0

2
4

文字

分享

0
2
4

嚴重病情下如雙面刃的免疫系統:避免細胞激素風暴危及性命,找尋關鍵受體!

研之有物│中央研究院_96
・2020/04/14 ・5603字 ・閱讀時間約 11 分鐘 ・SR值 601 ・九年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|林承勳、美術編輯|林洵安

免疫系統的過度反應

人體依賴免疫系統對抗病毒,但免疫反應如果過激,反而造成器官損傷或衰竭,直接導致患者死亡。中研院基因體研究中心謝世良特聘研究員長期研究發現,登革病毒會刺激血小板產生胞外囊泡和微泡,進而攻擊白血球,導致發炎病症。研究團隊據此研發抗體,減緩發炎反應,已成功將感染登革病毒的小鼠存活率提升至 90% ,並於 2019 年 6 月刊登於《自然通訊》 (Nature Communications) 。面對新冠病毒等新興傳染病,此種「減緩發炎」為主的創新療法,將有機會大幅降低患者死亡率。

為了維護人體的穩定與和平,免疫系統一旦偵測到外來入侵物,即啟動發炎反應,召喚免疫細胞圍剿入侵者。但發炎反應如果過度,往往會對自身臟器造成嚴重傷害。以登革熱 (dengue fever) 為例,免疫過激會造成「出血性登革熱」,嚴重將造成休克;最近新冠肺炎造成的肺纖維化,也是免疫過激的結果。

若想找出更有效的抗病毒治療策略,必須深入了解病毒與免疫系統的互動機制。

免疫反應宛如雙面刃

當病毒侵入人體,體內免疫細胞會立刻發動攻擊,如本文主角—-巨噬細胞 (macrophage) 與嗜中性白血球 (neutrophil) 兩種白血球。

嗜中性白血球,會吞吃入侵者,如果敵人太多,甚至會「自爆」釋放出自己的網狀遺傳物質 (deoxyribonucleic Acid, DNA) 黏住細菌,再由附著在 DNA 的酶將其殺死、清除,這個過程稱作嗜中性白血球胞外捕捉 (neutrophil extracellular traps, NETs) 。

嗜中性球細胞膜破裂,對病原體噴射大量絲狀染色體,高黏性的染色體會困住病原體。同時嗜中性球體內的免疫蛋隨之釋出,消滅病原體。此時嗜中性球也隨之死亡。
資料來源│NETosis : A Microbicidal Mechanism beyond Cell Death
圖說重製│林任遠、張語辰

巨噬細胞,也會吞噬、分解大量的病原體與受感染細胞。當病原體與細胞表面的受體結合,才能進入巨噬細胞,然後病原體會被分解成碎片排出。這些碎片會被當作抗原,活化其他種類的白血球。另外,巨噬細胞和受感染的細胞還會分泌細胞激素 (cytokine) 引起發炎反應,進一步對抗病毒。

巨噬細胞,也會吞噬大量的病原體,細胞內有酶可分解病原體,再將分解後的廢料排出,同時釋放細胞激素引起發炎反應。
圖說設計│黃曉君、林洵安

細胞激素包括干擾素 (interferon) 、促發炎激素 (proinflammatory cytokine) 、趨化激素 (chemokine) 等等。干擾素,由受傷的細胞產生,用以警告鄰近健康的細胞,趕緊製造可阻止病毒複製的蛋白質,抑制病毒數量。促發炎激素,會增加血管通透性,讓血液中的白血球能輕易通過血管壁趕往目的地。趨化激素,會吸引更多白血球,召來更多援軍。

問題來了!受感染細胞或巨噬細胞分泌細胞激素,或是嗜中性白血球胞外捕捉,本來都是為了擊退病原體。但令人遺憾的是,發炎的副作用與白血球無差別攻擊,有時反而造成器官受損或衰竭,甚至導致患者死亡。

那麼,有沒有一種治療方法,可以抑制過度發炎反應,但又不影響免疫系統消滅病原體?早在 2003 年,謝世良即開始這項大哉問。

創新構想:抑制發炎反應,但不影響免疫力

2003 年, SARS (Severe Acute Respiratory Syndrome) 疫情爆發,其中重症患者出現肺積水、呼吸困難等症狀,均非肇因於病毒本身,而是免疫過度反應的結果。

當肺部細胞受感染出現發炎反應,促發炎激素讓血管通透性增加、血漿滲入組織中,即會造成肺積水。再加上,蜂擁而來的白血球無差別攻擊受感染或健康肺泡,甚至分泌激素呼喚更多白血球前來,惡性循環之下形成細胞激素風暴 (cytokine storm) ,讓肺泡細胞受到嚴重損害,導致病人呼吸困難、險象環生。

然而, SARS 冠狀病毒 (SARS-CoV) 從始至終沒有特效藥、疫苗,只能將重症患者安置在負壓隔離加護病房,施以「支持性療法」,期盼患者能在良好的照護下,熬過自身的細胞激素風暴,等待自己的免疫系統清除病毒。

當時醫學背景出身的謝世良,從深厚的臨床與研究經驗出發,提出創新治療觀念:

設法研發一種藥物,可減緩細胞激素風暴,將發炎反應控制在不致命的程度,又不干擾免疫系統清除病毒,將有效降低感染者的死亡率。

「現有的類固醇消炎效果很好,但有抗藥性的問題,而且完全抑制發炎、沒有細胞激素也不行,因為病原體還是需要免疫細胞來對付。」謝世良進一步分析,細胞分泌的激素裡,促發炎激素跟趨化激素是造成細胞激素風暴的主因;但干擾素不引起發炎只抑制病毒複製。因此具體任務是:如何在抑制促發炎激素及趨化激素的同時,不會影響干擾素分泌,以避免削弱患者抵抗力。

登革熱出血熱,也源自細胞激素風暴

正當謝世良著手開始研究時, SARS 疫情宣告結束,於是他將戰力火速轉移到也會讓免疫系統過度活化的登革病毒 (dengue virus) 。

登革病毒,也會引起免疫系統的過度活化。
圖片來源│iStock

登革病毒分四種血清型別,患者感染過某一血清型的病毒,雖然能對這型病毒終身免疫,對於其他型卻只有短暫免疫力。時間一過,抗體甚至會結合成「病毒-抗體免疫複合體」 (virus-antibody immune complexes) ,讓病毒更容易結合巨噬細胞表面的受體 (receptor) ,進入細胞內部。

這種抗體反過來協助病毒入侵的現象,稱作抗體依賴性增強反應 (Antibody dependent enhancement, ADE) ,正是登革熱疫苗研發困難的原因。因為,若是無法同時刺激人體產生對抗四型病毒的抗體,病毒跑到巨噬細胞內增值擴散,其他巨噬細胞又分泌更多細胞激素,循環之下引發細胞激素風暴,將導致高致死率的登革出血熱或休克症候群。

痊癒者體內的單一血清型登革病毒抗體,反倒會接應其他血清型病毒,引發細胞激素風暴。

細胞激素風暴的關鍵受體:CLEC5A (2008)

那麼,如何減緩登革病毒引起的細胞激素風暴?謝世良的第一步是:尋找病毒是與巨噬細胞表面哪種受體結合,導致細胞激素風暴。在他著手研究後,注意到一種受體: C 型凝集素 5A (C-type lectin member 5A, CLEC5A) 。

「CLEC5A 在生化實驗中已證明具有傳遞訊息的功能。因此我推測, CLEC5A 很可能跟後續細胞激素分泌有關。」謝世良解釋。

第二步,備製 CLEC5A 的拮抗性單株抗體 (antagonistic anti-CLEC5A monoclonal antibody) ,打在小鼠身上,讓這些抗體搶先佔據巨噬細胞的 CLEC5 受體位置,阻斷登革病毒感染細胞的路徑。

結果發現,沒有打入這種抗體的對照組小鼠,登革病毒果真引起細胞激素風暴,在發炎、血管通透性增加的情況下,出現嚴重的皮下、腸道出血症狀而死亡。實驗組的小鼠在注射抗體後,發炎反應比較緩和,出血症狀明顯受到抑制。更重要的是,小鼠體內干擾素的分泌正常運作,不受抗體影響。

登革病毒結合巨噬細胞表面的 CLEC5A 受器,促使巨噬細胞分泌大量促進發炎的細胞激素。大量細胞激素造成更多巨噬細胞聚集,形成「細胞激素風暴」,促使小鼠過度發炎、血管通透性暴增,血漿滲出血管外,出現登革出血熱症狀。
資料來源│謝世良
圖說重製│林任遠、張語辰
被施打 CLEC5A 拮抗性抗體 (圖中粉紫色抗體)後,巨噬細胞上的 CLEC5A 受器被抗體佔據,不會與登革病毒結合。巨噬細胞因此不會產生過量細胞素、導致細胞素風暴,卻能持續產生干擾素消滅病毒。在抗體保護下,小鼠保持正常的血管通透性,不會產生登革出血熱症狀。
資料來源│謝世良
圖說重製│林任遠、張語辰

CLEC5A 拮抗性單株抗體,成功減緩小鼠登革出血熱症狀,又不影響干擾素分泌。

謝世良團隊研發的 CLEC5A 拮抗性抗體,將染病小鼠存活率一舉提高到五成,效果比其他免疫治療用的抗體顯著得多。2008 年,這項研究因著揭開 CLEC5A 是登革病毒引發細胞激素風暴的關鍵,以及成功製造出有效抗體等重大貢獻,登上科學期刊《自然》 (Nature) ,並獲多國新聞媒體報導。

其後,謝世良又發現這個機制普遍存在病毒引發人體的發炎反應中,面對日本腦炎、 H1N1 、 H5N1 等流行性感冒病毒, CLEC5A 拮抗性單株抗體均能成功提升小鼠的存活率。 2017 年,他將研究觸角擴及 CLEC5A 在對抗細菌的角色,發現受體  CLEC5A 是比過去研究焦點「類鐸受體 (Toll-like receptor 2- TLR2) 」更重要的防衛因子,論文也登上《自然通訊》 ( Nature Communications) 期刊。

登革病毒侵略人體的關鍵細胞:血小板 (2019)

雖然 2008 年的研究中,小鼠的登革出血熱已獲得緩和,但五成的存活率彷彿是謝世良難以突破的魔咒,讓他強烈懷疑還有其他免疫細胞或受體參與其中。

歷經十餘年的研究, 2019 年,謝世良與陽明大學臨床醫學所博士生宋佩珊終於解開謎底:登革病毒進入人體後,會去激活血小板表面的受體 C 型凝集素 2 (C-type lectin member 2, CLEC2) ,促使血小板分泌胞外囊泡 (extracellular vesicles) :直徑小於一兩百奈米的胞外體 (exosomes) ,以及較大、直徑數百到一千 奈米的微泡 (microvesicles) 。

其後,這些胞外囊泡分別會再跟巨噬細胞、嗜中性白血球表面的 CLEC5A 與 TLR2 結合。結合後才是災難的開始!巨噬細胞會大量分泌細胞激素,引起細胞激素風暴;嗜中性白血球則會出現胞外捕捉,釋放出酶跟顆粒,損害周圍細胞。

資料來源│謝世良
圖說原作│宋佩珊
圖說重製│林洵安

找到機制後,怎麼阻斷呢?謝世良團隊利用 CLEC5A 基因剔除鼠施打抗 TLR2 抗體,同時阻斷體外囊泡與 CLEC5A 以及  TLR2 受體結合,成功壓制登革病毒引起的免疫過激症狀,小鼠存活率也從 50% 奇蹟似的提升至 90% 。本次研究不但揭發登革病毒完整入侵途徑,並成功找出治療方法的研究成果,在 2019 年再度登上《自然通訊》 (Nature Communications) 期刊。第一作者宋珮珊博士生的研究論文獲得相當高的引用, 2020 年《免疫學趨勢》 (Trends in Immunology) 並以專文推薦這項研究揭開「嗜中性白血球的胞外捕捉乃登革熱感染機制的關鍵」,在在顯示此項成果具有突破性的意義。

目前謝世良團隊正積極發展針對 CLEC5A 以及 TLR2 的雙特異性抗體 (CLEC5A/TLR2 Bispecific antibody) ,可望於近期驗證阻斷 CLEC5A 及 TLR2 受體之效果。

同時阻斷 CLEC5 與 TLR2 兩個受體,可以有效壓抑病毒引起的過度免疫反應。

新冠病毒來襲,減緩發炎或可扭轉戰局

未來謝世良計畫將 CLEC5A/TLR2 雙特異性抗體,擴及其他病毒感染引起之急性發炎,以及自體免疫疾病,像是紅斑性狼瘡或類風溼性關節炎。如今新型冠狀病毒疫情 (COVID-19) 來襲,除了抗病毒藥物、疫苗,此種減緩發炎反應的治療,可能是更及時的救命解方。

目前,謝世量實驗室已將過去十餘年研究建立的平台,包括基因工程製造的巨噬細胞表面受體、細胞融合瘤技術生產的  CLEC5A 的拮抗性單株抗體、基因抑制小鼠等等,全力轉向 COVID-19 的研究。

謝世良指出,病毒基因瞬息萬變,可能很快就會產生抗藥性;但找出共同的致病機制就不一樣了。雖然不同種類的病毒侵入細胞的途徑不盡相同,但觸發免疫細胞的訊息傳遞路程卻大致相同。因此,找出抗體以阻斷病毒與免疫細胞結合,雖然比較耗時耗力,卻有機會一勞永逸,對抗不斷推陳出新的病毒。

對前線的醫護來說,當務之急絕對是趕緊找到能抑制病毒的特效藥;研究人員的功課,則是想辦法揭開致病原理,找到一勞永逸的解方。

一場演講邀約,催生驚人研究成果

謝世良十餘年的研究成果,源自於十七年前的一場演講邀請。

當時, SARS 疫情延燒,時任衛生署疾病管制局長的蘇益仁,致電邀請謝世良為民眾帶來一場演講,解說病毒如何引起人體的細胞激素風暴。原本只是為演講做準備的謝世良,找資料時意外發現:當時科學界對細胞激素了解甚少,反倒讓自己一頭栽入此未知領域。「一通偶然的電話,一個『錯誤』的決定,促成今天的成果。」謝世良打趣地說。

但從一個新穎的構想到具體的成果,箇中辛苦不足為外人道。謝世良表示:「一個概念只用一句話或半分鐘講完,卻要花上幾年的時間來完成。」基因工程製造巨噬細胞表面受體、細胞融合瘤技術生產 CLEC5A 的拮抗性單株抗體,皆動輒耗時數年、耗費百萬。

另外,實驗中不可或缺的 STAT1 與 CLEC2 基因抑制小鼠,必須從英國進口胚胎,研究員充當奶爸照顧幼鼠,長大後再讓小鼠交配,才能在實驗中使用,光是備至小鼠就要近一年的時間。謝世良苦笑地提到:「英國不給成鼠只賣胚胎,但胚胎必須低溫運送,第一批因為器材漏氣死亡;第二批在機場差點被海關打開檢查,險些因溫度上升導致胚胎受損,還好有貴人幫忙度過危機。」

因想法創新,實驗器材必須自己想辦法,研究路也走得格外辛苦;但也因為走在最前端,才能有驚人發現。

要當第一,去做從來沒有人嘗試過的事,這的確很累人,但流淚灑種才能歡呼收割。

「創新的想法,要透過嚴格的實驗來證實,雖然過程極具挑戰性,但反而不用擔心:『一覺醒來,自己的研究題目已經被別人發表了!』」謝世良團隊研究過程的辛苦與喜樂,盡在這句話中。
圖片來源│謝世良

延伸閱讀

  1. 謝世良的個人網頁
  2. 中研院107年2月份知識饗宴「細胞激素風暴:失控的免疫反應」
  3. CLEC5A 是嗜中性白血球對抗細菌的關鍵
  4. Chen ST, Chen JW, Wu WC, Chou TY, Yang CY, Hsieh SL*, 2017, “CLEC5A is a critical receptor in innate immunity against Listeria infection”, NATURE COMMUNICATIONS, 8(1):299.
  5. Teng, O, Chen, ST, Hsu TL, Sia SF, Cole S, Valkenburg SA, Hsu TY, Zheng JT, Tu W, Bruzzone R, Peiris JSM, Hsieh SL*, Yen HL*, 2017, “CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo.”, JOURNAL OF VIROLOGY, 91, e01813.
  6. Wu MF, Chen ST, Yang AH, Lin WW, Lin YL, Chen NJ, Tsai IS, Li L, Hsieh SL*, 2013, “CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages”, BLOOD, 121(1), 95-106.
  7. Chen ST, Liu RS, Wu MF, Lin YL, Chen SY, Tan DT, Chou TY, Tsai IS, Li L, Hsieh SL*, 2012, “CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality.”, PLoS Pathogens, 8(4), e1002655.
  8. Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL*. CLEC5A is critical for dengue virus-induced lethal disease. Nature 2008; 453: 672-5.
  9. Sung PS, Hsieh SL*. CLEC2 and CLEC5A: pathogenic host factor during acute viral infections. Front. Immunol., 06 December 2019
  10. Sung PS, Huang DF, Hsieh SL*. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nature Communications 2019DOI:10.1038/s41467-019-10360-4.

編按:CLEC2 基因抑制小鼠誤植為 CLEC5A,2020/5/19 勘誤修改。

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2340 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

2
1

文字

分享

0
2
1
無法製造各種血球、死亡率高——認識再生不良性貧血及治療方針
careonline_96
・2023/01/24 ・1925字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

台灣最常見的貧血是缺鐵性貧血,通常與女性月經流失有關,只要適度補充鐵質便能漸漸改善。至於再生不良性貧血就比較棘手,除了缺乏紅血球,連白血球、血小板都會缺乏。

台中榮民總醫院血液腫瘤科滕傑林醫師指出,再生不良性貧血(aplastic anemia)患者骨髓中的造血細胞遭到破壞,而無法製造各種血球。再生不良性貧血的發生原因仍不太清楚,可能與病毒感染、基因遺傳、免疫失調、接觸有毒化學物質或輻射線暴露有關。

再生不良性貧血較常見於 10 歲到 25 歲的年輕人,或者是 60 歲以上的族群,男性與女性發生的機率差不多。

再生不良性貧血警訊注意!

再生不良性貧血導致紅血球、白血球、血小板的數量都明顯下降,所以會造成多種症狀。

紅血球負責輸送氧氣,缺乏紅血球讓人臉色蒼白、心跳加速、呼吸急促、體力變差、容易疲倦,長期嚴重貧血可能造成心臟衰竭。

白血球負責對抗入侵的病原,缺乏白血球就比較容易感染、發燒。除了來自外界的病原,也有自身的病原,因為人體的消化道、呼吸道、生殖道都存在許多細菌,當抵抗力低下時,便會伺機入侵。

血小板能幫助止血,缺乏血小板就容易流鼻血、牙齦流血、傷口流血不止、皮膚經常出現出血點或瘀青、月經過多,倘若出現內出血,可能危及性命。

出現明顯症狀的患者,大概都是屬於嚴重或非常嚴重的再生不良性貧血。因為各種血球都缺乏,如果後續沒有好好治療,再生不良性貧血的死亡率很高,滕傑林醫師說,「非常嚴重型再生不良性貧血患者,一年的死亡率可以高達 60% 至 70%!」懷疑再生不良性貧血時,要先排除其他的原因。如果排除可能的致病因素還無法找出貧血的原因,則要做骨髓檢查。

滕傑林醫師說,再生不良性貧血病患骨髓檢查會發現骨髓空空的,造血細胞被大量脂肪組織所取代,如果已經排除其他原因,且兩側骨髓檢查都是這樣的結果,就可以診斷為再生不良性貧血。

嚴重再生不良性貧血怎麼辦

滕傑林醫師解釋,若是屬於輕度再生不良性貧血,可以持續追蹤觀察;至於嚴重和非常嚴重的再生不良性貧血就必須積極介入治療。

如果是 40 歲以下的患者,可以考慮做兄弟姊妹之間 HLA 完全吻合的造血幹細胞移植(骨髓移植)。滕傑林醫師說,如果是 40 歲以上,或是找不到合適的造血幹細胞捐贈者,可以使用免疫療法;而接受免疫療法,平均要 3、4 個月後才知道有沒有效,在這段時間患者還是有感染、出血的風險需特別小心。

目前的免疫療法是使用抗胸腺免疫球蛋白 ATG 加上免疫抑制劑,此外近期多了促進血小板生成藥物這個選項以提升整體治療反應率。

再生不良性貧血的問題在於造血的工廠出狀況,而沒有辦法製造各種血球,所以無法單靠輸血或補充營養來改善,真正的關鍵是讓血球趕快長回來,因此一定要積極接受治療。

貼心小提醒

再生不良性貧血是個相對少見但嚴重的疾病,血液中的紅血球、白血球、血小板都會明顯缺乏,而導致臉色蒼白、心跳加速、呼吸急促、容易疲倦、出血不止、容易感染等問題。

對於 40 歲以下的病人,可以考慮兄弟姊妹之間 HLA 完全吻合的骨髓移植;對於 40 歲以上,或是沒有配對成功的病人,可使用免疫療法,或促進血小板生成藥物。在白血球低下時,患者很容易遭到感染,所以要戴口罩、勤洗手、避免生食、避開人潮,降低遭到感染的風險。

若未接受適當治療,非常嚴重型再生不良性貧血患者,一年的死亡率高達 60% 至 70%,滕傑林醫師叮嚀,若有相關症狀,應該盡快至血液科就診,並積極接受治療,改善存活率!

  • 本衛教資訊由台灣諾華贊助提供

2

1
0

文字

分享

2
1
0
物理學家說,公車的窗戶開這幾扇才通風
胡中行_96
・2023/01/09 ・1774字 ・閱讀時間約 3 分鐘

在流感盛行的嚴冬,您可曾為了開窗與否,天人交戰?還是在搭公車的時候,選擇開走道對面的窗戶,凍死別人,造福自己?通風能降低感染空氣傳播疾病的風險,但交通工具的窗戶到底要怎麼開,才能達到最佳效果?墨西哥物理學團隊發揮所長,在 2022 年 12 月的《科學報告》(Scientific Reports)期刊上,推薦開公車窗戶的方法。[1]

公車模型

COVID-19 疫情期間,防疫資訊滿天飛。因為事關人命,「♪ 雖然我曾經這樣以為/♪ 我真的這樣認為」,並不能做為給予建議的理由。許多公衛措施的效益,例如:戴口罩和保持社交距離等,都被嚴厲地以科學的方法檢視。這群墨西哥物理學家著眼於通風的機制,想瞭解到底挑哪個位置的窗戶,打開多少扇,對公車內的空氣品質最好。當然,他們並未唱著林憶蓮的〈為你我受冷風吹〉,親自搭車實測,被風吹到掉眼淚;而是打造了一台小模型來實驗,再以電腦模擬運算。[1, 2]

公車模型:A 是風速計;S 為二氧化碳偵測器;窗戶被黑虛線框出;二氧化碳則由中央車底灌入。圖/編輯自參考資料 1,Figure 1b、8a和8b。CC BY 4.0)

他們參考一輛 9.92 x 2.5 x 2.2 公尺,地板內側離路面 0.4 公尺的實體公車,打造出約 1/10 大的壓克力模型。如圖所示,車體透明,僅窗戶用黑色虛線框出,方便觀察;裡面有二氧化碳偵測器(CO2 sensor)、風速計(anemometer);以及可裝卸的 3D 列印乘客,方便創造空車和滿載等狀態。由於假人不會呼吸,所以得從模型的中央車底灌入二氧化碳,代替真實的吐氣。測試氣流時的車速,則主要設定在每小時 50 公里。[1]

實驗項目

這個實驗從下列兩個角度,來探討通風效果:

  1. 開啟的窗戶數目:從不開窗、開 2 扇或 4 扇,到全部開啟等,都嘗試一輪。[1]
  2. 窗戶的位置:一般常見的公車,窗戶都是開在車體兩側,也就是乘客座位的旁邊。不過,科學家在模型的車頭,挖了 2 個長方形的氣窗,看看這種設計的效果又是如何。[1]

實驗結果

研究團隊發現,在一般擁有左右兩排窗戶的公車上,氣膠(aerosols,又稱「氣溶膠」或「懸浮微粒」)的擴散與排出,均受車內負壓造成的吸力驅動。打開 4 扇,也就是左右各 2 扇窗戶最通風;全開也不會加快氣膠排散,或減少累積。氣流促使氣膠向車頭聚集;有些從前面離開的氣膠,會由後面的窗戶回流;而氣膠在車裡停留的時間,平均為 6 分鐘。不過,當科學家拿出他們改造的新型公車,馬上就超越了傳統公車開 4 扇窗的成效。[1]

有別於市面上常見的款式,這種新型公車的前方擋風玻璃,靠近車頂處,多了兩個氣窗。如下圖所示,公車移動時,前方氣窗會進氣,產生一股推力帶動通風,而不再仰賴車內負壓的吸力。空氣從前方灌入,通過座位區域,再由車尾原本就設在兩側的窗戶出去;不像開 4 扇的,氣流無法完全貫穿車體。[1]

左:一般有兩排窗戶的公車;右:車頭設氣窗的新款公車。圖/參考資料 1,Figure 1c(CC BY 4.0)

以公車滿載 50 人的狀況為例,車速每小時 50 公里時,新款公車內的通風換氣速率,為每人每秒 100 公升;遠高於英國急難科學顧問團(Scientific Advisory Group of Emergencies,簡稱SAGE),在 COVID-19 疫情期間建議的 8 至 10 公升。就算行車速度只有每小時 9 公里,也還能符合 SAGE 的標準。同時,車內氣膠的總量減少,在車速每小時 50 公里的狀態下,滯留的時間降至 50 秒。[1]

公車向左行駛時,開不同窗戶的通風情形。影/參考資料 1,Supplementary Information 2(CC BY 4.0)

尚待研究的變因

既然新款公車這麼通風,何不趕快上市?上述實驗未涵蓋的數個變因,其實仍有待探究。比方說,3D 列印的假人沒有體溫,真實的公車坐滿活人乘客時,車內的溫度可能較高。如果再考量各地天候,造成的車外氣溫差異,這裡關於氣體流動的結論,便不見得適用。[1]更何況在空氣污染嚴重的市區,開窗搞不好會弄得灰頭土臉,大概也無益於呼吸功能。假如將來臺灣除了密閉且附空調的公車,也有這種墨西哥的新式車款,身為乘客的您,會想搭哪一種?

  

參考資料

  1. Alexei Pichardo-Orta F, Luna OAP, Cordero JRV. (2022) ‘A frontal air intake may improve the natural ventilation in urban buses’. Scientific Reports, 12, 21256.
  2. 滾石唱片ROCK RECORDS(01 JUN 2012)「林憶蓮Sandy Lam【為你我受冷風吹 Suffer for you】Official Music Video」YouTube.
所有討論 2
胡中行_96
82 篇文章 ・ 29 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。