖/envato

從賽場到實驗室:設計蛋白質的熱潮

除了 AlphaFold 和 RFdiffusion,近年來還出現了多場蛋白質設計競賽,例如 Align to Innovate 的酵素設計挑戰、加拿大生技公司 Liberum Bio 的病毒酶改良項目,以及 BioML Society 的 CAR-T 細胞抗原設計比賽。這些比賽吸引了來自學術界與產業界的頂尖人才,激發了無數創新應用的靈感。

-----廣告,請繼續往下閱讀-----

隨著技術的進步,AI 工具已經不再僅僅是輔助,而是成為創造新型蛋白質的核心力量。從抗體設計到工業酵素,從疫苗開發到癌症治療,AI 正在以前所未有的速度推動著科學的邊界。

未來展望:AI 是否能掌控生命密碼?

2024 年的諾貝爾化學獎不僅表彰了科學家的創新,更為人類未來與 AI 攜手揭開生命秘密描繪了一幅清晰的藍圖。隨著技術的不斷進步,我們正在從被動了解大自然的蛋白質結構,轉向主動創造適應需求的新型蛋白質。

這場革命不僅改變了醫學的面貌,也讓我們對生命本質有了更深層次的理解。未來的某一天,AI 也許真的能成為人類對抗疾病的終極武器,甚至實現哈薩比斯預言的「治癒大部分疾病」。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。