Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

捉摸不定卻又無處不在的粒子──微中子(二)

科學大抖宅_96
・2020/09/02 ・3508字 ・閱讀時間約 7 分鐘 ・SR值 540 ・八年級

-----廣告,請繼續往下閱讀-----

1930年,物理學家包立為了解決貝他衰變裡能量不守恆的問題,假想一種觀測不到的新粒子;這個想法引起了理論物理學家費米的興趣……

本系列上一篇:捉摸不定卻又無處不在的粒子──微中子(一)

費米的理論:可以憑空創造或消滅的微中子

費米採納當時一些人的猜測,假設原子核由質子和(不久前才剛發現的)中子組成;至於貝他衰變裡的電子、和包立假想的微中子,原本並不存在於原子核內,而是在中子轉換成質子的過程中連帶產生;換言之,貝他衰變牽涉到如下反應:

中子 → 質子+電子+(反)微中子[1]

-----廣告,請繼續往下閱讀-----

費米參照帶電粒子能夠放出光子的現象,讓理論描述的粒子可以憑空創造或消滅!這在當時是很突破性的概念,也難怪《自然》的編輯認為論文充滿臆測而駁回投稿。

貝他衰變原先被認為僅放出電子(圖左上),後來在費米的理論裡,描述為中子衰變為質子,再加上電子和反微中子(圖右下)。(圖片來源

理論上什麼都穿得透!微中子真的有辦法觀測嗎?

儘管包立的提案和費米的理論看似可以完美解釋貝他衰變帶來的問題,但只要微中子沒有被觀測到,一切都是空中閣樓,事情等於沒有解決。科學家開始思考,有沒有可能用實驗證明微中子的存在。

1934 年,貝特[2]和佩爾斯[3]估算了偵測微中子的可能性。相較於阿爾法粒子(氦原子核)單用一張紙就能擋下,貝他粒子(電子)要用幾公釐厚的鋁片才能遮蔽,伽馬射線甚至需要用到一公分厚的鉛、或六公分厚的混凝土,才能降低約 50% 的強度;兩人卻發現微中子足以在一般性的固體內行進十的十六次方公里(1016km)[4],約莫海王星到太陽距離的 220 萬倍,即一千光年!這麼強的穿透力,顯然沒有任何實驗儀器能夠捕捉。

貝特和佩爾斯於是下了結論:沒有任何實際可行的辦法觀測到微中子!

-----廣告,請繼續往下閱讀-----
三種不同的主要衰變,其穿透力各有不同。(圖片來源

微中子觀測計畫:以買樂透的精神進行!

正所謂辦法是人想出來的,就算微中子幾乎可以毫無阻礙穿越任何物體,但只要有夠多的微中子,總還是有機會看到微中子跟其他物質發生反應──就像大樂透雖然很難中獎,但只要多買幾張,或多或少還是會中。

1951 年,曾在曼哈頓計畫、費曼[5]的小組裡工作的萊因斯[6],找了洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory)的同事科溫[7]一起進行微中子觀測計畫。起初,他們想在距離核子試爆點僅四十公尺的地方,向下挖掘深井放置探測器,利用試爆產生的大量微中子來提高偵測機率。但是,考慮到爆炸只有短短一兩秒,一旦失敗就得重新等待機會;來自中子和伽馬射線的背景雜訊又相當高,反而增加收集數據的難度。

兩人最後決定改在核子反應爐附近進行研究:微中子的數目雖然比核爆少很多,但來源持續穩定──估計每小時只能偵測到數個微中子反應事例,但只要等上幾個月、累積多一點數據,也足夠了。

萊因斯和科溫原本想在離核爆點僅四十公尺的地方挖洞,進行微中子偵測實驗。(圖片來源

利用核電廠尋找微中子

1955 年底,萊因斯和科溫在南卡羅萊納州薩凡納河區(Savannah River Site)的核子反應爐附近設置了實驗儀器。他們將氯化鎘(CdCl₂)溶解於 1400 公升的水裡,在此處理論上每平方公分的水面面積大約每秒就有十兆(十萬億,或1013)個反微中子通過。而如果有反微中子經過,水裡的質子和反微中子作用後,會產生正電子中子(逆貝他衰變):

-----廣告,請繼續往下閱讀-----

反微中子+質子 → 正電子+中子

正電子會馬上跟水裡的電子湮滅,放出兩個伽馬射線光子;而中子在接下來百萬分之幾秒內就會被鎘原子核捕獲,也產生伽馬射線。於是,實驗探測器如果在很短的時間內連續看到兩道不同的閃光訊號──就表示觀測到(反)微中子了。

反微中子和水裡的質子作用產生逆貝他衰變,生成的正電子和中子隨後也會分別因為湮滅和捕獲作用而放出光子。(圖片來源

包立,你賭輸了!

1956 年,萊因斯和科溫在做完所有驗證之後,發了電報給正在歐洲核子研究組織(CERN)開會的包立,告知微中子的發現。包立看了電報,立刻打斷會議、興奮地向其他人宣讀電報內容並發表感言。不僅如此,因為包立曾跟天文學家巴德[8]打賭,人類永遠偵測不到微中子──這下他只能願賭服輸,買了一箱香檳送給巴德。

三十九年後,萊因斯因為微中子的發現,獲頒諾貝爾物理學獎;科溫則因為英年早逝,無緣參與這別具意義的一刻。隨著微中子被證實,貝他衰變帶來的懸念總算可以放下──如果事情這麼發展就太無趣了。

-----廣告,請繼續往下閱讀-----

第二種微中子

1962 年,萊德曼[9]、施瓦茨[10]、施泰因貝格爾[11]等人從美國布魯克赫文國家實驗室(Brookhaven National Laboratory)的粒子加速器,利用 π介子衰變產出微中子束,並確認其與 1956 年發現的微中子有別:貝他衰變裡的微中子,總是伴隨著正負電子;而萊德曼等人發現的微中子,卻是在另一種粒子──緲子相關反應中出現;所以後來兩者分別被稱為電子微中子和緲子微中子。

因為萊德曼、施瓦茨、施泰因貝格爾產製微中子束的方法,能夠幫助科學家更好地研究微中子牽涉到的弱交互作用;也因為他們發現新的微中子,讓後人更加瞭解兩種不同微中子和電子╱緲子的配對關係;三人於 1988 年獲頒諾貝爾物理學獎。

π介子的主要衰變產生反緲子以及和緲子對應的微中子――緲子微中子。(圖片來源

比緲子更重的新粒子

自從緲子在 1930 年代被發現之後,人們花了數十年的時間才逐漸了解,緲子的性質和電子非常接近(只是質量較大)──它們跟兩種微中子後來都被歸類為「輕子」(Lepton)。於是有人猜測,會不會有比緲子更重的輕子呢?

-----廣告,請繼續往下閱讀-----

1971 年,台灣出生的美國籍科學家、史丹福大學教授蔡永賜(Yung-su Tsai)發表論文,探討更重的輕子在實驗中可能引發的效應──這導致了接下來 1974 到 1977 年的一系列實驗,以及濤子(Tau)的發現。濤子的發現者佩爾[12]因此和發現微中子的萊因斯共享了 1995 年的諾貝爾物理學獎。

既然電子和緲子都有相應的微中子,濤子應該也不例外──大部分人都是這麼深信的。但是過了許久,直到 2000 年,濤子微中子才正式被發現。

粒子物理標準模型

依照現在的粒子物理標準模型,輕子包含三個家族,分別由帶電的電子、緲子、濤子三者,和相應的(電中性)微中子組成。因為有很強的證據顯示,微中子的質量就算不為零,也必定極小,所以標準模型直接把微中子質量定為零,也沒有微中子的質量來源機制。

故事到此結束了嗎?至少看起來功德圓滿:和電子、緲子、濤子相應的微中子都發現了,不多不少;它們在標準模型的理論架構裡都有適當的位置,而且標準模型運作得非常成功。怎知,很快地,微中子又將帶給物理學界大震撼,標準模型也面臨結構調整。那是下一個故事了。

-----廣告,請繼續往下閱讀-----
目前標準模型裡,輕子分成三個家族(三代),各由電子、緲子、濤子和相應的微中子組成。

註釋

  • [1] 費米原本把貝他衰變產生的微小電中性粒子定為微中子,但後來的理論發展將其定義為「反微中子」。
  • [2] 漢斯‧阿爾布雷希特‧貝特(Hans Albrecht Bethe,1906年7月2日-2005年3月6日),德國和美國猶太裔核物理學家,1967年諾貝爾物理學獎得主。
  • [3] 魯道夫‧恩斯特‧佩爾斯(Rudolf Ernst Peierls,1907年6月5日-1995年9月19日)德裔英籍物理學家。
  • [4] 這個數字跟現代的估算相差不遠。
  • [5] 理察‧菲利普斯‧費曼(Richard Philips Feynman,1918年5月11日-1988年2月15日),美國理論物理學家,因對量子電動力學的貢獻,於1965年獲得諾貝爾物理學獎。
  • [6] 弗雷德里克‧萊因斯(Frederick Reines,1918年3月16日-1998年8月26日),美國物理學家。
  • [7] 小克萊德‧洛蘭‧科溫(Clyde Lorrain Cowan Jr,1919年12月6日-1974年5月24日),美國物理學家。
  • [8] 威廉‧海因里希‧沃爾特‧巴德(Wilhelm Heinrich Walter Baade,1893年3月24日-1960年6月25日),德國天文學家,創造了超新星(supernova)一詞,並推測中子星的存在。
  • [9] 利昂‧馬克斯‧萊德曼(Leon Max Lederman,1922年7月15日-2018年10月3日),美國物理學家。
  • [10] 梅爾文‧施瓦茨(Melvin Schwartz,1932年11月2日-2006年8月28日),美國物理學家
  • [11] 傑克‧施泰因貝格爾(Jack Steinberger,1921年5月25日-),德裔美籍兼瑞士籍物理學家。
  • [12] 馬丁‧路易斯‧佩爾(Martin Lewis Perl,1927年6月24日-2014年9月30日),美國物理學家。
  1. Chad Orzel (2019/04/25), “Neutrino Physics And A History Of Impossible Experiments“, Forbes.
  2. S.M. Bilenkya (2013), “Neutrino. History of a unique particle”, Eur. Phys. J. H 38, 345–404.
  3. Los Alamos Science Number 25 1997.
  4. Herbert Pietschmann (2005), “Neutrino – Past, Present and Future”, George Marx Memorial Lecture, Univ. Budapest, May 19, 2005.
-----廣告,請繼續往下閱讀-----
文章難易度
科學大抖宅_96
36 篇文章 ・ 1865 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
1

文字

分享

0
6
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
2

文字

分享

0
7
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

-----廣告,請繼續往下閱讀-----

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

-----廣告,請繼續往下閱讀-----

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

-----廣告,請繼續往下閱讀-----
  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

-----廣告,請繼續往下閱讀-----

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

-----廣告,請繼續往下閱讀-----

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

-----廣告,請繼續往下閱讀-----

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

-----廣告,請繼續往下閱讀-----
宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。