0

13
3

文字

分享

0
13
3

捉摸不定卻又無處不在的粒子──微中子(一)

科學大抖宅_96
・2020/09/01 ・2866字 ・閱讀時間約 5 分鐘 ・SR值 581 ・九年級

-----廣告,請繼續往下閱讀-----

1930 年 12 月,一群物理學家聚集在德國的圖賓根(Tübingen),討論學界的最新發展;於瑞士蘇黎世聯邦理工學院(ETH Zürich)工作的物理學家包立[1]因為無法抽身,委託同事帶了封信給會議裡的核子物理學家──這是核子物理發展史上最重要的信件之一,啟發了後續無數研究、促成好幾位諾貝爾獎得主。

甚至直到今天,科學家都尚未完全搞懂包立信中描述的粒子;最近的研究更顯示,它或許可以幫助我們深刻理解宇宙的演化與組成。

量子力學的先驅:沃夫岡‧包立(圖片來源

「能量守恆」崩壞?貝他衰變引起的爭議

在當時,學界已知三種主要的原子核衰變模式,並根據其放射線的穿透力,從弱到強分別以頭三個希臘字母 α, β, γ 命名:

  • 阿爾法衰變(Alpha decay)是較重的原子核釋出阿爾法粒子(氦原子核)。
  • 貝他衰變(Beta decay)是不穩定的元素放射出貝他粒子(電子)。
  • 伽馬衰變(Gamma decay)則是從輻射源放出伽馬射線。

科學家觀察到,在阿爾法衰變和伽馬衰變中,做為產物的阿爾法粒子和伽馬射線都以非常特定的能量出現,一如量子力學理論的預期;然而,貝他衰變放射出來的電子,卻具有很寬廣的能量範圍,這相當地不尋常──電子的能量變動,意味貝他衰變後的總能量不是定值,完全違背了能量守恆定律!

-----廣告,請繼續往下閱讀-----

經過漫長的科學發展,能量守恆在物理學家的心中,已成為最基本、最無可撼動的原則,而貝他衰變竟然違背了能量守恆!這只有兩種可能:一是,我們對貝他衰變的認知有誤;二是,能量並不真的總是守恆──1922 年諾貝爾物理學獎得主波耳[2]對於貝他衰變採取的觀點就是後者。

尼爾斯‧波耳(圖片來源

波耳認為,能量和動量的守恆都是從古典物理學得來的原則,不見得能夠套用在量子力學上;能量守恆可能只是統計上呈現出的結果──在單一貝他衰變過程中,能量可以不守恆。

縱使有一些物理學家支持波耳的說法,但並非每個人都能同意這麼激進的解方。與波耳採取的解釋策略不同,包立在 1930 年寫給圖賓根會議的信件中,建議了另一種可能:新粒子

包立信件的假說:質子與電子之外,還有「第三種粒子」

當時學界認為,質子電子組成帶正電的原子核,位於原子中心極微小的區域;原子核外圍,另有帶負電的電子環繞──換言之,質子和電子構成了原子,原子再構成萬物。

-----廣告,請繼續往下閱讀-----

另一方面,在量子力學底下,每個粒子都帶有自身的角動量,稱為自旋[3](spin);根據當時的實驗觀測,一些原子核的自旋卻跟理論預期有所不同──這著實給既有的原子模型增加了麻煩。

為了解決貝他衰變、以及部分原子核自旋帶來的問題,包立在信中提議,原子核內部可能存在另一種電中性粒子,暫稱中子(neutron),自旋與質子和電子相同,質量不大於質子的百分之一,擁有比伽馬射線更強的穿透力(不容易與物質發生反應);當不穩定元素發生貝他衰變的時候,除了電子之外,中子也一起被放出,兩者的能量雖然都會變動,但相加起來的總和固定──如此一來,電子的寬廣能量範圍就說得通,貝他衰變過程前後的總能量會守恆,部分原子核的自旋問題也能一併解決。

在二十世紀早期的波耳氫原子模型,電子以特定軌道繞行原子核,並可能在不同軌道間躍遷,同時放出或吸收能量。到了1920年代末至1930年代初,電子的軌道(orbit)逐漸被軌域(orbital)概念取代,亦即電子不具有特定軌道。

儘管包立為貝他衰變的困境找到出路,他同時承認自己的想法很不恰當:「若中子真的存在,我們八成早就看到了。但是不入虎穴,焉得虎子,……我們應該嚴肅看待所有解決方案。」在當時的學術時空環境,已知的次原子粒子非常稀少(比日本製的冷氣壓縮機還要稀少),也不像現代常常預言新的基本粒子──況且這個粒子還很難看到,以致包立非常謹慎,藉著信件(而非論文)低調詢問實驗物理學家的意見。

事實上,他才剛寫完信,就對其他人表達了自己的後悔:「我今天做了一件理論(物理)學家永遠不該做的事。我嘗試用我們無法觀測到的事物,來解釋我們無法理解的事物。」

-----廣告,請繼續往下閱讀-----

費米的理論:「微中子」與貝他衰變

就算包立小心翼翼不敢冒進,他的提案還是很快就傳遍了狹小的學術圈,一些物理學家也認真思考起這個可能性,例如任教於義大利羅馬大學的費米[4]

費米採納包立的構想,於幾年後發展出描述貝他衰變的理論;又因為 1932 年英國物理學家查兌克[5]在放射線實驗中發現新的電中性粒子,也命名做中子,質量卻比包立的中子重得多,費米於是改稱包立預言的粒子為微中子(neutrino,亦即微小的電中性粒子)。

怎料,當費米將心血結晶投稿到頂尖期刊《自然》(Nature)時,《自然》以該論文「充滿臆測,和現實相差太遠,吸引不了讀者興趣」為由拒絕刊登;沒辦法之下,他只好改投稿至義大利和德國的當地期刊。也因為理論不受青睞,費米最後轉行做實驗物理,並於幾年後得到重大成就,獲頒諾貝爾物理學獎。

至於費米的理論,雖然一開始沒有得到重視,日後卻在粒子物理領域舉足輕重,成為現代弱交互作用理論[6]的前身。

-----廣告,請繼續往下閱讀-----
恩里科‧費米曾加入墨索里尼的法西斯黨,但後來因為 1938 年義大利通過的種族法,為了避免猶太裔的太太受到波及,他轉而移民美國,並反對法西斯主義。1942 年他領導的芝加哥大學團隊創造了史上第一個核子反應爐。(圖片來源

至此,解開貝他衰變之謎似乎出現曙光,預測有了、理論有了,就差實際的觀測證據──偏偏微中子的觀測非常不容易,要等到二十幾年後,費米已經去世,其蹤影才首度被人類補捉。這是另外的故事了。

註釋

  • [1] 沃夫岡‧恩斯特‧包立(Wolfgang Ernst Pauli,1900年4月25日-1958年12月15日),奧地利理論物理學家,因提出包立不相容原理(Pauli exclusion principle)獲得1945年諾貝爾物理學獎。
  • [2] 尼爾斯‧亨里克‧達維德‧波耳(Niels Henrik David Bohr,1885年10月7日-1962年11月18日),丹麥物理學家,其最知名的成就為在量子力學發展初期,建構氫原子的波耳模型,成功解釋了氫原子光譜;1922年因「對原子結構以及從原子發射出的輻射的研究」而榮獲諾貝爾物理學獎。
  • [3] 雖然叫做自旋,但其為粒子本身就具有的性質,無法改變,而非出於粒子自身的旋轉。
  • [4] 恩里科‧費米(Enrico Fermi,1901年9月29日-1954年11月28日),美籍義大利裔物理學家;因「中子轟擊誘發放射性(induced radioactivity)的研究以及發現超鈾元素」獲得1938年諾貝爾物理學獎。
  • [5] 詹姆斯‧查兌克(James Chadwick,1891年10月20日-1974年7月24日),英國物理學家,因發現中子獲得1935年諾貝爾物理學獎。
  • [6] 弱交互作用為目前已知基本交互作用之一。

參考資料

  1. Helge Kragh (2002), “Quantum Generations: A History of Physics in the Twentieth Century“, Princeton University Press.
  2. Bernard Fernandez and Georges Ripka (2012), “Unravelling the Mystery of the Atomic Nucleus: A Sixty Year Journey 1896 — 1956“,  Springer.
  3. Laurie M. Brown (1978), “The idea of the neutrino”, Physics Today 31, 9, 23.
  4. Kurt Riesselmann (2007/01/03), “Neutrino invention“, symmetry magazine.
  5. Chad Orzel (2019/04/25), “Neutrino Physics And A History Of Impossible Experiments“, Forbes.
  6. S.M. Bilenkya (2013), “Neutrino. History of a unique particle”, Eur. Phys. J. H 38, 345–404.
  7. Wikipedia: Neutrino
文章難易度
科學大抖宅_96
36 篇文章 ・ 1730 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

3
1

文字

分享

0
3
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2176 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
2

文字

分享

0
7
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

-----廣告,請繼續往下閱讀-----

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

-----廣告,請繼續往下閱讀-----

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

-----廣告,請繼續往下閱讀-----
  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

-----廣告,請繼續往下閱讀-----

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

-----廣告,請繼續往下閱讀-----

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

-----廣告,請繼續往下閱讀-----

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

-----廣告,請繼續往下閱讀-----
宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

3

54
5

文字

分享

3
54
5
終於抽到 SSR 微中子啦!人類首見太陽稀有核反應的直接證據
科學大抖宅_96
・2020/12/15 ・3518字 ・閱讀時間約 7 分鐘 ・SR值 593 ・九年級

-----廣告,請繼續往下閱讀-----

就在 2020 年 11 月 25 日,知名期刊《自然》(Nature)刊登了一篇別具意義的論文:義大利格蘭薩索國立實驗室(Laboratori Nazionali del Gran Sasso)的研究團隊Borexino Collaboration首度偵測到,來自太陽核融合過程中碳氮氧循環(carbon–nitrogen–oxygen cycle,CNO cycle)的微中子。

碳氮氧循環是在 1930 年代末期,由德國物理學家魏茨澤克(Carl von Weizsäcker,1912–2007)和德國、美國雙重國籍的猶太裔物理學家貝特(Hans Bethe,1906–2005)分別提出的概念。恆星在誕生初期,主要成分為氫,藉著兩種不同類型的核反應,將氫融合成氦並產生能量――碳氮氧循環即為其中之一。

恆星在進行核融合反應的時候,會產生無以計數的電中性微小粒子――稱為微中子(neutrino);雖然人們於 1968 年就已測得太陽釋放出的微中子,但直到五十多年後的現在,來自碳氮氧循環的微中子才終於有了觀測證據――這不但是微中子實驗的重大突破,也帶來深遠的影響。

格蘭薩索國立實驗室地表部分的俯瞰照。圖/Wikipedia

恆星的氫融合(Hydrogen fusion)

1920 年代初,人們對太陽如何發光、發熱毫無所悉;當時,知名天文學家愛丁頓(Arthur Stanley Eddington,1882–1944)提議,恆星可能是利用氫,核融合為氦,來產生能量。只不過,因為核反應相關理論還在發展當中,背後原理付之闕如,愛丁頓的假說尚未能有證據支持。

-----廣告,請繼續往下閱讀-----

到了 1930 年代後半,伴隨核子物理的飛快進展,時任美國康乃爾大學(Cornell University)教授的貝特,發表了一系列共三篇論文,總結當時幾乎所有已知的核子物理知識――被戲稱為「貝特聖經」(Bethe’s Bible)。作為美國頂尖的理論物理學家之一,貝特受到其他學者針對太陽的研究成果啟發,又接續撰寫了兩篇論文,主題分別就是現今所知,氫核融合為氦的兩種核反應類型:一為質子–質子連鎖反應(proton–proton chain reaction,又稱質子–質子鏈反應),二為碳氮氧循環――也因為在「核反應理論的貢獻,尤其是關於恆星產生能量的發現」,貝特獨得1967年諾貝爾物理學獎。

漢斯‧貝特。圖/Wikipedia

太陽的主要反應——質子–質子連鎖反應

在貝特之後,科學家針對兩種類型的核反應,進行了更多的研究與補充;如今我們知道,恆星在形成初期主要由氫構成,其核心的高溫、高壓,促使氫進行核融合反應成為氦,連帶產生能量;在質量約莫等於太陽、或更小的恆星上,極大部分產出能量都來自質子–質子連鎖反應。

在質子–質子連鎖反應的第一階段,兩個氫原子核(即質子)融合成一個氘原子核(氫的同位素,由一個質子和一個中子組成),加上正電子和微中子――現實上這極難發生:太陽核心的每個質子,平均要等 90 億年才能夠藉由量子效應,成功和另一個質子融合,只是因為太陽的質子數目極多,所以此核融合反應才得以穩定進行;也幸虧這個反應相當困難,太陽才不至於一下子就耗盡了所有的氫。

緊接著,新形成的氘原子核會再和一個質子融合,產生氦的同位素氦-3 以及光子。最終,氦-3 會經由幾種不同的途徑(鋰、鈹、硼三種元素會在此過程中產生,又被消耗掉),成為氦-4,也就是最常見的氦原子核――而恆星的溫度與組成就會決定這些反應途徑的發生比例。

-----廣告,請繼續往下閱讀-----

大型恆星主要反應——碳氮氧循環

除了質子–質子連鎖反應之外,還有另一種管道可以將氫融合成氦,稱為碳氮氧循環。除了貝特之外,1930 年代末於威廉大帝物理研究所(Kaiser Wilhelm Institute für Physik)擔任研究員的魏茨澤克,也對碳氮氧循環作出重要貢獻。

卡爾‧馮‧魏茨澤克。圖/Wikipedia

碳氮氧循環跟質子–質子連鎖反應一樣,能夠藉由多重的核融合途徑將氫融合為氦;只不過,碳氮氧循環需要利用恆星內部既有的碳、氮、氧元素(有時也牽涉到氟和氖)在中間做催化,其於核反應之中消耗,讓氫融合為氦,然後重生――整個淨反應不會牽涉到碳、氮、氧元素的增減。

碳氮氧循環和質子–質子連鎖反應的開始,以及兩者產出的能量,由恆星的核心溫度決定。相較於只要約絕對溫標 800 萬 K,就足以讓質子–質子連鎖反應持續發生,碳氮氧循環要到 1500 萬 K,反應才能夠不斷循環下去。以太陽為例,其核心溫度約 1570 萬 K,僅比 1500 萬 K 高一點,估計只有 1.7% 的氦-4 核融合產物來自碳氮氧循環。在質量為太陽 1.3 倍以上的恆星,碳氮氧循環才會是主要的能量來源。

恆星產出的能量(縱軸),和其溫度(橫軸)的關係圖。太陽核心差不多剛好就在碳氮氧循環(藍線)開始得以進行的溫度。圖中的綠線代表質子–質子連鎖反應,最右的紅色線條則稱為三氦核過程(Triple-alpha process),目前太陽的溫度不足以進行,也非屬氫融合。圖/Wikipedia

在太陽觀測到碳氮氧循環的微中子!

不管是質子–質子連鎖反應還是碳氮氧循環,都會產生大量微中子。然而,因為牽涉到的中間過程不同,所以兩者產生的微中子,其流量和能量分布呈現相異的特徵――科學家便能據此,利用太陽產生的微中子,來得知太陽內部核融合反應的狀況。

-----廣告,請繼續往下閱讀-----

為了避免宇宙射線的干擾,Borexino 實驗座落於義大利格蘭薩索山(Gran Sasso d’Italia)地底;偵測器主體由直徑4.25公尺的尼龍容器製成,裝滿了278公噸的液態閃爍體(liquid-scintillator);當太陽微中子通過閃爍體時,有機會和其中的電子作用並產生光子――排列在周圍的光電倍增管(photomultiplier tubes)陣列便能補捉到這些光子訊號。

雖然從太陽產生的微中子多不勝數――差不多每秒就有一千億個太陽微中子穿越你的拇指指甲,但它們很難和其他物質作用,可以幾乎毫無阻礙地穿過整個地球;平均來說,每一百公噸的閃爍體每天只能和數十個微中子成功發生反應,來自碳氮氧循環的微中子就又更少了。

Borexino 團隊早在 2018 年就已針對質子–質子連鎖反應產生的太陽微中子發表過詳細的研究報告;這一次,他們利用 2016 年 7 月到 2020 年 2 月,總共運轉了 1072 小時的實驗數據,成功確認來自碳氮氧循環的太陽微中子――這並不表示團隊只要把儀器設置好就沒事了:一方面他們必須將來自碳氮氧循環的微中子,與質子–質子連鎖反應的微中子區分開來;二方面,還必須排除偵測過程中可能的雜訊――閃爍體、容器、甚至外在環境都含有的微量放射性元素,以及沒有完全排除的宇宙射線,都可能會造成假訊號。經過多年的努力與研發,實驗團隊才成功將雜訊壓低,讓碳氮氧循環微中子的偵測成為可能。

實驗團隊的實驗數據:桃紅色實線代表觀測到的總微中子事例數目分布,紅色實線則代表來自碳氮氧循環的微中子事例。圖/參考文獻1

碳氮氧循環的微中子有助於理解太陽組成

本次實驗結果,不但肯定了魏茨澤克和貝特關於碳氮氧循環的研究,也確認了太陽核融合產生的能量,約有 1% 來自碳氮氧循環。因為碳氮氧循環的過程中,會使用到碳、氮和氧,以致這些元素在太陽核心的含量,會連帶影響到碳氮氧循環的反應速率、跟產生的微中子流量――所以,碳氮氧循環微中子還能拿來評估太陽內部碳、氮、氧元素的豐富程度。

以往,針對太陽金屬豐度(metallicity,比氦重的元素在天文學都稱為金屬)的研究,利用聲波在太陽上的傳遞現象(即日震學)所得到的結果,和標準太陽模型的預測一致;但是近來的光譜學測量,卻得到矛盾的結論。恆星的金屬豐度會影響光子在其內部傳遞的難易度,間接改變恆星的溫度、甚至演化過程――若能精確測量太陽的金屬豐度,將大幅提昇我們對太陽的認知。

儘管,現在對碳氮氧循環微中子的觀測結果,還不足以解決太陽金屬豐度的問題;但未來若能進一步提高實驗精確度,或許對此議題能夠有所發揮。另一方面,Borexino 團隊的成就,也讓我們對較重恆星產出能量的主要方式,即碳氮氧循環,擁有更全面性的理解――這無疑是微中子物理學的里程碑,也是實驗物理的階段性成就。

-----廣告,請繼續往下閱讀-----
Borexino實驗中,裝了液態閃爍體的水槽。圖/參考文獻1

參考資料

  1. The Borexino Collaboration, “Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun”. Nature 587, 577–582 (2020).
  2. Maurizio Salaris and Santi Cassisi, “Evolution of stars and stellar populations”.  Hoboken, NJ, USA : J. Wiley (2005).
  3. Gabriel D. Orebi Gann, “Neutrino detection gets to the core of the Sun”. Nov. 25 (2020).
  4. Hamish Johnston, “Borexino spots solar neutrinos from elusive fusion cycle”. Physicsworld, Nov. 25 (2020).
  5. Stellar nucleosynthesis – Wikipedia
  6. Proton–proton chain reaction – Wikipedia
  7. CNO cycle – Wikipedia
  8. Hans Bethe – Wikipedia
所有討論 3
科學大抖宅_96
36 篇文章 ・ 1730 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

13
3

文字

分享

0
13
3
捉摸不定卻又無處不在的粒子──微中子(一)
科學大抖宅_96
・2020/09/01 ・2866字 ・閱讀時間約 5 分鐘 ・SR值 581 ・九年級

-----廣告,請繼續往下閱讀-----

1930 年 12 月,一群物理學家聚集在德國的圖賓根(Tübingen),討論學界的最新發展;於瑞士蘇黎世聯邦理工學院(ETH Zürich)工作的物理學家包立[1]因為無法抽身,委託同事帶了封信給會議裡的核子物理學家──這是核子物理發展史上最重要的信件之一,啟發了後續無數研究、促成好幾位諾貝爾獎得主。

甚至直到今天,科學家都尚未完全搞懂包立信中描述的粒子;最近的研究更顯示,它或許可以幫助我們深刻理解宇宙的演化與組成。

量子力學的先驅:沃夫岡‧包立(圖片來源

「能量守恆」崩壞?貝他衰變引起的爭議

在當時,學界已知三種主要的原子核衰變模式,並根據其放射線的穿透力,從弱到強分別以頭三個希臘字母 α, β, γ 命名:

-----廣告,請繼續往下閱讀-----
  • 阿爾法衰變(Alpha decay)是較重的原子核釋出阿爾法粒子(氦原子核)。
  • 貝他衰變(Beta decay)是不穩定的元素放射出貝他粒子(電子)。
  • 伽馬衰變(Gamma decay)則是從輻射源放出伽馬射線。

科學家觀察到,在阿爾法衰變和伽馬衰變中,做為產物的阿爾法粒子和伽馬射線都以非常特定的能量出現,一如量子力學理論的預期;然而,貝他衰變放射出來的電子,卻具有很寬廣的能量範圍,這相當地不尋常──電子的能量變動,意味貝他衰變後的總能量不是定值,完全違背了能量守恆定律!

經過漫長的科學發展,能量守恆在物理學家的心中,已成為最基本、最無可撼動的原則,而貝他衰變竟然違背了能量守恆!這只有兩種可能:一是,我們對貝他衰變的認知有誤;二是,能量並不真的總是守恆──1922 年諾貝爾物理學獎得主波耳[2]對於貝他衰變採取的觀點就是後者。

尼爾斯‧波耳(圖片來源

波耳認為,能量和動量的守恆都是從古典物理學得來的原則,不見得能夠套用在量子力學上;能量守恆可能只是統計上呈現出的結果──在單一貝他衰變過程中,能量可以不守恆。

-----廣告,請繼續往下閱讀-----

縱使有一些物理學家支持波耳的說法,但並非每個人都能同意這麼激進的解方。與波耳採取的解釋策略不同,包立在 1930 年寫給圖賓根會議的信件中,建議了另一種可能:新粒子

包立信件的假說:質子與電子之外,還有「第三種粒子」

當時學界認為,質子電子組成帶正電的原子核,位於原子中心極微小的區域;原子核外圍,另有帶負電的電子環繞──換言之,質子和電子構成了原子,原子再構成萬物。

另一方面,在量子力學底下,每個粒子都帶有自身的角動量,稱為自旋[3](spin);根據當時的實驗觀測,一些原子核的自旋卻跟理論預期有所不同──這著實給既有的原子模型增加了麻煩。

為了解決貝他衰變、以及部分原子核自旋帶來的問題,包立在信中提議,原子核內部可能存在另一種電中性粒子,暫稱中子(neutron),自旋與質子和電子相同,質量不大於質子的百分之一,擁有比伽馬射線更強的穿透力(不容易與物質發生反應);當不穩定元素發生貝他衰變的時候,除了電子之外,中子也一起被放出,兩者的能量雖然都會變動,但相加起來的總和固定──如此一來,電子的寬廣能量範圍就說得通,貝他衰變過程前後的總能量會守恆,部分原子核的自旋問題也能一併解決。

-----廣告,請繼續往下閱讀-----

在二十世紀早期的波耳氫原子模型,電子以特定軌道繞行原子核,並可能在不同軌道間躍遷,同時放出或吸收能量。到了1920年代末至1930年代初,電子的軌道(orbit)逐漸被軌域(orbital)概念取代,亦即電子不具有特定軌道。

儘管包立為貝他衰變的困境找到出路,他同時承認自己的想法很不恰當:「若中子真的存在,我們八成早就看到了。但是不入虎穴,焉得虎子,……我們應該嚴肅看待所有解決方案。」在當時的學術時空環境,已知的次原子粒子非常稀少(比日本製的冷氣壓縮機還要稀少),也不像現代常常預言新的基本粒子──況且這個粒子還很難看到,以致包立非常謹慎,藉著信件(而非論文)低調詢問實驗物理學家的意見。

事實上,他才剛寫完信,就對其他人表達了自己的後悔:「我今天做了一件理論(物理)學家永遠不該做的事。我嘗試用我們無法觀測到的事物,來解釋我們無法理解的事物。」

費米的理論:「微中子」與貝他衰變

就算包立小心翼翼不敢冒進,他的提案還是很快就傳遍了狹小的學術圈,一些物理學家也認真思考起這個可能性,例如任教於義大利羅馬大學的費米[4]

-----廣告,請繼續往下閱讀-----

費米採納包立的構想,於幾年後發展出描述貝他衰變的理論;又因為 1932 年英國物理學家查兌克[5]在放射線實驗中發現新的電中性粒子,也命名做中子,質量卻比包立的中子重得多,費米於是改稱包立預言的粒子為微中子(neutrino,亦即微小的電中性粒子)。

怎料,當費米將心血結晶投稿到頂尖期刊《自然》(Nature)時,《自然》以該論文「充滿臆測,和現實相差太遠,吸引不了讀者興趣」為由拒絕刊登;沒辦法之下,他只好改投稿至義大利和德國的當地期刊。也因為理論不受青睞,費米最後轉行做實驗物理,並於幾年後得到重大成就,獲頒諾貝爾物理學獎。

至於費米的理論,雖然一開始沒有得到重視,日後卻在粒子物理領域舉足輕重,成為現代弱交互作用理論[6]的前身。

恩里科‧費米曾加入墨索里尼的法西斯黨,但後來因為 1938 年義大利通過的種族法,為了避免猶太裔的太太受到波及,他轉而移民美國,並反對法西斯主義。1942 年他領導的芝加哥大學團隊創造了史上第一個核子反應爐。(圖片來源

-----廣告,請繼續往下閱讀-----

至此,解開貝他衰變之謎似乎出現曙光,預測有了、理論有了,就差實際的觀測證據──偏偏微中子的觀測非常不容易,要等到二十幾年後,費米已經去世,其蹤影才首度被人類補捉。這是另外的故事了。

註釋

  • [1] 沃夫岡‧恩斯特‧包立(Wolfgang Ernst Pauli,1900年4月25日-1958年12月15日),奧地利理論物理學家,因提出包立不相容原理(Pauli exclusion principle)獲得1945年諾貝爾物理學獎。
  • [2] 尼爾斯‧亨里克‧達維德‧波耳(Niels Henrik David Bohr,1885年10月7日-1962年11月18日),丹麥物理學家,其最知名的成就為在量子力學發展初期,建構氫原子的波耳模型,成功解釋了氫原子光譜;1922年因「對原子結構以及從原子發射出的輻射的研究」而榮獲諾貝爾物理學獎。
  • [3] 雖然叫做自旋,但其為粒子本身就具有的性質,無法改變,而非出於粒子自身的旋轉。
  • [4] 恩里科‧費米(Enrico Fermi,1901年9月29日-1954年11月28日),美籍義大利裔物理學家;因「中子轟擊誘發放射性(induced radioactivity)的研究以及發現超鈾元素」獲得1938年諾貝爾物理學獎。
  • [5] 詹姆斯‧查兌克(James Chadwick,1891年10月20日-1974年7月24日),英國物理學家,因發現中子獲得1935年諾貝爾物理學獎。
  • [6] 弱交互作用為目前已知基本交互作用之一。

參考資料

  1. Helge Kragh (2002), “Quantum Generations: A History of Physics in the Twentieth Century“, Princeton University Press.
  2. Bernard Fernandez and Georges Ripka (2012), “Unravelling the Mystery of the Atomic Nucleus: A Sixty Year Journey 1896 — 1956“,  Springer.
  3. Laurie M. Brown (1978), “The idea of the neutrino”, Physics Today 31, 9, 23.
  4. Kurt Riesselmann (2007/01/03), “Neutrino invention“, symmetry magazine.
  5. Chad Orzel (2019/04/25), “Neutrino Physics And A History Of Impossible Experiments“, Forbes.
  6. S.M. Bilenkya (2013), “Neutrino. History of a unique particle”, Eur. Phys. J. H 38, 345–404.
  7. Wikipedia: Neutrino
文章難易度
科學大抖宅_96
36 篇文章 ・ 1730 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/