0

1
1

文字

分享

0
1
1

星星之火如何燎原:淺談細胞激素與發燒機轉

活躍星系核_96
・2020/06/24 ・4132字 ・閱讀時間約 8 分鐘 ・SR值 584 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文/王子維│臺北醫學大學醫學系二年級,SLEK 創辦人

面對千奇百怪的病原,我們的身體並不會輕易就範,且總會為我們的生存拚盡全力一戰,其中一個例子,就是發燒

無論如何,你一定有發燒的經驗。你可能也和我一樣,在感受眼底快被灼傷的同時,只能無助地問上天:「我們到底為什麼要發燒? 」

我問天我問天,甘會凍麥創治,擱再發燒,折磨是我甲治。圖/pixabay

「發燒是為了燒死你身體內的病毒喔!」這個說法,你一定聽過,但它其實並不完全正確。究竟發燒是怎麼發生的呢?

在高中我們學過,下視丘體溫調節中樞。下視丘是中樞神經系統的一部份,但我們不會等到病毒或細菌本身「入駐」中樞神經系統的當下才開始發燒——相對地,那只是我們的免疫系統正在奮勇應戰,順便發個支援訊號給我們的神經系統的結果罷了。

-----廣告,請繼續往下閱讀-----

那麼,發燒是怎麼開始的?這關鍵的生理反應都與免疫系統中的「信號彈」──細胞激素有關。

在本篇文章中將說明身體如何「炮製可發動全面警戒的信號彈」的——要完整解讀這句話,你就必須知道細胞激素的定義、我們發燒的機轉、退燒藥的機制,以及這些細胞激素到底怎麼體現「星星之火,可以燎原」的真締。

警告:閱讀此篇將解開存在你心中的萬年疑惑,並讓你再次嘆服人體的奧秘,請小心服用。

免疫系統的「信號彈」:細胞激素

「我們體內的免疫細胞是如何溝通的?」

你的體內,共有約 7.5*109 個嗜中性球在血液中隨時巡邏著 1, 註1 。而你知道,你的免疫系統中絕不只有嗜中性球在工作,還有諸如巨噬細胞、自然殺手細胞等細胞也正在高喊著「はたらく!」註2

-----廣告,請繼續往下閱讀-----

那麼萬一你的手指被劃傷,這些負責免疫功能的細胞如何感知並迅速聚集,以防止在傷口外面的各式病原趁虛而入?就是靠細胞激素

細胞激素在我們體內打出不同的信號彈,免疫反應隨之而起。圖/pikrepo

細胞激素之於免疫系統,就如信號彈之於軍隊,可以快速、大範圍地通知或召集其他免疫細胞,以產生身體此時所需的免疫反應。說到訊號傳遞,你或許會想到動作電位。對於以動作電位傳遞訊息的神經,不同訊號傳遞的重點在於動作電位的頻率改變,而不在其強度或離子種類。

不過細胞激素就不是這麼一回事了——光是著名的大學免疫學課本《 Janeway’s Immunobiology 》的附錄中,就描述了 64 種細胞激素的大小、來源以及其受器、功能等。每種細胞激素就如五顏六色的信號彈,每種信號彈都有其目標、功能以及意義,有時甚至不同的組合還會產生不同的高階功能

雖然細胞激素十分複雜,但對於理解發燒機轉不需要灰心喪志,請放心,我今天只有要提到三種與發燒最相關的關鍵細胞激素:

-----廣告,請繼續往下閱讀-----
  • 介白素-1β(Interleukin-1β):主由巨噬細胞、上皮細胞分泌,以下簡稱 IL-1β
  • 介白素-6(Interleukin-6):由淋巴球、巨噬細胞、上皮細胞分泌,以下簡稱 IL-6
  • 腫瘤壞死因子(Tumor Necrosis Factor-α):由巨噬細胞、自然殺手細胞、T細胞 分泌,以下簡稱 TNF-α

IL-1β、IL-6 及 TNF-α 到底是何方神聖?請見下圖。他們的功能令人眼花撩亂,但最重要的是:他們與發燒脫不了關係。

細胞激素如何引發身體「全面警戒」而發燒?

「我們是如何發燒的?」要了解我們是如何達到「發燒」的狀態,那麼就要先了解我們的身體是如何感知並維持現在的體溫。

首先,皮膚裡、下視丘中的溫度受器「讀取」周遭的溫度後,將訊息傳遞至下視丘前葉。下視丘前葉就像握有考試答案的老師一樣,時刻比對著現在的體溫是否如標準答案所寫的一樣。

如果量測到的體溫比設定值來得低,那麼下視丘後葉則會以提高代謝速度、顫抖、血管收縮等方式使體溫上升;相對地,若下視丘前葉量測到的體溫比設定值高,那麼諸如流汗、血管擴張等等的散熱機制,由下視丘前葉負責活化。

-----廣告,請繼續往下閱讀-----

對,我沒有寫錯,降低體溫的指令一樣由下視丘前葉送達各動器。

至於發燒的起點,就不得不提到前列腺素 E2(Prostaglandin E2)­這種激素了,而前列腺素 E2 是由花生四烯酸(Arachidonic acid)透過環氧合酶(Cyclooxygenase,COX)合成的。環氧合酶又可分成較常被表現的 COX-1 ,和較易被物質(如細胞激素)誘導產生的 COX-2

剛剛提到下視丘前葉是決定是否調整體溫的中樞,而前列腺素 E2 的功能就是提高「標準溫度」,促進身體產熱。我們於第一段提到的三種細胞激素,都屬於「內在性致熱質」(Endogenous pyrogens),因為是由我們身體自己產生的,並且會促進下視丘前葉產生前列腺素 E2 ,讓後葉負責提高體溫。

既然有「內在性致熱質」,那自然有「外源性致熱質」(Exogenous pyrogens)啦,革蘭氏陰性菌獨有的脂多醣(Lipopolysaccharide,LPS)就是其中一種。外源性致熱質可促使內在性致熱質的產生,也可以直接促進環氧合酶的產生,進而製造更多前列腺素 E2 ,殊途同歸,讓你發燒。

-----廣告,請繼續往下閱讀-----

發燒通常對你是有利的,因為大部分的病原適合在較低溫的環境生存,而且後天免疫反應在高溫下會更加強大。在溫度升高的同時, TNF-α 則負責保護你的細胞免受高溫的傷害。

不過,就如免疫系統有可能被過度激發而導致過敏(詳情可見由水過敏淺談過敏機制與症狀(上)),當這些強而有力的信號彈被外源性致熱質過度點燃時,我們的生理機能就會開始產生紊亂。而這,就稱為細胞激素風暴(Cytokine storm)。

除了剛剛提到的革蘭氏陰性菌的脂多醣,近期流行的 2019-nCoV 也屬於能點燃細胞激素風暴的外源性致熱質。在感染 2019 新型冠狀病毒的重症患者血液中,能檢驗出大量促進發炎的細胞激素(例如IL-1β)3;而感染 SARS-CoV 和 MERS-CoV 的患者,血液中也都檢測出了異常大量促進發炎的細胞激素4,5

細胞激素如何解開封印發大招?「炮製」信號彈的起點

「免疫細胞如何決定何時釋放細胞激素呢?」

首先可以想像的是,我們絕對不會允許自己的身體無緣無故生成一堆信號彈(尤其它們還這麼危險),應該要在再三確認需要啟動信號彈後,由上級機關發下「製造信號彈」的命令。在我們的體內,這張命令就稱為 NF-κB

-----廣告,請繼續往下閱讀-----

但是,這張命令理所當然地會被包在一個有彌封的信封袋裡(畢竟沒人希望這麼重要的機密被大家一覽無遺),於是要執行這個命令前,還需先拆除這個彌封,這個「彌封」在我們體內稱為 IκBα

IκBα,封印解除。圖/giphy

在正常狀況下, NF-κB 與 IκBα 這兩個蛋白會鍵結在一起,而當起啟動免疫反應的細胞激素(例如剛剛提到的 TNF-α)與細胞膜上的受器結合,就會讓彌封被打開—— IκBα 改變形狀,使其脫離 NF-κB 。這個變化使身為命令的 NF-κB 可以進入宛如「兵工廠」的細胞核,啟動一段特定基因序列的轉錄轉譯,製造細胞激素。

這些細胞激素,可說是命裡注定捲入一場永無止盡的紛爭——除了製造細胞激素時 NF-κB 與 IκBα 的互相牽制,就連製造出細胞激素後促進發炎與抑制發炎的細胞激素也會相互拮抗,以免任何一方的勢力大到一去不復返。

各種消炎止痛藥,如何「封印」細胞激素

你一定聽過類固醇類藥物可以消炎止痛。其實它們的作用原理很簡單:這些藥物和細胞膜上的受器結合後,會一同進入細胞核,並啟動 IκBα 的生成。隨著「彌封」愈來愈多,被細胞核宣讀的命令數量就會減少,進而抑制細胞激素的產生。

-----廣告,請繼續往下閱讀-----

固醇類藥物之所以會惡名昭彰,是因為長期使用可能會造成的副作用。也因為這類副作用較多,非類固醇消炎藥(Non-Steroidal Anti-Inflammatory Drug,縮寫作 NSAID)的需求也就應運而生。

那麼非類固醇消炎藥的作用機轉,也跟前面的發燒機制有關係。

剛剛提到環氧合酶可分成 COX-1 和 COX-2,都會生成造成發燒的前列腺素 E2 。傳統消炎藥(Traditional Non-Steroidal Anti-Inflammatory Drug,縮寫作 tNSAID)的作用機轉是同時抑制 COX-1和 COX-2 的活性,進而降低前列腺素 E2 的生成。而普拿疼這款非常特別的止痛藥,其有效成分乙醯胺酚(Acetaminophen)也會同時抑制 COX-1 和 COX-2 的活性,但其效用較弱,無法對抗發炎,只能止痛、退燒6,7,8

不過由於 COX-1 同時負責了許多的正常生理機能(例如維持黏膜組織的完整性)9,現今的研究方向偏向可專門抑制 COX-2 的活性的消炎藥,但目前此類藥物仍有許多副作用,例如嚴重的心血管疾病10

雖然讀的很累,但別忘了你的細胞們可是非常努力工作呢。圖/pikrepo

讀到這裡,你若感到「人生很難」,那就對了——我的意思是人活著就是件很不容易的事,而你的免疫系統能在大部分的狀況完成其被賦予的神聖使命,都要拜這些對你來說可能無法完全理解的細胞激素們所賜。

事實上,你的身體時刻都在執行著比這還要複雜萬倍的各種生理機能,使用著如細胞激素、荷爾蒙、神經遞質等的各種訊息傳遞物,密切地和別處的自己溝通。所以,在為發燒感到人生很難時,不妨思考一下自己的身體正在為了你進行怎樣的戰爭,對你的細胞們說聲「頑張って」註三

註釋

  1. 本數據計算方式為:體中 65 公斤成年人約有 5 公升血液,根據參考資料1 ,平均嗜中性球密度為 1.5 × 109/L。此數值僅供參考,其實際數量隨血量、性別等因素會有所變化。
  2. 《はたらく細胞》,中譯《工作細胞》,日本漫畫家清水茜所著的日本漫畫作品,後被改編成動漫。主要講述經擬人化後人體內各種細胞於人體內的日常工作。
  3. 頑張って,中文諧音「甘吧爹」,意近「加油吧!」。

參考資料

  1. Haddy, T. B., Rana, S. R., & Castro, O. (1999). Benign ethnic neutropenia: what is a normal absolute neutrophil count?. Journal of Laboratory and Clinical Medicine, 133(1), 15-22.
  2. Smyth, E. M., Grosser, T., Wang, M., Yu, Y., & FitzGerald, G. A. (2009). Prostanoids in health and disease. Journal of lipid research, 50(Supplement), S423-S428.
  3. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet.
  4. Wong, C. K., Lam, C. W. K., Wu, A. K. L., Ip, W. K., Lee, N. L. S., Chan, I. H. S., … & Sung, J. J. Y. (2004). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical & Experimental Immunology, 136(1), 95-103.
  5. Mahallawi, W. H., Khabour, O. F., Zhang, Q., Makhdoum, H. M., & Suliman, B. A. (2018). MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 104, 8-13.
  6. Graham, G. G., Davies, M. J., Day, R. O., Mohamudally, A., & Scott, K. F. (2013). The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology, 21(3), 201-232.
  7. Boutaud, O., Aronoff, D. M., Richardson, J. H., Marnett, L. J., & Oates, J. A. (2002). Determinants of the cellular specificity of acetaminophen as an inhibitor of prostaglandin H2 synthases. Proceedings of the National Academy of sciences, 99(10), 7130-7135.
  8. Aronoff, D. M., Oates, J. A., & Boutaud, O. (2006). New insights into the mechanism of action of acetaminophen: its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H 2 synthases.
  9. Brzozowski, T., Konturek, P. C., Konturek, S. J., Sliwowski, Z., Pajdo, R., Drozdowicz, D., … & Hahn, E. G. (2001). Classic NSAID and selective cyclooxygenase (COX)‐1 and COX‐2 inhibitors in healing of chronic gastric ulcers. Microscopy research and technique, 53(5), 343-353.
  10. Grosser, T. (2006). The pharmacology of selective inhibition of COX-2. Thrombosis and haemostasis, 96(10), 393-400.

本文轉載自 SLEK,原文標題〈星星之火,可以燎原——淺談發燒機轉

文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
神經痛、視力異常,症狀千變萬化——認識多發性硬化症
careonline_96
・2023/06/13 ・2250字 ・閱讀時間約 4 分鐘

「可能睡一覺醒來,就突然變得視力模糊、肢體無力、手腳發麻,讓人沒辦法正常上班、上課,生活大受影響。你可以想像,多發性硬化症會對患者造成多麼大的心理壓力!」林口長庚紀念醫院神經內科張國軒醫師指出,「幸好現在已有多種藥物可以使用,能夠減少復發的機會,將病情控制得很穩定。只要和醫師好好配合,便能維持良好的生活品質!」

多發性硬化症(Multiple Sclerosis,簡稱 MS)是種自體免疫疾病,因為患者的免疫系統失調,導致中樞神經系統,包括腦部、脊髓多處出現發炎反應,而造成神經系統受損。張國軒醫師指出,多發性硬化症好發在年輕族群,平均發病年齡約 29 歲。女性和男性的比例大概是 2 至 3 比 1 左右。這個族群具有相當高的生產力,對社會非常重要。

目前並沒有特定基因突變被認為會造成多發性硬化症,張國軒醫師說,雖然在父母罹患多發性硬化症時,小孩得到多發性硬化症的風險會稍微增加,不過仍然屬於罕見疾病,所以具有多發性硬化症家族史的民眾,其實不用過度擔心遺傳的問題。

多發性硬化症的症狀詭譎多變

多發性硬化症的症狀與遭到攻擊的部位有關,每一次發作時遭到攻擊的部位不同,產生的症狀也不同。張國軒醫師說,常見症狀包括眩暈、四肢無力、手腳發麻、感覺喪失、失去平衡、複視、視力異常、口齒不清、三叉神經痛等,症狀千變萬化。

-----廣告,請繼續往下閱讀-----

臨床上可依照病程,將多發性硬化症分成幾種類型,包括復發緩解型 RRMS、續發進展型 SPMS、原發進展型 PPMS。張國軒醫師說,七成至八成多發性硬化症患者屬於「復發緩解型 RRMS」,在急性發作後,症狀可能緩解,但會經歷一次又一次的復發,每次復發後會留存一些後遺症,然後維持病況穩定直到下一次復發。

部分復發緩解型 RRMS 患者在持續一段時間後,可能出現漸進式失能障礙的惡化,這類稱為「續發進展型 SPMS」。張國軒醫師說,在復發緩解型發作經過十年之後,大概有四分之一的患者會演變成續發進展型。

另外有極少數病人,在疾病發作後就持續惡化,稱做「原發進展型 PPMS」。

積極治療多發性硬化症,維持生活品質

多發性硬化症的治療可以分成兩方面,急性發作的治療與改變病程的治療。

-----廣告,請繼續往下閱讀-----

前者是在急性發作的時候,使用大量類固醇,或其他比較強效的免疫療法,例如血漿置換術,快速控制腦部或脊髓裡發炎的狀況,讓病人能夠快速恢復,且盡量減少神經的破壞,以避免神經學後遺症持續累積。

改變病程的治療是在兩次發作之間,使用一些特別的藥物,調節病人的免疫系統以避免復發,希望能夠減少發作的次數。張國軒醫師說,因為每次發作都會對腦部、脊隨造成傷害,隨著受傷的區域越來越大,留下來的後遺症就會越來越多,而漸漸導致殘疾、失能。若能減少發作次數,可以有效延緩病程惡化,讓病人能夠維持較好的生活品質。

目前已有多種藥物可用於改變病程的治療,包括干擾素、標靶藥物、免疫調節劑等,每種藥物都有不同的機轉,療效也不一樣。張國軒醫師說,臨床上會根據疾病的狀況與健保署的規定,在跟患者討論之後,向健保署申請不同的藥物。

然而過往在治療兒童或青少年多發性症患者時,因缺乏完善臨藥物試驗,使該群患者能夠使用的藥物種類較少,現已有方便性高的口服藥物可供 13~18 歲之兒童或青少年使用。只要和醫師密切配合,按時回診,積極接受治療,便能減少復發頻率、延緩病程惡化。

-----廣告,請繼續往下閱讀-----

「蠻多病人在使用藥物後,幾乎沒有任何臨床復發,讓疾病能夠穩定下來。」張國軒醫師說,「降低年復發率,是治療多發性硬化症非常重要的指標。」

由於每次復發都很突然,可能睡一覺醒來,視力就出問題、手腳便沒有力氣,而影響工作、學業、生活,讓患者非常擔憂,而承受極大的壓力。張國軒醫師說,現在已經有很好的藥物,大多數病人都可以控制得很好,能夠保持生活品質、工作能力。我們的患者中有醫師、護理師、工程師、律師,已經穩定控制十幾年,狀況相當穩定。

貼心小提醒

日常生活中,患者要維持適量運動,對肌力、心肺功能、精神狀況都有幫助。張國軒醫師叮嚀,運動不可太激烈,要避免體溫升高,也要避免跌倒受傷。

飲食要攝取均衡營養,少吃高脂、高糖的食物,且不要任意進補。泡溫泉、泡熱水澡可能導致疾病復發、惡化,請盡量避免。

-----廣告,請繼續往下閱讀-----

積極接受治療,減少復發機率,便能避免神經系統受損,有效延緩惡化,維持良好的生活品質!

2

12
3

文字

分享

2
12
3
科學實證「心情不佳真的會造成消化、皮膚發炎、心血管健康問題」,但為什麼?
PanSci_96
・2023/05/28 ・3156字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你一定聽過安慰劑效應,但到底為什麼會有呢?這個謎團難倒了好幾個世代的科學家,超過百年依舊未解,直到最近,終於揭開了一部分謎底。

生醫圈非常振奮,認為一旦破解祕密,就能知道壓力為什麼會讓人生病!更棒的是,還有機會打造出嶄新療法,治療困擾無數人的疾病和癌症!?難道可以靠「轉念」來治病嗎?

安慰劑效應,指的是患者即使吃到或注射的不是真正的藥,對於外來病原體或體內病變的抵抗力竟然也會變好,讓身體好轉。有很長一段時間,科學家對這個現象背後的原理一無所知。

有兩個問題和解開安慰劑效應之謎有直接關係,乍聽之下都是非常不起眼的問題,可是只要多想兩三秒鐘,就會發現居然回答不出來。

-----廣告,請繼續往下閱讀-----

小感冒、腸躁症、安慰劑,藏著同一個答案

你一定有過這樣的經驗:感冒以後沒食慾、提不起勁、只想攤平在沙發上,為什麼會這樣?不就是因為病原體攻進身體裡才造成我們「覺得」不舒服嗎?但是再仔細想想,細菌或病毒根本沒有直接攻擊到腦部,那為什麼會冒出這些討厭的感覺?

再來,不少人一緊張就容易拉肚子,或是肚子痛、脹氣,也有人相反,一緊張就便祕,這些都是大腸激躁症(irritable bowel syndrome),簡稱腸躁症的常見症狀。但是,為什麼發生在大腦裡面的情緒會直接刺激遠在腹腔裡的腸子呢?

針對第一個問題,2022 年 6 月《Nature》一項研究發現,只要刺激腦部下視丘的特定區域,即使體內沒有病菌,小鼠也會發燒和食慾不振。換句話說,感染會引發免疫細胞攻擊病原體,導致體內發炎,腦部不必碰觸到病原體,只要透過血液等途徑感知到發炎的刺激,就會出現不舒服症狀。

感冒時沒食慾、提不起勁、只想攤平在沙發上。圖/Envato Elements

至於第二個,發表在 2021 年 11 月《Cell》期刊的研究指出,小鼠如果腸道曾經發炎,刺激腦島皮質(insular cortex)就可以使發炎狀態重現;也就是說,大腦會保有免疫系統活動的記憶,以後只要活化同一群神經細胞,就能在腸道重啟一樣的免疫反應。

-----廣告,請繼續往下閱讀-----

2023 年 2 月底《Nature》一篇評論文章說,科學家懷疑這種神經機制是身體為了抵抗可能發生的威脅,事先做好準備,但也會聰明反被聰明誤,在沒有原始觸發因素的時候自行啟動,例如壓力使腸躁症的症狀惡化,說不定就屬於這類情況。

這些發現透露了什麼線索呢?

病得輕重、多快復原,是腦在掌控

安慰劑效應和前面這兩個問題都指向一個方向,三個現象裡不斷出沒的——免疫系統。

科學家發現,目前所有的證據都指出,大腦和遍佈全身的神經,實際上是用一種還不太清楚的方式和免疫系統綁在一起。

-----廣告,請繼續往下閱讀-----

也可以換一種說法:喜怒哀樂的情緒及正負面心態究竟是如何和身體連結,已經發現至少有一條路徑是透過神經系統和免疫細胞的緊密互動。

2022 年 5 月底,《Nature》刊登一篇報告,介紹了美國哈佛大學醫學院的研究團隊利用「光遺傳學」和其他技術,畫出小鼠腦部和全身的白血球如何「互動」的地圖,這讓我們有機會進一步揣測人體裡發生的事。

所謂的光遺傳學,可以簡單想像成把設計好的蛋白質基因植入想要觀察的神經元細胞裡,這種蛋白質一旦照到特定波長的光就會啟動,刺激神經細胞跟著活化,這樣就可以非常精細地一次只操作單一種神經細胞,畫出解析度相當高的大腦圖譜。

身心透過神經系統和免疫細胞緊密互動。圖/Envato Elements

團隊很驚訝地發現,腦部透過兩種方式指揮免疫系統,一種是大腦控制身體動作的運動迴路(motor circuits)發出訊號刺激骨骼肌,釋出能吸引嗜中性白血球這種免疫細胞的細胞因子,誘導原本在骨髓裡的嗜中性白血球快速移動到感染或受傷的部位。另一個則是腦部的下視丘腦室旁核(paraventricular hypothalamus)會分泌特定的化學分子,命令腎上腺分泌激素,快速引導單核球和淋巴球從淋巴結、脾臟、血管等位置移動到骨髓。

-----廣告,請繼續往下閱讀-----

無獨有偶,2022 年 4 月底,德國和其他歐洲科學家組成的跨國團隊也在《Nature》上發表研究結果,直接表明動脈發生粥狀硬化的過程可能部分受腦部控制;也就是說,他們發現了神經、免疫和血液循環這三個系統是怎麼樣融合在一起的。

動脈粥狀硬化是血液裡的膽固醇堆積在血管內側,形成斑塊,在局部區域會有慢性發炎,血管也會愈來愈窄。斑塊一旦剝落就變成血栓,是造成中風、心絞痛和心肌梗塞的關鍵因素,目前還沒有醫療技術可以逆轉病人的動脈硬化。

研究團隊發現,小鼠動脈血管壁外層的神經纖維會傳訊號到腦部,也會接收腦部發來的訊號,免疫細胞會大量聚集在神經末梢周圍,人體也有類似的現象。他們以小鼠做試驗,用化學方法或手術切斷神經聯繫,免疫細胞迅速就地解散,血管斑塊的堆積速度也跟著減慢。

懂得向大腦求助

大腦能指揮身體抵抗病痛,這合理的解釋了你我大概都有過的切身之痛,那就是當滿腦子塞滿消極的情緒如壓力、焦慮的時候,特別容易生病,例如感冒、腸胃炎、皮膚癢等等。

-----廣告,請繼續往下閱讀-----

更有趣的是,反過來說,如果創造出積極的情緒,對於抵禦疾病是不是也有用呢?答案可能也是肯定的。

積極的情緒有利於對抗疾病。圖/Envato Elements

過去就有報告指出,加入支持團體和接受一些心理療法的乳癌患者,可以延長存活時間,在其他幾種癌症像是肺癌、惡性黑色素瘤、胃腸道癌症研究上也有提出類似的現象。

因此,現在世界各地有多個研究團隊正在鑽研如何善用「身」和「心」的力量,結合起來一起治好病痛。

例如癌症腫瘤會以釋放神經訊號、分泌化學物質等方式,造成患者的新陳代謝機制和睡眠大亂,美國紐約冷泉港實驗室的團隊發現刺激罹癌小鼠下視丘的特定區塊,可以把代謝和睡眠週期「喬」回來,有助於幫助癌症病人的復原過程變舒服。

-----廣告,請繼續往下閱讀-----

而以色列理工學院團隊則把焦點放在位於中腦的腹側被蓋區(Ventral Tegmental Area, VTA)。VTA 是腦部的獎勵中心,含有分泌多巴胺的細胞,和期望、動機、喜好等情緒有關,也就是讓我們會感到快樂、振奮而去做出實際行動的腦部區域。該團隊發現,刺激 VTA 可以驅動免疫系統,使小鼠肺部和皮膚的腫瘤縮小,他們現在要把成果從小鼠用到人身上。

也有一個團隊是從迷走神經(vagus nerve)下手。迷走神經是副交感神經系統的主要成員,從腦一路向下走過心、肺、胃,一直延伸到大腸,已知和調節免疫反應有關。有一家新創企業 SetPoint Medical 運用他們的技術,研發一種大小像膠囊的神經刺激裝置,植入脖子的迷走神經旁邊,可以無線充電、還可以用 iPad 的程式調整刺激強度,目標是治療類風濕性關節炎、克隆氏症(Crohn’s disease)等自體免疫疾病。

「身心一體」除了個人感受,也有生理學上的意義。圖/Envato Elements

「身心一體」,用比較感性的話來說就是:心靈受苦,身體也受苦。原來,這件事不只是主觀的個人感受,其實它有生理學上的道理。

或許,更重要的是,讓明明覺得不舒服卻一直檢查不出病因的人知道,自己的感受並非無病呻吟,也不是想逃避壓力或做錯事情,而是一體的身心真的在發出警報,或許這就是最大的安慰了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2