Loading [MathJax]/jax/input/TeX/config.js

0

11
4

文字

分享

0
11
4

「安提基瑟拉儀」橫空出世,史上第一台計算機?(下)│《電腦簡史》 齒輪時代(二)

張瑞棋_96
・2020/03/02 ・2576字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

安提基瑟拉儀如此精巧繁複,與十六世紀的鐘錶相比毫不遜色,究竟是誰能在西元前就打造出這樣的作品?而且當時仍以為地球是宇宙中心,天體都繞著地球轉。使用錯誤的地心說模型,安提基瑟拉儀如何仍能準確模擬天體的運行?

本文為系列文章,上一篇請見:「安提基瑟拉儀」橫空出世,史上第一台計算機?(上)│《電腦簡史》 齒輪時代

為什麼要發明安提基瑟拉儀?

自有歷史以來,人類便一直對天空的日月星辰感到好奇。每天日出東方、月亮西沉,滿天星斗也始終如一的橫過夜空,凝視這些在天空閃閃發亮的天體原本就會令人有無限遐想,更何況人們的生活似乎也被它們影響。天體的運行軌跡隨著季節變化而規律的改變,可以依據太陽的路徑劃分出一年四季,以利耕作;而潮水漲落更與月亮盈虧有明顯的對應關係,因此需要陰曆來掌握潮汐。另一方面,看似恆常規律的天象也偶有例外,例如日食、月食、流星,而幾個行星的運行軌跡顯然也與鑲嵌在夜空背景中的星座大不相同。這些異象又意味著什麼?是否暗示將有天災人禍?

因此無論是基於實用目的,想從天象找出蛛絲馬跡,以做好準備或趨吉避凶;或是純粹基於好奇心想知道天體運行背後的規律,世界各地的古文明很早就開始觀測天體並各自發展出天文曆法,例如四、五千年前的古埃及、印度、中國,乃至美索不達米亞平原的古巴比倫文明,與中美洲的馬雅文明。其實在默冬發現默冬週期之前,巴比倫人與中國周朝早就實施十九年七閏了。不過,是巴比倫人建立了有系統的方法,運用數學來分析天體運行的規律,率先發現日月食的規律,也就是沙羅週期。

-----廣告,請繼續往下閱讀-----

在古人的宇宙觀中,當然地球是靜止不動的,所有天體都是繞著地球轉。這很合理,畢竟你感受不到地球在動,而仰望天空,看到的明明是日月星辰在移動。不過仔細觀察五大行星,卻會發現它們的移動速度時快時慢;更奇特的是,它們偶而還會改變方向,掉頭倒退一段距離——也就是所謂的「行星逆行」——再轉回原來方向繼續往前。巴比倫人雖然掌握了日月食的週期,卻對「行星逆行」這個神祕難解的天文的現象束手無策。這個問題得再過幾個世紀,才由古希臘的天文學家接力提出合理的解釋。

如何補救地心說的缺陷

或許是得力於歐幾里得在西元前三世紀左右出版的《幾何原本》,古希臘人更能有系統地將幾何學運用在天文學上。西元前二、三世紀交替之際,阿波羅尼奧斯 (Apollonius of Perga) 率先提出周轉圓理論。他認為五大行星並不是像太陽、月亮那樣直接繞著地球轉,而是各自繞著一個假想的圓心轉,這個周轉圓(也稱為「本輪」)再繞著地球轉,因此有時才會看到行星逆行的現象。不過這仍無法解釋行星為什麼會忽快忽慢,直到西元前一百三十年左右,希帕庫斯 (Hipparchus) 在周轉圓的模型加入了偏心圓,才解決這個問題。他設想五大行星的周轉圓雖然繞著地球轉,但是地球並不在圓心的位置,而是偏離圓心一段距離,因此行星離地球比較遠時看起來速度比較慢,離地球近時看起來就比較快。

時代對於宇宙觀的見解多元,藉由數學理論的推演使假說更具合理性。圖\pixabay

兩百多年後,約莫西元二世紀中期,希臘學者托勒密 (Claudius Ptolemaeus) 發表《天文學大成》鉅著。書中結合周轉圓與偏心圓的概念,建立後世稱為「托勒密體系」的行星模型,一舉掌握日月星辰的運行軌跡,包括太陽、月亮的運行與日月食的週期、五大行星的周轉圓半徑與它們沿著周轉圓繞行的速率、周轉圓本身繞著地球轉的速率,以及圓心相對於地球的位置。地心說原本與天體實際運行不符之處,如今在托勒密體系下都獲得解決,人類的宇宙觀因此在他手中一錘定音,地心說從此主宰天文學一千多年,直到十七世紀克卜勒提出行星運動三大定律,地心說才終於被日心說取代。

由於《天文學大成》的權威地位,後世提到地心說都會以托勒密做為代表人物,但其實這本書是奠基於前人的研究成果,特別是希帕庫斯的研究。事實上,希帕庫斯的原始著作都已失傳,正是托勒密在《天文學大成》中加以轉述,我們才知道托勒密體系其實脫胎於希帕庫斯的周轉圓模型。

-----廣告,請繼續往下閱讀-----

誰發明了安提基瑟拉儀?

安提基瑟拉儀經科學家復原重建後,赫然發現內部有周轉圓齒輪組,所以才能令行星指針完美地模擬行星運行,甚至包括逆行現象。由此可見當初設計者就已經充分瞭解周轉圓的行星模型;既然安提基瑟拉儀與希帕庫斯幾乎是在同一時代,相差不超過二、三十年,不禁令人猜想:安提基瑟拉儀會不會正是希帕庫斯所設計的?

安提基瑟拉儀的發明者有可能為「方位天文學之父」-希帕庫斯。圖\wikipedia

也有人認為安提基瑟拉儀的設計可追溯至年代更早的阿基米德 (Archimedes) 。阿基米德被公認為發明齒輪裝置的先驅,除了螺旋抽水機,傳聞他還發明了計算里程的馬車,以及能將敵人的船隻吊起的巨型裝置。據史書記載,西元前 212 年羅馬軍隊攻陷位於西西里島的敘拉古 (Siracuse) 城時,阿基米德當場被羅馬士兵殺死,他所發明的一件天文儀器被羅馬將軍馬塞勒斯 (Marcellus) 據為己有。後來看過這件儀器的人描述道:

「這個銅製裝置上的月亮隨著太陽一起轉動,轉的圈數與天上的月亮一樣。而當(裝置上的)月亮轉到和太陽、地球成一直線時,月亮的影子投射在地球上,如實呈現了天上的日食現象。」

以往史學家並沒有太認真看待這段記述,因為除此之外都沒有關於這件儀器實際構造的描述;而且當時是否真有這樣的技術能力也令人懷疑,就像可以吊起敵人船隻的裝置,應該純粹只是阿基米德紙上談兵,並沒有真的建造出來。但如今安提基瑟拉儀的出土,為這段文字大大增添了可信度。加上安提基瑟拉儀的正面與這段文字所描述的如此類似,的確很有可能承襲自阿基米德真的設計。

-----廣告,請繼續往下閱讀-----
羅馬人對於阿基米德發明的儀器描述與安提基瑟拉儀的正面相似,使學者們開始猜想或許安提基瑟拉儀的設計是出自阿基米德之手。

無論是否與阿基米德有直接關連,安提基瑟拉儀的齒輪如此精巧複雜,除了需具備齒輪運作的知識,也需要有純熟的製造工藝配合才能完成,而知識與技術都需要時間的積累才會成熟,不可能當下憑空出現。也就是說,在安提基瑟拉儀發明之前,齒輪的相關知識與技術必定已存在相當時日。因此,如果說安提基瑟拉儀是史上第一台計算機,那麼若要探討計算機的起源,我們勢必得將目光投往阿基米德那個時期的古希臘。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】水漲船高:浮力是什麼?為什麼蘇伊士運河會「大排長榮」?
張之傑_96
・2023/10/11 ・1096字 ・閱讀時間約 2 分鐘

根據教育部編《國語辭典》,這成語的解釋是:「比喻人或事物,隨著憑藉者的地位提升而升高。」你覺得拗口是不是?其實這成語是說,水位高了,水裡的船跟著升高,造兩個句你就更明白了。

油價一漲,民生用品水漲船高,人們的生活開支就增加了。

最近老師教得認真,結果水漲船高,段考成績普遍提高了。

如果水位變低了呢?水裡的船當然跟著降低。當水位低於船隻沒入水中的部份(稱為吃水),船隻就會擱淺。談到這裡,就得談談浮力原理了。

這原理的發現還有個小故事呢!相傳某希臘國王,做了一頂純金王冠。有人密報,金冠攙假。然而秤一下重量,又和當初交給金匠的純金一樣重。國王還是不放心,就請科學家阿基米德鑑定。

阿基米德苦思多日,想不出辦法。一天,他在家裡洗澡,當他進入澡盆時,看見水往外溢,突然悟出:「可以用測定固體在水中排水量的辦法,來確定金冠的比重啊!」他興奮地跳出澡盆,大聲喊著:「尤里卡,尤里卡!」(尤里卡,就是「發現了」的意思)。

-----廣告,請繼續往下閱讀-----
阿基米德驚呼「尤里卡!」。圖/wikimedia

阿基米德把王冠和同等重量的純金,放在兩個容量相同、盛滿水的盆子裡,發現放王冠的盆子,溢出的水比另一盆多些。說明王冠的體積,比相同重量的純金的體積大,證明了王冠並非純金製的,揭露了金匠欺君之罪。

阿基米德因此發現了浮力原理(又稱阿基米德原理):物體在水(液體)中所獲得的浮力,等於物體所排出(開)液體的重量。根據浮力原理,只要水夠深,幾萬噸的船都能浮在水上,因為它排開的水,比船還要重啊!

章老師曾搭乘郵輪經過蘇伊士運河。這條運河寬 205-225 公尺,深 23-24 公尺,所以只要船隻吃水的部份不超過 20 公尺,保證可以通行。章老師搭乘的是艘中小型郵輪,只有 3.5 萬噸,加上 1000 名乘客和 400 位工作人員,吃水可能不到 10 公尺。走在我們前面的,是艘 10 萬噸級的貨輪,也行駛得十分順當。查一下資料,這條運河可以浮起 24 萬噸的船呢!

卡在蘇伊士運河中,造成「大排長榮」的長賜號。圖/wikimedia

那麼 2021 年 3 月間怎會發生蘇伊士運河事件?發生事故的長賜號,總噸位 220,940 噸,寬 58.8 公尺,都在安全值之下。可是運河水深 23-24 公尺,是指中央的航道,靠近岸邊就沒那麼深了。長賜號被強風吹離航道,在岸邊擱淺。這還不說,長賜號全長 399.94 公尺,擱淺時斜著卡在運河中,把整條運河堵住了。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

0

11
7

文字

分享

0
11
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

-----廣告,請繼續往下閱讀-----

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

-----廣告,請繼續往下閱讀-----
三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

-----廣告,請繼續往下閱讀-----

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

-----廣告,請繼續往下閱讀-----
發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

-----廣告,請繼續往下閱讀-----

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

-----廣告,請繼續往下閱讀-----

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

-----廣告,請繼續往下閱讀-----

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1030 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。