Loading [MathJax]/extensions/tex2jax.js

0

2
0

文字

分享

0
2
0

想要「解決」身上的脂肪,光是多運動還不夠,飲食也很重要!——《走路的科學》

八旗文化_96
・2020/03/02 ・2898字 ・閱讀時間約 6 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/謝恩・歐馬洛(Shane O’mara);譯者/謝雯伃

編按:很多人總以為增加運動量就能消耗多餘的能量,有效減重,但其實我們的身體並沒有這麼「聽話」。身體會有效地運用每一分能量,不會讓這些能量白白消耗掉,也因此減重不能單靠運動,控制能量攝取的多寡也很重要。

狩獵採集者(像是提斯曼人)會四處行走。他們為了採集食物及水源,經常每天走上很遠的距離,同時手上還拿著武器、工具以及小孩。

對於仍保有狩獵採集生活方式的人類進行試驗,我們可以研究我們的體重以及活動程度之間的演化關係,而這些都與走路有關。

世上現存的狩獵採集群體相對很少,但透過檢驗當代狩獵採集者的生活,能為我們開啟一扇窗,一窺這種「古早」活動型態對我們而言有什麼意義。現在我們當中少有人走上很長一段路去追蹤或獵殺食物;我們也不會每天花上好幾小時挖樹根或塊根,或是尋找飲用水。

坦尚尼亞北部的哈札族。圖/wikimedia

當代一個採集狩獵群體是坦尚尼亞北部的哈札族(Hadza),他們已被演化生物學家研究多年,探究這個群體的走路活動和其他運動形式與體重之間的關係,並與從北美以及歐洲群體中選出的參與者做比較。

來自採集狩獵者的數據,讓我們得以調查近幾十年來發生的改變——我們的飲食改變了,還是活動程度改變了?抑或兩者全都改變?

哈札人某種程度上還保持著傳統採集狩獵者的生活。男性會以矛以及弓箭對大型獵物進行耐力狩獵,女性則會採集水果、野莓、塊莖以及蜂蜜。

-----廣告,請繼續往下閱讀-----
哈札族男性會以矛以及弓箭對大型獵物進行耐力狩獵。圖/wikimedia

參與研究的 30 名哈札族人全都佩戴了 GPS 追蹤系統,他們的身高、體重、每日攝取以及消耗的卡路里全都被記錄下來。有些發現並不令人驚訝,比如他們的體脂率只有西方參與者的大約 60%,哈札人沒有過胖的。

透過追蹤每日能量消耗量,並將參與者的體重、體脂納入考慮之後,研究者發現哈札人與西方參與者的總能量消耗量相等。將男性、女性分開檢驗也得到一樣的結果。

這個發現與預期相反;我們原本預期哈札人會因為日常行程,平均來說比西方參與者消耗更多能量—哈札人男性每日平均走 11 公里,女性平均每天走 6 公里。

消耗一樣的能量,我們會讓運動量達到最大化

在這個世界上移動,無論是透過走路、騎單車、跑步、游泳或是任何一種運動形式都會消耗能量。身體會依其所需,攝取(透過飲食與消化)、儲存以及燃燒能量。

無論是透過哪一種運動形式移動,都會消耗能量。圖/GIPHY

人類很懶惰,因此會將所有固定活動的能量消耗降至最低。人類的雙足行走一般來說會自動將能量消耗最小化,同時又將步行範圍最大化。從實驗角度來看,這就像是在固定能量消耗下,我們會專注於將運動量最大化的步行速度;但我們該如何證明真相就是如此呢?

-----廣告,請繼續往下閱讀-----

一個方式是為人類裝上一組外接的腿——一種設計來調整步行難易度的機械裝置。我們對這組外骨骼所做的不同設定,可用來試驗人類是否會以特定步態因應,以減少在行走中消耗的能量。

  • 如果外骨骼幫助行走,我們很快就會採取一個不需特別努力行走的步態,而更多讓機器來運作。
  • 反之,若外骨骼阻礙我們行走,我們就可能會嘗試用更多力氣行走,但會選擇一個可以繼續走路又花上最少力氣的模式。

神經工程學家潔西卡.賽林格(Jessica Selinger)與她在史丹福大學的同事設計了這樣的實驗。他們為人類參與者配上具關節且可舉高腿部的外骨骼,讓參與者系統性地挑戰人類步行最有效率的方式。受試者也戴上氧氣面罩,用以測量他們的最大攝氧量(VO2 Max)。

這些外骨骼設計會對腿部造成不同程度的阻力,而阻力大小取決於參與者的步行頻率。參與者在跑步機上步行,跑步機的速度亦可調整。參與者很快就因應這些改變做了調整,一般來說是幾分鐘內就調整好;一旦調整到新的最佳步態,便能很快調回之前最優化能量燃燒的狀態(這是透過 VO2 Max 測量到的)。

透過這點可以知道,人類會迅速採用更經濟的步態,以實踐最佳步行策略,如此節省最多的能量消耗。

這些適應相當迅速,遠比在血氧濃度上預測到的變化更快,也比其他諸如肌肉改變等內部感知來得快。獨立來看,後面這些改變都很慢才出現;相反地,人類會主動透過周邊感覺輸入進行預測,直接調整步行的方式。

今天有運動過了,不想再動了~圖/GIPHY

雖然穿上機器外骨骼會讓你盡其所能地降低能量消耗,但存在一個更普遍的問題:你上健身房,在跑步機上跑了一大段距離,然後為了犒賞自己,回家後癱倒在沙發上,因為有去運動而自我感覺良好,絲毫未察覺你的整體運動量比你一步都未踏入健身房要來得低

-----廣告,請繼續往下閱讀-----

實際上,以演化角度看,你的身體會在你進行耐力狩獵後放鬆;這個運動誘發的休止狀態與我們一般認為的不同。我們總以為,我們攝取的卡路里量,基本上會等於運動加上處理家務燃燒的卡路里;假如我們攝取的卡路里比運動以及家務消耗的卡路里多,那麼就會增加體重。

這些研究讓我們知道什麼?

從這些研究中我們學到的教訓是:光是增加運動強度並不是肥胖的解方,因為我們已演化出行為機制和生理機制,將運動消耗的程度降低,如此來補償運動消耗的熱量。

提高能量消耗並不必然能帶來實質且持續的體重下降;減重需要的是對於能量攝取以及能量使用進行全面性的計算。我們需要知道身體是如何平衡能量攝取、能量儲存(例如脂肪分布)以及能量輸出。

人類是高度雜食性物種,我們採集食物、我們狩獵,我們也準備各種獨特食物。對食物來源保持彈性、同時從各種不同管道取得並預備食物,賦予我們適應上的優勢。

想減重還能怎麼辦呢?嚼嚼嚼。圖/GIPHY

你能在找得到食物的任何地方吃東西(無論是撿東西來吃還是造訪當地餐館);你可以在走路時邊吃東西(在快餐店買外帶食物後);又或者可以把食物帶回住所,用許多方式烹煮(你可以幫其他獵人同伴帶回某頭運氣不好被你獵殺的動物,或是到當地超市成排雜貨架上購買各式食物)。

-----廣告,請繼續往下閱讀-----

高脂高糖的高熱量食物,在西方市場中相當容易取得,但對於哈札族來說並非如此。因此,增加活動強度到與哈札族相當,並非解決全球各地肥胖問題最直接且簡單的方法。相反地,想要處理肥胖問題,我們的公共政策就該著眼我們消耗的卡路里類型、品質以及攝取量,如此推動改變。

更清楚來說,我並非反對運動或反對增加運動強度。很顯然,保持活動比起靜止不動,對於身體的任一器官或系統都更好。如果能定期運動,日復一日、週復一週、年復一年持續終生的話,就更好不過了。

運動對於控制肥胖既必要又重要,但那只是一部分。能量攝取也很關鍵。

——本文摘自《走路的科學》,2019 年 9 月,八旗文化

-----廣告,請繼續往下閱讀-----
文章難易度
八旗文化_96
34 篇文章 ・ 20 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

0

2
0

文字

分享

0
2
0
住在大城市的人走路真的比較快嗎?為什麼?——《走路的科學》
八旗文化_96
・2020/03/04 ・3051字 ・閱讀時間約 6 分鐘 ・SR值 543 ・八年級

  • 作者/謝恩・歐馬洛(Shane O’mara);譯者/謝雯伃

每個城市的步調都不太一樣

一般來說,一個城市越大、越富裕,特別是經濟成長率越高,居民就走得越快。

1974 年,心理學家博恩斯坦夫婦(Bornstein and Bornstein)測量了歐洲、亞洲以及北美 15 個城市行人的步行速度,結果發現日常步調會隨著當地人口多寡而不同,獨立於特定文化之外。

所以到底為何要走這麼快呢?圖/pixabay

一般來說,無論哪個國家或哪個文化,較大城市中的行人走得較快。以這些基本觀察為基礎,這些實驗後來又重覆做了數次,用來觀察城市居民的走路速度是否會因為城市的獎勵密度較大(更多餐廳,或火車、公車上更多座位等等),而這些獎勵的競爭也較大,導致日常步調加快?

地理學家吉姆.瓦萊斯萊(JimWalmsley)和加里思.路易斯(Gareth Lewis)在 1989 年提出:「有效率使用時間的需求變得更迫切,生活越來越匆忙」,這都是因為收入以及生活成本增加,導致都會居民的時間價值變得更高。這反映出,對於資源的競爭許多方面細微地改變了我們的行為。我們加快步行速度,無意識地與尋求同樣資源的人競爭。

-----廣告,請繼續往下閱讀-----

我們加快步伐,全是為了與他人競爭資源?

博恩斯坦夫婦的論文深受好評,也被廣為引用,但這並非事情全貌。

據推測,有些都市因為特有的因素,影響了人們的走路速度。舉例來說,像孟買這個人口密度特別高的城市,人們走路速度實際上很慢,純粹因為要避開與他人相撞的風險。

我們同樣可以想像在某些特定地方,人們的步行速度可能很快。舉例而言,在某些特別炎熱或寒冷的城市中,人們可能為了要避開高溫酷熱或低溫酷寒,而快步行走於汽車以及建築之間。

影響走路速度的原因不一定只有資源的競爭。圖/GIPHY

生物學家彼得.沃茲(Peter Wirtz)和葛利格.雷斯(Gregor Ries)認為,博恩斯坦夫婦之所以得出這樣的結論,是因為未將他們研究城市鄉鎮人們的年齡或性別組成考慮進去。

換句話說,在其他條件都相同的情況下,城市人口往往較年輕,而較年輕族群平均行走速度會比年長者快。同樣地,男性平均來說比女性走得快;而城市或較小型鄉鎮之間的明顯差異,可能反應出城市裡較年輕、走路較快的男性比小型城鎮或鄉村裡的多。

-----廣告,請繼續往下閱讀-----

沃茲和雷斯也做了一系列樣本數更大且將性別以及預計年齡列入考慮的研究,結果得出:都會居民的平均行走速度,事實上並不比鄉村或城鎮居民更快。

但這並不是結論,這個想法持續被研究者測試。

看來加上年齡與性別組成因素還不夠!

1999 年,一項史上最大的日常生活步調研究,利用了來自 31 個國家最大城市的數據展開調查。該研究檢驗了人口組成以外會造成日常步調差異的各種因素,以及日常步調對於都會居民的哪些福祉會產生影響。該研究檢驗了三個可用來預測步調快慢的不同概念。

  • 第一個是經濟活力。經濟成長率越高,經濟就越有活力,而居民日常步調就可能越快。
  • 第二個是平均來說,越熱的城市居民往往會是較慢的步行者。
  • 第三個則是,在個人主義文化相對盛行的國家,居民的日常步調會比集體主義國家的步調快。

造成不同城市步調差異的原因會是什麼呢?圖/pixabay

研究者把焦點放在都柏林、香港以及聖薩爾瓦多等分歧性極大的城市,測量了這幾個城市中居民的行走速度(在兩個市中心區域間行走 60 英呎要花多少時間)、寄信速度(你多快能走到郵局去買郵票)以及時鐘準確度。

-----廣告,請繼續往下閱讀-----

他們也從氣候、經濟指標、個人主義量表、人群大小、冠狀動脈疾病、抽菸比例以及個別健康等其他公開數據搜集資訊。整合這些資訊後,他們算出整體性的日常步調指數。

根據這項研究,瑞士的日常步調最快,愛爾蘭緊追在後(那時正處在為期十多年的大規模經濟成長中期),然後是德國以及日本(義大利、英格蘭、瑞典、奧地利、荷蘭以及香港依序占前十席),墨西哥敬陪末座。

以更大的全球規模來看,日本以及非前蘇聯區的西歐國家日常步調最快,愛爾蘭則是個人行走速度最快的國家。瑞士則符合他們給人的刻板印象,在時鐘準確度上排名第一。

這些研究無法完全解決的一個議題是人口總數以及人口密度如何影響行走速度。

倫敦的牛津圓環在尖峰時刻交通異常繁忙,極難穿越。然而再過幾條街口,人們就能相對輕鬆地移動。開發新時代的智慧型手機計步器及健康應用程式,應該有助於解決這個問題——找出走路速度可以達到最大的最佳人群密度,只要超過這個密度,走路速度就會降低。

-----廣告,請繼續往下閱讀-----

那麼就讓我們先接受城市中的日常步調確實比較快,這情況與人口分布關係較少,與經濟活力以及人口密度較相關。

轉換到不同情境中,步調也會有所改變嗎?

我們在不同情境中,會改變原先的步調嗎?像是在電扶梯上行走?(母湯)圖/GIPHY

那麼我們做為個人,當我們從一個情境(比如安靜的鄉鎮)轉換到另一個情境(比如繁忙的城市)時,我們會改變我們的走路速度嗎?

研究者認為,這取決於城市中既存的經濟獎勵。

假設我們接受大腦會計算「付出與回饋」的觀點(這並非沒有道理),就代表大腦會試圖在努力以及回報之間達到平衡,即以最少努力達到最大的回報。這就出現了一個問題,那就是大腦是如何計算有多少回報,以及付出多少努力才有成果的問題呢?

試想一下街邊那家不能事先預約的熱門新餐廳,為了去那裡,你會走得更快,還因為與其他想得到同樣獎勵(可能是最好的桌位或是僅剩的桌位)的人競爭,再走得快一點。如果你有兩個選擇,你可能會選擇更具獎勵性的選擇,或那個需要最少努力的選擇。

-----廣告,請繼續往下閱讀-----

我們在城市裡似乎會走得更快一點,這可能是因為城市裡有許多資源與獎勵,但我們也在與其他人競爭這些獎勵。我們在日常生活中會有不同類型的努力,無論是尋找什麼,或是走向某件事。然而,無論是哪種類型的努力,為了達成某個目標所花的能量總會在達到某個最大值之後降下來

神經科學家瑞查.沙德梅爾(Reza Shadmehr)要我們想像自己站在機場的入境大廳尋覓著某個旅客的臉。當你看到一張又一張臉孔時,你看到了你在等的那個人。現在問問你自己,那人的身分為何會讓你走快點去迎接他呢?他是你的同事,還是你的孩子?

當然是與孩子相見的內在獎勵較大囉~圖/pixabay

答案很明顯。與你孩子相見的內在獎勵特別大,而這個內在獎勵直接調整了你的走路速度,你會想更快接到你的孩子。有更大獎勵時,我們會走得快些。努力以及對於獎勵的期待如此加成在一起。

現在,我們對我們的步行速度為何在不同城市中有所不同有了基本理解。可能的情況是,城市中的豐富資源讓人們願意付出努力去得到它們;與此同時,這些獎勵的競爭也增加了——我們不只要快速走到那間很棒的新餐廳,還要比其他人更快到。

-----廣告,請繼續往下閱讀-----

因此,控制努力的大腦系統與預估可能獎勵的大腦系統之間存在著緊密連結。努力越多,預期從這個努力中獲得的獎勵也會越多。若一個事物帶來的回報較少,我們走向它的速度就會較慢,反之亦然。

這就是我們在城市中的現況:我們走得快,才能得到火車上的座位或是餐廳的用餐保留時間,因為我們在與其他人競爭城市提供的獎勵。

——本文摘自《走路的科學》,2019 年 9 月,八旗文化

-----廣告,請繼續往下閱讀-----
八旗文化_96
34 篇文章 ・ 20 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。