3

47
4

文字

分享

3
47
4

終於抽到 SSR 微中子啦!人類首見太陽稀有核反應的直接證據

科學大抖宅_96
・2020/12/15 ・3518字 ・閱讀時間約 7 分鐘

就在 2020 年 11 月 25 日,知名期刊《自然》(Nature)刊登了一篇別具意義的論文:義大利格蘭薩索國立實驗室(Laboratori Nazionali del Gran Sasso)的研究團隊Borexino Collaboration首度偵測到,來自太陽核融合過程中碳氮氧循環(carbon–nitrogen–oxygen cycle,CNO cycle)的微中子。

碳氮氧循環是在 1930 年代末期,由德國物理學家魏茨澤克(Carl von Weizsäcker,1912–2007)和德國、美國雙重國籍的猶太裔物理學家貝特(Hans Bethe,1906–2005)分別提出的概念。恆星在誕生初期,主要成分為氫,藉著兩種不同類型的核反應,將氫融合成氦並產生能量――碳氮氧循環即為其中之一。

恆星在進行核融合反應的時候,會產生無以計數的電中性微小粒子――稱為微中子(neutrino);雖然人們於 1968 年就已測得太陽釋放出的微中子,但直到五十多年後的現在,來自碳氮氧循環的微中子才終於有了觀測證據――這不但是微中子實驗的重大突破,也帶來深遠的影響。

格蘭薩索國立實驗室地表部分的俯瞰照。圖/Wikipedia

恆星的氫融合(Hydrogen fusion)

1920 年代初,人們對太陽如何發光、發熱毫無所悉;當時,知名天文學家愛丁頓(Arthur Stanley Eddington,1882–1944)提議,恆星可能是利用氫,核融合為氦,來產生能量。只不過,因為核反應相關理論還在發展當中,背後原理付之闕如,愛丁頓的假說尚未能有證據支持。

到了 1930 年代後半,伴隨核子物理的飛快進展,時任美國康乃爾大學(Cornell University)教授的貝特,發表了一系列共三篇論文,總結當時幾乎所有已知的核子物理知識――被戲稱為「貝特聖經」(Bethe’s Bible)。作為美國頂尖的理論物理學家之一,貝特受到其他學者針對太陽的研究成果啟發,又接續撰寫了兩篇論文,主題分別就是現今所知,氫核融合為氦的兩種核反應類型:一為質子–質子連鎖反應(proton–proton chain reaction,又稱質子–質子鏈反應),二為碳氮氧循環――也因為在「核反應理論的貢獻,尤其是關於恆星產生能量的發現」,貝特獨得1967年諾貝爾物理學獎。

漢斯‧貝特。圖/Wikipedia

太陽的主要反應——質子–質子連鎖反應

在貝特之後,科學家針對兩種類型的核反應,進行了更多的研究與補充;如今我們知道,恆星在形成初期主要由氫構成,其核心的高溫、高壓,促使氫進行核融合反應成為氦,連帶產生能量;在質量約莫等於太陽、或更小的恆星上,極大部分產出能量都來自質子–質子連鎖反應。

在質子–質子連鎖反應的第一階段,兩個氫原子核(即質子)融合成一個氘原子核(氫的同位素,由一個質子和一個中子組成),加上正電子和微中子――現實上這極難發生:太陽核心的每個質子,平均要等 90 億年才能夠藉由量子效應,成功和另一個質子融合,只是因為太陽的質子數目極多,所以此核融合反應才得以穩定進行;也幸虧這個反應相當困難,太陽才不至於一下子就耗盡了所有的氫。

緊接著,新形成的氘原子核會再和一個質子融合,產生氦的同位素氦-3 以及光子。最終,氦-3 會經由幾種不同的途徑(鋰、鈹、硼三種元素會在此過程中產生,又被消耗掉),成為氦-4,也就是最常見的氦原子核――而恆星的溫度與組成就會決定這些反應途徑的發生比例。

大型恆星主要反應——碳氮氧循環

除了質子–質子連鎖反應之外,還有另一種管道可以將氫融合成氦,稱為碳氮氧循環。除了貝特之外,1930 年代末於威廉大帝物理研究所(Kaiser Wilhelm Institute für Physik)擔任研究員的魏茨澤克,也對碳氮氧循環作出重要貢獻。

卡爾‧馮‧魏茨澤克。圖/Wikipedia

碳氮氧循環跟質子–質子連鎖反應一樣,能夠藉由多重的核融合途徑將氫融合為氦;只不過,碳氮氧循環需要利用恆星內部既有的碳、氮、氧元素(有時也牽涉到氟和氖)在中間做催化,其於核反應之中消耗,讓氫融合為氦,然後重生――整個淨反應不會牽涉到碳、氮、氧元素的增減。

碳氮氧循環和質子–質子連鎖反應的開始,以及兩者產出的能量,由恆星的核心溫度決定。相較於只要約絕對溫標 800 萬 K,就足以讓質子–質子連鎖反應持續發生,碳氮氧循環要到 1500 萬 K,反應才能夠不斷循環下去。以太陽為例,其核心溫度約 1570 萬 K,僅比 1500 萬 K 高一點,估計只有 1.7% 的氦-4 核融合產物來自碳氮氧循環。在質量為太陽 1.3 倍以上的恆星,碳氮氧循環才會是主要的能量來源。

恆星產出的能量(縱軸),和其溫度(橫軸)的關係圖。太陽核心差不多剛好就在碳氮氧循環(藍線)開始得以進行的溫度。圖中的綠線代表質子–質子連鎖反應,最右的紅色線條則稱為三氦核過程(Triple-alpha process),目前太陽的溫度不足以進行,也非屬氫融合。圖/Wikipedia

在太陽觀測到碳氮氧循環的微中子!

不管是質子–質子連鎖反應還是碳氮氧循環,都會產生大量微中子。然而,因為牽涉到的中間過程不同,所以兩者產生的微中子,其流量和能量分布呈現相異的特徵――科學家便能據此,利用太陽產生的微中子,來得知太陽內部核融合反應的狀況。

為了避免宇宙射線的干擾,Borexino 實驗座落於義大利格蘭薩索山(Gran Sasso d’Italia)地底;偵測器主體由直徑4.25公尺的尼龍容器製成,裝滿了278公噸的液態閃爍體(liquid-scintillator);當太陽微中子通過閃爍體時,有機會和其中的電子作用並產生光子――排列在周圍的光電倍增管(photomultiplier tubes)陣列便能補捉到這些光子訊號。

雖然從太陽產生的微中子多不勝數――差不多每秒就有一千億個太陽微中子穿越你的拇指指甲,但它們很難和其他物質作用,可以幾乎毫無阻礙地穿過整個地球;平均來說,每一百公噸的閃爍體每天只能和數十個微中子成功發生反應,來自碳氮氧循環的微中子就又更少了。

Borexino 團隊早在 2018 年就已針對質子–質子連鎖反應產生的太陽微中子發表過詳細的研究報告;這一次,他們利用 2016 年 7 月到 2020 年 2 月,總共運轉了 1072 小時的實驗數據,成功確認來自碳氮氧循環的太陽微中子――這並不表示團隊只要把儀器設置好就沒事了:一方面他們必須將來自碳氮氧循環的微中子,與質子–質子連鎖反應的微中子區分開來;二方面,還必須排除偵測過程中可能的雜訊――閃爍體、容器、甚至外在環境都含有的微量放射性元素,以及沒有完全排除的宇宙射線,都可能會造成假訊號。經過多年的努力與研發,實驗團隊才成功將雜訊壓低,讓碳氮氧循環微中子的偵測成為可能。

實驗團隊的實驗數據:桃紅色實線代表觀測到的總微中子事例數目分布,紅色實線則代表來自碳氮氧循環的微中子事例。圖/參考文獻1

碳氮氧循環的微中子有助於理解太陽組成

本次實驗結果,不但肯定了魏茨澤克和貝特關於碳氮氧循環的研究,也確認了太陽核融合產生的能量,約有 1% 來自碳氮氧循環。因為碳氮氧循環的過程中,會使用到碳、氮和氧,以致這些元素在太陽核心的含量,會連帶影響到碳氮氧循環的反應速率、跟產生的微中子流量――所以,碳氮氧循環微中子還能拿來評估太陽內部碳、氮、氧元素的豐富程度。

以往,針對太陽金屬豐度(metallicity,比氦重的元素在天文學都稱為金屬)的研究,利用聲波在太陽上的傳遞現象(即日震學)所得到的結果,和標準太陽模型的預測一致;但是近來的光譜學測量,卻得到矛盾的結論。恆星的金屬豐度會影響光子在其內部傳遞的難易度,間接改變恆星的溫度、甚至演化過程――若能精確測量太陽的金屬豐度,將大幅提昇我們對太陽的認知。

儘管,現在對碳氮氧循環微中子的觀測結果,還不足以解決太陽金屬豐度的問題;但未來若能進一步提高實驗精確度,或許對此議題能夠有所發揮。另一方面,Borexino 團隊的成就,也讓我們對較重恆星產出能量的主要方式,即碳氮氧循環,擁有更全面性的理解――這無疑是微中子物理學的里程碑,也是實驗物理的階段性成就。

Borexino實驗中,裝了液態閃爍體的水槽。圖/參考文獻1

參考資料

  1. The Borexino Collaboration, “Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun”. Nature 587, 577–582 (2020).
  2. Maurizio Salaris and Santi Cassisi, “Evolution of stars and stellar populations”.  Hoboken, NJ, USA : J. Wiley (2005).
  3. Gabriel D. Orebi Gann, “Neutrino detection gets to the core of the Sun”. Nov. 25 (2020).
  4. Hamish Johnston, “Borexino spots solar neutrinos from elusive fusion cycle”. Physicsworld, Nov. 25 (2020).
  5. Stellar nucleosynthesis – Wikipedia
  6. Proton–proton chain reaction – Wikipedia
  7. CNO cycle – Wikipedia
  8. Hans Bethe – Wikipedia

文章難易度
所有評論 3
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策