0

0
1

文字

分享

0
0
1

病毒讓免疫系統深陷「發炎過激」的險境,該如何控制住場面?CLEC5A受器是關鍵!

研之有物│中央研究院_96
・2018/01/12 ・5861字 ・閱讀時間約 12 分鐘 ・SR值 591 ・九年級

-----廣告,請繼續往下閱讀-----

本文介紹的免疫反應主角,現身在這張學生送給謝世良的卡片。分別為:左一的嗜中性白血球(Neutrophil)、左三的巨噬細胞(Macrophage)。 圖/張語辰攝影

中研院基因體研究中心的謝世良特聘研究員與團隊研究發現,嗜中性白血球、巨噬細胞表面的 CLEC5A (C 型凝集素 5A)受器, 不僅能辨識入侵體內的病原體,也能調控發炎反應,維持免疫系統正常運作、清除病原體。未來有機會發展以「抑制發炎」取代直接對抗病毒細菌的療法。

反應太大啦!免疫系統過度反應,讓患者身陷險境

登革熱、禽流感等病毒疾病對人體殺傷力強大,它們的症狀不是由「病毒的複製」直接造成,而是「免疫系統的發炎反應」過於激烈,使得免疫系統尚未消滅病毒就嚴重傷害人體。此外,自體免疫疾病,例如紅斑性狼瘡、腸道炎症,也是由於免疫系統的反應過久、過強。

除了某些基因缺陷造成的症狀,幾乎所有人類疾病都是因為過度激烈的發炎。

人體發炎反應的啓動因素,是傳染性因子(Infectious Agent) 、外來抗原、自體抗原等分子,它們會結合並激發免疫細胞表面的先天免疫受體。若想建立更有效的治療策略,就必須更了解各種抗原分子與人體免疫系統的互動機制。

嗜中性白血球,是先天免疫的重要角色。圖/wiki

人體的免疫系統可以概略分為兩道防線,初步由專一性較低的先天性免疫(Innate Immunity)偵測並分解侵入的病原體,同時透過細胞素(Cytokine)等分子引起「發炎反應」、召集免疫細胞,集中火力清除外患。先天免疫相關的白血球包括:巨噬細胞嗜中性白血球等等。

-----廣告,請繼續往下閱讀-----

若這一道防線沒能達成目標,後天性免疫(Adaptive Immunity)便會被活化,以 T 細胞 B 細胞族群合作,產生具針對性之抗體、以及具辨識能力的殺手細胞,更徹底地消滅特定敵人。

免疫反應就像人體的防線,各種免疫細胞就是其中各有功能的士兵。圖/Momentmal @Pixabay

面對多數病源,這兩道免疫防線可提供人體良好的保護效果。不過,以「發炎反應」增強防禦時,人體也遭遇風險。

若無法有效消滅外來抗原,或是有內源性抗原(Endogenous Antigen)持續刺激免疫系統,會導致激烈發炎及炎症性疾病。

激烈發炎炎症性疾病,令患者不僅痛苦,更可能留下不可恢復的傷害、甚至死亡。面對過度發炎引起的疾病,除了以疫苗預防,臨床上通常以藥物抑制發炎反應、並提供照護協助人體恢復。但藥物也可能干擾患者的免疫系統,甚至使病原產生抗藥性,因此患者與醫療人員經常陷於兩難。

謝世良團隊在患者「過度發炎」的難關中另闢蹊徑,找到了調控發炎反應的免疫細胞受器分子「CLEC5A (C-Lectin-5A,C 型凝集素 5A)」。團隊發現,剔除 CLEC5A 基因的小鼠,對病毒、細菌的過度發炎反應大幅減弱,未來可以針對此細胞受器發展療法,保護患者免於過度免疫反應。

-----廣告,請繼續往下閱讀-----

自殺式攻擊「嗜中性球細胞外捕捉」

嗜中性白血球,就像住在我們體內的激動戰士。 圖/張語辰設計

嗜中性白血球(Neutrophil),是免疫系統對抗細菌感染的第一道防線前鋒。

它們在感染情況嚴重,無法將細菌完全吞噬掉時,會膨脹自身染色體,從裂開的細胞膜將其釋出。嗜中性白血球自身會因此死亡。而被釋出的染色體,具有強大黏性並呈長條狀,猶如漁網將細菌捕獲,隨染色體釋出的免疫蛋白質也能直接殺死細菌、或抑制其生長。

上述機制稱為「嗜中性球細胞外捕捉(Neutrophil Extracellular Trap, NET)」,可透過下面三張圖分段來想像:

嗜中性白血球能辨認細菌、酵母菌、真菌菌絲、原生動物等病原體,對其進行免疫反應。一般狀況下,中性球之染色體壓縮集中在細胞核(深紫色)。 資料來源 /Guimarães-Costa et al, 2012 圖說重製/林任遠、張語辰
然而,在無法有效消滅病原體時,嗜中性球會膨脹染色體,使細胞核破裂。 資料來源 /Guimarães-Costa et al, 2012  圖說重製/林任遠、張語辰
嗜中性球細胞膜破裂,對病原體噴射大量絲狀染色體,高黏性的染色體會困住病原體。同時嗜中性球體內的免疫蛋白(淺紫色小顆粒)隨之釋出,消滅病原體。此時嗜中性球也隨之死亡,而免疫系統受到 NET 刺激,產生干擾素。 資料來源 /Guimarães-Costa et al, 2012  圖說重製/林任遠、張語辰

「嗜中性球細胞外捕捉(NET)」雖然可以清除病原,卻也產生大量干擾素,造成過度免疫反應。

例如紅斑性狼瘡(Systemic Lupus Erythematosus,SLE)因為免疫系統的失調,產生自體抗體,其中有些引起細胞損傷、有些形成免疫複合體,造成過度發炎反應。患者在發病前經常有發炎感染紀錄;而自體免疫症狀出現時,也可以檢測到患者體內的嗜中性白血球大量減少、干擾素濃度極高,表示此時有過量的「嗜中性球細胞外捕捉 」效果在影響人體。

-----廣告,請繼續往下閱讀-----

嗜中性球細胞外捕捉機制,除了在紅斑性狼瘡患者體內會發生,當體內遇到格蘭氏陽性菌、登革病毒、禽流感病毒等病原入侵,也會啟動自體免疫反應。然而要避免過度免疫反應,謝世良團隊發現嗜中性白血球、巨噬細胞上的 CLEC5A 受器是重要的調控樞紐。

調控過度免疫反應的樞紐:CLEC5A 受器

謝世良團隊 2017 年的研究成果刊登在《Nature Communications》期刊,延續他多年來對「病毒引起發炎反應機制」的研究,證實 CLEC5A 不僅能結合登革熱、 H5N1 等病毒,在對格蘭氏陽性菌的免疫機制也佔據重要地位。

過往的免疫學理論普遍認為,格蘭氏陽性菌感染時,先天免疫細胞的 TLR-2(Toll-Like Receptor-2)是最關鍵的受器,但謝世良團隊根據臨床經驗與知識,做出不同於過往文獻的判斷,並針對 CLEC5A 進行實驗。

CLEC5A 受器,不僅會與過往最受重視 TLR-2 受器協同作用,而且是對抗病毒、細菌感染時更為重要的角色。

CLEC5A 和 TLR-2 的協同作用機制,可透過下面三張圖來想像:

-----廣告,請繼續往下閱讀-----
屬於格蘭氏陽性菌的李斯特菌(L. Monocytogenes),可以分別被嗜中性白血球和巨噬細胞上的 CLEC5A 與 TLR-2 受器偵測,兩個受器結合李氏特菌後,會在下游產生協同作用。 圖/謝世良(資料提供)、 林任遠、張語辰(重製)
嗜中性白血球 CLEC5A 與 TLR-2 受器的協同作用,會活化 NET 機制,讓嗜中性球捨身攻擊病原體,並持續刺激免疫系統。 圖/謝世良(資料提供)、 林任遠、張語辰(重製)
巨噬細胞上的 CLEC5A 與 TLR-2 受器協同作用,會活化發炎體(Inflammasome),大量分泌細胞激素如 cytokine IL-1β,並活化腸胃道的重要免疫細胞 IL-17 γδ-T cell 。接著產生細胞激素 IL-17A,藉此對抗李斯特菌 (Listeria)等病原體,並使腸道發炎。 圖/謝世良(資料提供)、 林任遠、張語辰(重製)

謝世良說明:「嗜中性球是對抗細菌入侵時最重要的第一防線,而我們發現 CLEC5A 在嗜中性球上的表現量甚至高於巨噬細胞,所以大膽假設── CLEC5A 與偵測格蘭氏陽性菌有關。」

於是謝世良團隊花費 1 年多進行實驗與培育,得到了剔除 CLEC5A 基因、剔除 TLR-2 基因、以及同時剔除兩者的珍貴實驗小鼠品系。

小鼠感染實驗的結果,不同於既有文獻理論,卻符合謝世良的預估:相較 TLR-2 基因剔除鼠,CLEC5A 基因剔除鼠對格蘭氏陽性菌感染更加敏感、致死率更高。而兩個基因皆剔除的小鼠,感染致死率又高於剔除單一基因的小鼠,顯示這兩個基因會協同進行免疫反應。

而被剔除 CLEC5A 的小鼠遭感染後,因為協同作用被阻斷,嗜中性白血球不會產生 NET 機制的各項指標,巨噬細胞也不會活化引起腸道發炎的免疫細胞「IL-17 γδ-T cell」。因此,謝世良認為:

-----廣告,請繼續往下閱讀-----

CLEC5A 不僅能辨識病原體,若阻斷這個路徑,也能調控過度免疫反應,可望成為治療自體免疫疾病的新道路。

阻斷 CLEC5A 功能:SARS、登革熱、禽流感的可能新療法

除了格蘭氏陽性菌,謝世良對病毒引起發炎機制的好奇心,源於 2003 年 SARS 風暴,他說:「一個全新的病毒出現在世界上,居然可以被人體偵測、產生細胞素和強烈的發炎反應!這種現象非常奇特,我們實在忍不住要探究原因。」

當時的疾管局長蘇益仁詢問謝世良: SARS 病毒如何引起發炎反應?謝世良沒辦法馬上回答,同時也發現科學界對這個問題,其實沒有明確的答案與共識,因為對其病理機制了解有限。但是 SARS 風暴呼嘯而過,難以追蹤研究。於是謝世良在 2008 年著手研究登革病毒的發炎機制,逐漸揭露 CLEC5A 對免疫系統的重要性。

登革病毒每年造成全球兩萬人死亡,是因為患者重複感染不同型登革病毒,導致原先的抗體失去保護作用,反而結合病毒形成「病毒-抗體免疫複合體(Immune Complex)」,使病毒更容易以表面多醣分子(Glycans)結合巨噬細胞的 CLEC5A 受器,迅速進入巨噬細胞。當病毒感染量增加、巨噬細胞受到大量刺激,就產生更多細胞素促進發炎反應。

細胞素風暴(Cytokine Storm)就此展開:免疫系統連續受到錯亂的細胞素訊息刺激,促進發炎且召喚巨噬細胞聚集,讓巨噬細胞們更容易受到病毒感染、並加速分泌細胞素。

因此,免疫反應遭到細胞素過度刺激的循環,患者開始自發性出血、血壓下降、甚至休克,缺少良好醫療照護者可能致死。

-----廣告,請繼續往下閱讀-----

謝世良團隊在 2008 年,嘗試用 CLEC5A 的拮抗性抗體(Antagonistic Antibody)及阻擾性 RNA(shRNA),阻斷小鼠的免疫細胞 CLEC5A 受器與登革病毒結合,預防發炎反應。發現此種抗體可以大幅減輕登革熱症狀,且能維持小鼠正常免疫功能,大多數小鼠在此種療法下皆有效清除病毒。

登革病毒結合巨噬細胞表面的 CLEC5A 受器,促使巨噬細胞分泌大量促進發炎的細胞素(Proinflammatory cytokines)。大量細胞素造成更多巨噬細胞聚集,形成「細胞素風暴」,促使小鼠過度發炎、血管通透性暴增,血漿滲出血管外,出現登革出血熱症狀。 圖/謝世良(資料提供)、 林任遠、張語辰(重製)
被施打 CLEC5A 拮抗性抗體(圖中粉紫色抗體)後,巨噬細胞上的 CLEC5A 受器被抗體佔據,不會與登革病毒結合。巨噬細胞因此不會產生過量細胞素、導致細胞素風暴,卻能持續產生干擾素消滅病毒。在抗體保護下,小鼠保持正常的血管通透性,不會產生登革出血熱症狀。 圖/謝世良(資料提供)、 林任遠、張語辰(重製)

接續登革病毒的研究,謝世良團隊也發現免疫細胞的 CLEC5A 受器會和 H5N1 禽流感病毒結合,進而引發人體嚴重發炎。若阻斷這個路徑,將大幅減輕發炎症狀,讓免疫系統持續有效清除病毒。

在既有的研究基礎上,謝世良受巴斯德研究中心邀請合作,探究 CLEC5A 是否能與 H5N1 禽流感病毒結合。他將團隊精心培育的基因剔除鼠送到香港繁殖、進行實驗。結果發現,剔除 CLEC5A 基因的小鼠,因為阻斷了其與病毒結合的路徑,受 H5N1 病毒感染後的發炎症狀相對輕微許多。

抑制發炎相關的免疫因子,可以避免過度發炎反應,同時保持免疫系統正常運作以清除病毒,但不必擔心病毒產生抗藥性,也不會造成固醇類藥物的副作用。

謝世良說明,透過調控免疫細胞 CLEC5A 受器與病毒的結合,能發展以「抑制發炎」取代直接對抗病毒的療法,比傳統療法更順應自然、不易產生抗藥性。他說,此研究的主要收穫在於:「近期有 H4N1 患者對抗病毒藥物產生抗藥性,原來的藥物不再能抑制病毒,使得治療效果下降。但我們這個機制,不一定要靠藥物抑制病毒複製才能減輕症狀。」

-----廣告,請繼續往下閱讀-----

病毒引起發炎反應的「雙重路徑」

謝世良認為, H5N1 研究的第二層重要意義,在於揭露病毒刺激人體發炎的「雙重路徑」之普遍性。

病毒可以透過核酸以外的構造引起人體發炎,這種「雙重路徑」是過去我們比較不重視,但與人體疾病關聯更緊密的部分。

他說,學界投注很多心力研究免疫系統如何對病毒的核酸產生反應。「但是,病毒能否透過其他機制,由核酸以外的構造刺激細胞上的其他受體、引起發炎?這方面的研究相對欠缺,但是與人類疾病的相關性卻更高。」

從登革熱、日本腦炎到禽流感,謝世良都觀察到病毒以核酸、多醣分子引起發炎的「雙重路徑」現象。他說「透過雙重路徑引起人體發炎的機制,並不止於引發日本腦炎、登革熱的黃病毒屬,可能是存在於多數病毒的普遍機制。基於這個觀念,我們將繼續尋找潛在的重要受器,若發現強力的病毒或細菌引起發炎的機制,就可以發展有效抑制發炎反應的療法。」

多數的研究起源,都來自觀察到有趣的現象,並保持強烈的好奇心。

「好的研究題材,可能來自對疾病的日常觀察、或尚未解答的基礎問題。更重要的,是如何透過既有的知識與設備,逐步接近問題的核心。」謝世良建議學生,實驗設計務必按部就班,任何假說都要以「控制組」進行嚴格比對驗證,絕對不能為了節省實驗時間而省略。

「創新的想法,要透過嚴格的實驗來證實,雖然過程極具挑戰性,但反而不用擔心:一覺醒來發現自己的研究題目,已經被別人發表了!」謝世良團隊研究過程的辛與喜,盡在這句話中。 圖/謝世良

參考資料:

本著作由研之有物製作,原文為《從登革熱到禽流感,調控「免疫反應」的樞紐:CLEC5A》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3808 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
鼻塞到懷疑人生?——淺談慢性鼻竇炎的新術式「重啟手術」
J. Yang_96
・2021/09/10 ・2144字 ・閱讀時間約 4 分鐘

慢性鼻竇炎在臺灣的盛行率高達 15-20%,也就是說身邊每五個人就有一人深受這個惱人的疾病侵擾。

要如何推斷自己可能得了慢性鼻竇炎呢?

根據歐洲於 2020 年發表的 EPOS 指南,當你有長達 12 週以上的鼻塞症狀,並符合以下三個附加症狀其中之一,便極有可能罹患了慢性鼻竇炎,分別是:

  1. 膿臭鼻涕或分泌物
  2. 臉部的悶塞脹痛感
  3. 嗅覺靈敏度降低甚至喪失

如若自覺符合以上條件,可至醫院的耳鼻喉科就診,安排相關影像檢查,從頭頸部的 X 光或是電腦斷層都有助於慢性鼻竇炎的確診。

慢性鼻竇炎的病因

如同許多疾病,慢性鼻竇炎的病因是由環境因子與宿主的免疫反應交互作用而形成,其中的機轉十分複雜,尚未有定論。

-----廣告,請繼續往下閱讀-----

無論起初致病成因為何,最終引起的發炎反應是造成症狀的元兇,亦是現今治療所欲改善的主軸。

我們體內的發炎反應可以依照路徑大致分為三種型態,其中與過敏相關的第二型發炎反應,會導致臨床上的「息肉性慢性鼻竇炎」。

之所以特別將慢性鼻竇炎依據有無息肉作為分類,係因具有息肉的慢性鼻竇炎(Chronic rhinosinusitis with nasal polyps, CRSwNP)在臨床上具有 40% 至 60% 的高復發率,對於藥物及息肉切除術反應也較不顯著。

當對於初步的治療具有抗性時,我們便可定義其為「頑固性慢性鼻竇炎」(Recalcitrant chronic rhinosinusitis)。

-----廣告,請繼續往下閱讀-----
 鼻竇發炎的位置。圖/depositphotos

慢性鼻竇炎的治療方案

大部分息肉性慢性鼻竇炎患者對於鼻噴劑型的類固醇效果反應良好,因為只有局部使用,毋須太過擔心全身性副作用的產生。

現今亦有針對細胞激素的製劑,可針對發炎反應作免疫調控,如 Anti-IL4、Anti-IgE 等,但由於單株抗體的藥價十分昂貴,臨床上較少使用。如若症狀控制得宜,便以適當藥物並定期追蹤治療效果即可。

但不幸的是,仍有部分病患即使接受了藥物治療仍不見效,此時便須考慮進一步的手術治療。

手術的術式有許多選擇,傳統上以單純的息肉切除術為主,希望能保留鼻竇內其他沒有息肉的黏膜。

但近年來發展出的新觀念推翻原本的理論,認為即使旁邊看似沒有息肉的黏膜,也早已受到發炎反應的侵襲,讓整體鼻竇環境處於不健康的狀態。因應而生的新手術方式就是今天所要談論的「重啟手術」(Reboot Surgery)。

-----廣告,請繼續往下閱讀-----

重啟手術顧名思義是將發炎的鼻竇進行大範圍的清除,保留鼻中隔區域的黏膜讓上皮能夠再生。而重啟手術又可分為「部分重啟」與「完全重啟」,差別在於有無進行將兩側額竇內側磨開的 Draf III 術式。

 綠線為論文中定義完全重啟手術的清除範圍。圖/參考資料 2

在 2019 年,於比利時的一篇論文回溯性的分析了 84 位分別接受單純息肉切除術、部分重啟手術與完全重啟手術,發現在術後兩年的復發率與症狀改善程度,接受了重啟手術的病人組別,表現都較接受單純息肉切除術的優異

 研究中指出,術後 2 年復發率之數據。圖/參考資料 2

而中國亦針對此一主題於 2020 年發表了一篇前瞻性研究,篩選出 81 位患有頑固性慢性鼻竇炎且具有雙側鼻息肉的病患,平均分配去接受前述的三種手術,並分別於術後第 1、3、5 年進行相關的追蹤。

結果顯示,接受了重啟手術的病人在第 1 年的復發率比接受單純息肉切除術的低,雖然在 3、5 年的復發率沒有顯著降低,但後續復發時,當初接受重啟手術的病人較少需要再次接受手術治療。

-----廣告,請繼續往下閱讀-----
 研究 1、3、5 年復發率與需再次接受手術治療之數據。圖/參考資料 3

綜合以上研究結果,大致可推論出這個新的術式,無論在歐美或是亞洲族群,皆能帶來較低的復發率較晚的復發時間,也能對於症狀的改善有較大幅度的進步,即使復發,疾病的程度較多能以保守的藥物控制,不必再次接受手術。

按時洗鼻,能有效降低復發機率!

前面提到,接受了重啟手術的頑固性慢性鼻竇炎患者,雖然在第 1 年的復發率表現較為優異,在第 3、5 年的復發率差異卻不顯著,其中一個推論,是跟術後患者自己對於鼻腔的照護息息相關。

慢性鼻竇炎患者無論接受何種術式,術後最重要的任務就是按時洗鼻

臨床上常見以生理食鹽水佐以類固醇作為洗鼻劑,一天約洗一到兩次,如此能讓復原中的黏膜保濕,更能幫助鼻黏膜纖毛的運動以排除髒污,避免病菌在黏膜上附著聚集,再次引起發炎反應。

-----廣告,請繼續往下閱讀-----

慢性鼻竇炎往往對患者的生活帶來許多不便與不適,有賴醫者針對各個型態的病因制訂出精準的醫療方針,而患者也需悉心照護好不容易重獲新生的鼻竇,如此醫病合作之下,才能共同對抗這惱人的疾病!

參考資料

  1. European Position Paper on rhinosinusitis and nasal polyps 2020.
  2. Saeed Alsharif, MD ; Karin Jonstam, MD; Thibaut van Zele, MD, PhD; Philippe Gevaert, MD; Gabriele Holtappels, MLT; Claus Bachert, MD, PhD. (2019) Endoscopic Sinus Surgery for Type-2 CRSwNP: An Endotype-Based Retrospective Study. Laryngoscope, 129:1286–1292.
  3. Luo Zhang, Yuan Zhang, Yunbo Gao, Kuiji Wang, Hongfei Lou, Yifan Meng, Chengshuo Wang.(2020). Long-term outcomes of different endoscopic sinus surgery in recurrent chronic rhinosinusitis with nasal polyps and asthma. Rhinology, 58(2):126-135.
  4. https://cn.depositphotos.com/home.html
-----廣告,請繼續往下閱讀-----