0

0
2

文字

分享

0
0
2

誰是COVID-19的重症高風險群?部分需注意干擾素缺陷

寒波_96
・2020/10/17 ・3995字 ・閱讀時間約 8 分鐘 ・SR值 542 ・八年級

今年 1 月起震撼世界的 COVID-19(也稱武漢肺炎、新冠肺炎),一開始在武漢時看似來勢洶洶,非常兇狠。不過現在已經知道,這種疾病對大多數感染者的殺傷力都不是太強,麻煩的是傳播能力強大;假如防疫措施不夠周密,能在不長的時間內感染大量人口,即使重症者的比例不高(即占總人口的比例更低),也將累積不少人數。

為什麼不同人感染病原體 SARS-CoV-2(應該稱為 SARS二世冠狀病毒,但是常被翻譯為新冠病毒)後症狀差異如此明顯?高齡、肥胖、心血管疾病的人重症機率明顯較高,不過多數老人最終仍能康復,卻也有些年輕人相當嚴重。

SARS二世顯然有多種致病方式。最近有兩項研究指出,第一型干擾素(type I interferon)的缺失,也許影響超過 10% 的重症患者。

第一型干擾素。圖/取自 wiki

這兩項研究的領導人都是洛克斐勒大學的 Jean-Laurent Casanova,他是研究遺傳變異與疾病關係的行家 。他主導的其中一篇論文報告:約 3.5% 重症者由於遺傳基因缺失,導致第一型干擾素生產不足。另一篇論文的發現更加驚人:高達 10% 重症者存在自體免疫抗體,會攻擊自己的干擾素。1

-----廣告,請繼續往下閱讀-----

干擾素生產線有遺傳缺陷

第一型干擾素有很多款,是一群與免疫相關的細胞激素。有些人出於遺傳因素,製造干擾素先天就不如人。過往研究發現有些製造干擾素有瑕疵的人,感染流感等病毒後,發展為重症的機率也高。SARS二世病毒是否也是如此呢?

這項研究調查 659 位肺炎重症者,其中 13.9% 死亡;他們年紀介於 1 個月到 99 歲,74.5% 是男生,25.5% 女生。製造第一型干擾素的基因是已知的,因此研究者查看相關基因是否有所缺損。其中 113 人在 12 處相關基因位置上,至少有一處看起來可能有問題。2

659 位感染者的年齡、性別、症狀資訊。圖/取自 ref 2

進一步實驗確認,這批可疑目標中至少有 8 個基因,24 處位置的遺傳變異,會讓基因無法正常作用。也就是說 659 位重症者中至少有 23 人,由於遺傳缺失而影響第一型干擾素製造,比例為 3.5%

這 23 人的年齡介於 17 到 77 歲,各種祖源都有,因此第一型干擾素生產不足的問題,似乎不限於特定族群,而是全人類共通。遺傳與武漢肺炎症狀的關係,這是因果關係比較明確的第一個研究。

-----廣告,請繼續往下閱讀-----
第一型干擾素生產線與作用上,部分可能有關的基因。圖/取自 ref 2

此一研究以外,最近有其他人以全基因組關聯性分析(GWAS),發現第 3 號染色體上有一段序列,和症狀嚴重的機率有關。而且奇妙的是,那段 DNA 可以追溯到數萬年前智人與尼安德塔人的混血。問題是儘管在統計上見到關聯性,那段 DNA 區域為什麼造成影響,仍毫無頭緒。3

扯後腿的自體免疫抗體

缺乏第一型干擾素,免疫作用受到影響十分合理,而 Jean-Laurent Casanova 主導的另一項研究,還發現干擾素被影響的另一種方式。

抗體是人體接觸入侵者以後,製造出來針對入侵者的武器。有時候抗體卻會攻擊自己的細胞、組織,把自己人當外人打,導致所謂的「自體免疫疾病」。已經知道極少數人的血液中,存在某些 IgG 中和抗體,會攻擊自己的第一型干擾素。

這項研究調查 987 位肺炎重症患者,和 663 位輕微到無症狀的感染者,病情嚴重時的血液樣本,以及疫情爆發前 1227 位健康人士的血液樣本。健康的 1227 人中,4 人具備會攻擊第一型干擾素的抗體,比例為 0.33%;可見沒有感染病毒的時候,已經有很低比例的人具備這類抗體4

-----廣告,請繼續往下閱讀-----
抗體娃娃。圖/取自 giantmicrobes

沒大事的都沒有,出大事超過10%有

第一型干擾素有很多款,只要偵測到會攻擊任何一款干擾素的抗體就算數。如此一來,987 位重症者中高達 135 人擁有一種以上抗體,比例為 13.7%;其中至少 101 人的抗體確實能抑制第一型干擾素作用,比例為 10.1%

有些專家懷疑這些針對干擾素的抗體,是因為感染病毒才出現。然而,免疫反應刺激 IgG 抗體生產至少要經過好幾天,從患者血液中偵測到抗體的時間推算,他們應該本來就具備這些抗體,和感染病毒無關。

其他實驗則證實這群人的抗體,不論在體外實驗或真正的人體內,確實有抑制干擾素的效果。最驚人的是 663 位輕微到無症狀者,0 人擁有抗體

歸納如下:

-----廣告,請繼續往下閱讀-----

本來就有極低比例的人,擁有會攻擊第一型干擾素的抗體;感染 SARS二世之後沒大事的都沒有抗體,出大事的超過 10% 有抗體。

老人、男生,更危險!

為什麼有些人具備攻擊第一型干擾素的抗體,原因並不清楚;不過觀察指出,和性別、年齡非常有關係。

性別、症狀,和有無扯後腿自體免疫抗體的統計。圖/取自 ref 4

沒有扯後腿抗體的重症者中,男生比例為 75%;有抗體的 101 人中則高達 95 人,比例達到 94%。擁有抗體的人年齡介於 25 到 87 歲,所以從小到老都可能有抗體;但是年紀大的人比例較高,超過 65 歲占 49.5%。

不同人感染 SARS二世的症狀差異很大,此研究提供一點合理的解釋,為什麼老人、男生重症的比例,比年輕人、女生更高。因為擁有攻打第一型干擾素抗體的人,老人、男生的比例,比年輕人、女生更高。不過他們平時沒有差異,都一樣健康,要感染病毒後才有影響。

年齡、症狀,和有無扯後腿自體免疫抗體的統計。圖/取自 ref 4

有些專家感到驚訝,因為女生比較容易出現自體免疫疾病,這兒卻是例外。形成這類抗體的原因,或許和 X染色體的性聯遺傳有關。女生有 2個 X染色體,每個 X染色體都有一半機率被關閉;男生只有 1 個X染色體,只要分配到一定會表現。不過目前這只是猜測,仍然缺乏可靠證據。

-----廣告,請繼續往下閱讀-----

第一型干擾素影響超過10%重症

由 Jean-Laurent Casanova 主導的 2 項研究,都發現第一型干擾素缺失,會影響感染 SARS二世病毒後重症的機率。

一項研究發現 3.5% 重症者由於遺傳缺陷,會影響第一型干擾素的製造;另一項研究意外得知 10% 重症者,儘管製造第一型干擾素沒問題,卻擁有扯後腿的抗體。

這兩項研究各自找到第一型干擾素有問題的重症患者們,彼此條件沒有重複,也就是有扯後腿抗體的人沒有遺傳缺陷,遺傳缺陷者沒有抗體。研究的取樣母體不一,不適合直接相加,不過仍然能推論這是影響症狀的一大因素,超過 10% 重症與第一型干擾素有關。考量到重症者總比例很低,這方面影響不可小覷。

Jean-Laurent Casanova 與「一場大瘟疫(Un Grand Fléau)」畫像。圖/取自 洛克斐勒大學

第一型干擾素與 SARS二世病毒的關係值得繼續關注。根據上述發現,衍生出一些有應用價值的推論:

第一,第一型干擾素有缺陷的人,平時多半沒有健康問題,面臨 SARS二世病毒挑戰時才會顯現

-----廣告,請繼續往下閱讀-----

第二,沒有會攻打第一型干擾素抗體的人,感染後也可能發展為重症,但是有抗體的絕對是重症的超級高風險群,必需嚴加注意。

第三,康復者血液中擁有對抗 SARS二世病毒的抗體,抽血轉移給另一位病患也許有治療效果。但是假如康復者血液中也有攻擊第一型干擾素的抗體,輸血可能會很危險,必需排除。

第四,干擾素在感染初期是對抗 SARS二世病毒的重要武器,可是有抗體的人,給予第一型干擾素治療很可能無效。不過第一型以外,其他第二型、第三型干擾素也許仍然有用。

第五,由於遺傳缺陷而無法生產第一型干擾素的患者,給予第一型干擾素或許有效

延伸閱讀

參考資料

  1. Hidden immune weakness found in 14% of gravely ill COVID-19 patients
  2. Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., … & Rosain, J. (2020). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science.
  3. Zeberg, H., & Paabo, S. (2020). The major genetic risk factor for severe COVID-19 is inherited from Neandertals. Nature.
  4. Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H. H., Zhang, Y., … & Manry, J. (2020). Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1152 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
CAR-T 之外的新選擇,雙特異性抗體助攻淋巴瘤治療
careonline_96
・2025/09/22 ・2917字 ・閱讀時間約 6 分鐘

「曾有位 65 歲的瀰漫性大型B細胞淋巴瘤女性患者,轉院來時影像一照,全身幾乎沒有一個骨髓是正常的,包括手臂、腿部、脊椎甚至顱骨,全部充斥著淋巴瘤,病情十分嚴重!」臺中榮民總醫院腫瘤醫學中心主任李冠德醫師表示,「因她已接受過三線治療,對化療反應也不佳,無法進行骨髓移植,討論後決定自費試看看最新的雙特異性抗體藥物,結果才做完3個療程,在正子掃描下居然看到全身的癌細胞都消失了!」

談到這個讓人印象深刻的案例,李冠德醫師說為求保險,當時還進行了骨髓穿刺,同樣也證實了骨髓內的淋巴瘤都被清除乾淨,讓患者與家屬都喜出望外。「為了最大幅度降低復發可能,仍建議她把完整的 12 個療程都做完,目前她正在穩定接受治療中。因為當時健保沒有給付,12 個療程要花掉數百萬,如今健保終於宣布雙特異性抗體第三線的給付,對復發病友來說是很令人振奮的好消息。」

瀰漫性大型 B 細胞淋巴瘤惡性度高 復發無法接受骨髓移植者占多數

瀰漫性大型 B 細胞淋巴瘤(Diffuse Large B-Cell Lymphoma,DLBCL)是一種生長非常快速、侵襲性極高的非何杰金氏淋巴瘤。李冠德醫師解釋,瀰漫性大型B細胞淋巴瘤是由體內的 B 細胞發生變異,轉化成癌細胞而引起,也可能出現在淋巴結以外的部位,包括腸胃道、皮膚、骨骼、甚至中樞神經系統等。

瀰漫性大型 B 細胞淋巴瘤的進展相當迅速,常常在數週內急遽惡化,因此必須及早診斷並盡快開始治療。李冠德醫師說,經過第一線治療後,約有六成的病人可以達到完全緩解,進而痊癒;然而仍有約三到四成的病人會復發,而且復發通常發生在完成治療後的兩年內。

-----廣告,請繼續往下閱讀-----

復發後,傳統的標準治療為採高劑量化學治療,再接續造血幹細胞移植。然而,這種治療方式只適用於較年輕且身體狀況良好的患者。高齡、體力不佳、或對化療反應不敏感的病人,根本沒有接受骨髓移植的機會,平均存活期僅剩約六個月,「過往這些病人幾乎可說是走投無路,非常辛苦」李冠德醫師形容。

CAR-T 後最受注目之治療—雙特異性抗體:活化免疫精準攻擊淋巴癌

「近年來瀰漫性大型 B 細胞淋巴瘤的病人相較就幸運多了,治療方式大幅進步,復發後的用藥選擇陸續推陳出新,預後也大大改善!」李冠德醫師分析,對於復發或難治型病患,目前已有 CAR-T 細胞療法、抗體藥物複合體 ADC、雙特異性抗體(Bispecific Antibody,BsAb)等,都可幫助患者大幅提高達成完全緩解的機會。

「其中,雙特異性抗體是目前繼 CAR-T 後最受注目的免疫治療之一,也被醫界普遍看好有潛力成為瀰漫性大型B細胞淋巴瘤復發後的標準治療。」李冠德醫師解釋,雙特異性抗體顧名思義,是一種能夠同時識別兩種抗原的突破性藥物設計,一端可辨識免疫殺手 T 細胞表面的 CD3 受體,另一端可辨識淋巴瘤表面的 CD20 受體,「就好像右手拉著 T 細胞,左手拉著癌細胞,把兩者拉近,使 T 細胞活化後,對癌細胞展開精準攻擊。目前雙特異性抗體也有不同設計,例如透過2:1的抗體結構,將辨識癌細胞的一端設計成兩個結合點,有望可以增加與淋巴瘤的結合能力。」

在臨床試驗中,也可以看到雙特異性抗體用於復發、難治型瀰漫性大型 B 細胞淋巴瘤,能夠快速、長期顯著提升緩解率的數據。「雙特異性抗體用於第三線治療時,約有四成的病人可以達成完全緩解(Complete Remission,CR),且有六、七成能維持完全緩解超過兩年以上,讓治癒在後線也變得可能。」李冠德醫師說,若病人在兩年內未復發,未來復發的機率將大幅降低,顯示雙特異性抗體確實可替後線病患爭取更佳的治癒機會。

-----廣告,請繼續往下閱讀-----

雙特異性抗體納給付:健保德政及時雨 補足 CAR-T 治療可近性

我國健保署已於民國 114 年 8 月起,將雙特異性抗體藥物納入瀰漫性大型 B 細胞淋巴瘤第三線健保給付。

李冠德醫師分析,「雙特異性抗體獲得健保第三線給付,讓復發治療選項更完整,給不同病況的病人,更多彈性選擇的自由。從預後數據來看,雙特異性抗體與CAR-T細胞治療其實差不多,但因為 CAR-T 細胞治療的門檻較高,目前全台灣只有 8 間醫院可執行,也必須要送患者的免疫細胞到國外,進行基因改造後再送回,需耗時將近兩個月;相較雙特異性抗體在多數醫院都可以執行,且只要通過健保,可立即給藥,對於無法等待或無法跨區治療的病人來說,本次雙特異性抗體獲得給付可說是健保及時雨。」

雙特異性抗體第三線健保給付條件包括,需具有 CD20 抗原陽性、不可合併有中樞神經系統侵犯、不可有心臟衰竭等嚴重器官功能異常等,最多以 12 個療程為申請上限。

「若淋巴瘤對雙特異性抗體有反應,通常效果都會蠻快出現,試驗中可以觀察到,有達到完全緩解者,平均是打兩個療程,也就是 42 天就能達成。」李冠德醫師說,「雖然療效反應快速,但是仍會建議患者應依仿單完成全部療程,以降低復發風險。目前健保最多給付 12 個療程,也符合上述 2:1 結構的雙特異性抗體藥物的療程設計,可以讓患者最無後顧經濟之憂地接受完整治療。」

-----廣告,請繼續往下閱讀-----

雙特異性抗體有望推進二線治療 漸進式給藥降低併發症 維持高耐受

雙特異性抗體除被國際癌症治療權威指引 NCCN,列為第三線治療的偏好選擇建議外,推進到第二線治療的臨床試驗,也展現出亮眼的結果。李冠德醫師說,最新發表的大型臨床試驗結果顯示,針對無法接受移植者,比起傳統單用化學治療,若在第二線就合併雙特異性抗體與化療,可顯著提升整體存活期,降低 38% 死亡風險,顯示雙特異性抗體往前線推進使用之極大潛力。

李冠德醫師最後也提醒,身體在剛開始適應免疫治療時,出現細胞激素風暴症候群(Cytokine Release Syndrome, CRS)的機率較高,故相較於 CAR-T 的一次性療程,雙特異性抗體因為是分多次給藥,所以在給藥劑量上也設計成逐步調高劑量,透過漸進式加大劑量的方式,盡可能減少併發症的發生機率,但還是會建議前一、兩個療程可住院觀察,待適應後,通常病人都可維持高耐受度,此時就可採門診給藥。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。