網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

5

155
5

文字

分享

5
155
5

看完《鬼滅之刃》想練全集中呼吸?科學告訴你修蛋幾勒!

A編
・2020/11/09 ・2751字 ・閱讀時間約 5 分鐘 ・SR值 502 ・六年級

在鬼滅之刃動畫第三集中,師傅鱗瀧左近次首次跟炭治郎提到「全集中呼吸」:「深呼吸,讓氧氣進入你身體的每一個細胞,這樣一來,你的身體自然治癒力會提高,能讓精神更平靜,讓思考更靈活。」

你各位阿,肚子勒?沒好好呼吸阿你!(怒)圖/IMDb

同一集中,真菰則告訴炭治郎「全集中呼吸」的秘訣:「總之就是擴大肺部,讓更多的空氣進入到血液之中。」

從這兩句話,可以知道「全集中呼吸」是「透過吸入比平常更多的空氣,提升血液中的氧氣量,進而強化身體機能。」

經過真菰的指導,炭治郎總算學會全集中呼吸。圖/IMDb

聽起來蠻有那麼一回事的,但合理嗎?讓我們一起檢視呼吸法到底科不科學!

吸入更多空氣能提升血液氧氣量?

血液中的「紅血球」與「血漿」都會攜帶氧氣,紅血球攜帶的氧氣佔大多數,其他則是透過物理方式溶進血漿的氧氣。

人體內的紅血球數量是固定的,而健康人的動脈中,攜帶氧氣的飽和紅血球數量佔全部紅血球的 98%,甚至是 100%,因此吸入更多空氣並不會提升紅血球攜帶的氧氣量。至於血漿裡的氧氣量,只跟大氣壓力與氧氣濃度有關,在平地上除非你吸純氧,才會增加血漿裡的氧氣。

全集中呼吸速成法,戴上氧氣罩吸純氧。圖/Envato Elements

雖然吸更多空氣不會增加血液裡的氧氣量,但如果來一針「興奮劑」的話,不只血氧濃度會增加,也確實能提升身體機能!

「興奮劑」是一種體育禁藥,它的正式名稱為「紅血球生成素(EPO)」。

顧名思義,EPO 會促進紅血球生成,紅血球數量增加就能讓血液攜帶更多氧氣。而血液中的氧氣濃度增加,會有效提升耐力型比賽(例如:馬拉松)的表現,因此 EPO 被列為禁藥。

在 EPO 還沒被發明前,選手為了提升紅血球數量,會在比賽前一個禮拜抽血保存,休息一個禮拜讓紅血球數量回復正常,開賽前再把保存的血輸回身體中,此時選手體內的紅血球數量比平常更多,就能攜帶更多氧氣了。(這樣做也違規喔)

輸血提升身體機能,是否讓你想到輸入鬼王的血,就會變成強悍的鬼呢?不過,無論輸血或施打 EPO 都是很危險的,過量的紅血球會使血液變黏稠,容易形成血栓阻塞血管,導致組織壞死、中風或心臟病。

這麼說來,動畫中提到如果輸入過多鬼王的血,身體會負荷不了死亡,也不無幾分道理?

你能不能承受我的血呢?圖/IMDb

撇開安全性不談,比起練「全集中呼吸」增加血氧濃度,建議還是來一針 EPO 比較有效。

別一股腦狂練全集中呼吸!

如果你還是想練「全集中呼吸」,可別一股腦狂練,你很可能會過度換氣

過度換氣是大量空氣在短時間內進出肺部,使二氧化碳離開身體的速率大於身體製造的速率,造成體內二氧化碳濃度減少所產生的一系列生理反應。

過度換氣的呼吸方法有兩種,一種是典型的急促呼吸,通常會看到患者拿紙袋呼吸,這麼做是為了讓患者把吐出來的二氧化碳吸回去,增加體內二氧化碳濃度。

典型的過度換氣。圖/GIPHY

另一種呼吸方法是吸入過量空氣吐出,就跟「全集中呼吸」一樣。

等等,那過度換氣又會怎樣呢?短時間人體會因二氧化碳濃度不足,加速代謝製造更多二氧化碳,但長時間的話,由於體內二氧化碳濃度持續不足,血液中的碳酸濃度下降,pH 值上升,這時就會陷入呼吸性鹼中毒,將導致頭暈、目眩、胸悶⋯⋯等症狀。

總之,短時間維持全集中呼吸,會促進代謝稍微提升身體機能,但長時間會中毒。而陷入中毒狀態的人,就跟炭治郎維持全集中呼吸,打下弦五的下場一樣,喘不過氣,全身不能動。

不久後,潮到出水的炭治郎將陷入呼吸性鹼中毒。圖/IMDb

「全集中.常中」可行嗎?

動畫第 24 集中,炭治郎開始練習隨時維持全集中呼吸,也就是「全集中.常中」。

不過維持全集中呼吸(過度換氣),不是會發生鹼中毒嗎?魔鬼藏在細節裡!長時間過度換氣會鹼中毒,是因為身體盡全力代謝製造二氧化碳,也沒辦法維持血液中二氧化碳的濃度。

這樣說來,如果代謝能跟上呼吸,是不是就不會中毒了?

善逸示範鍛鍊背肌的划船動作。(誤)圖/IMDb

雖然理論上代謝如果能跟上呼吸就比較不會有中毒的情形,但仍然有其極限。像是我們可以看到主角們在練習「全集中.常中」時,除了吹破葫蘆的呼吸訓練外,也做了大量重量訓練,而重量訓練正是提升基礎代謝率的最好方法。

比起方法或技能,「全集中.常中」更像是身體足夠強大的指標,當身體基礎代謝率高到某個程度後,自然可以持續大口吸入空氣。

除了這些,作者在故事中藏了很多現實中存在的訓練方法。像炭治郎在高山缺氧的環境中進行訓練,現實中就有「高原訓練法」可以對應;或是吹破葫蘆,管樂吹奏者也會進行類似的訓練來提高肺活量。(但他們應該也吹不破葫蘆就是……)

在享受一部好作品的同時,也別漏看作者的巧思喔。

相關內容

文章難易度
所有討論 5
A編
9 篇文章 ・ 22 位粉絲
PanSci 編輯|讀物理毀三觀的科學宅,喜歡相聲跟脫口秀,因為它們跟我一樣是個笑話。


0

13
5

文字

分享

0
13
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
115 篇文章 ・ 253 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》