0

0
1

文字

分享

0
0
1

因親情立志學醫,凝聚台灣抗癌能量的「癌症研究之母」彭汪嘉康——《她們,好厲害》

PanSci_96
・2019/12/26 ・6682字 ・閱讀時間約 13 分鐘 ・SR值 494 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/陳建豪

被形容為台灣「癌症研究之母」的彭汪嘉康是「台灣傑出女科學家獎」傑出獎的第一屆得主,她曾在美國國家衛生總署服務 33 年,並擔任所屬國家腫瘤研究所細胞遺傳研究室主管;她成功證實人類腫瘤細胞起因於染色體的改變,並陸續發現白血病染色體的變異在幹細胞時期就已出現,甚至進一步從母親血液中判斷胎兒白血球及性別的可能性,並以此研究獲得極大殊榮。

就決定是你了!眾望所歸的第一屆得主

2008 年,吳健雄基金會、台灣萊雅公司共同創設「台灣傑出女科學家獎」,目的在於樹立傑出女科學家的典範,並鼓舞年輕女性投身科學研究。

因此,首屆得主顯得格外重要,她必須是一位讓眾人都認可、欽佩的指標人物,才能達到設立該獎項的目的,並吸引更多人後續參與。

然而,這麼關鍵的人物,在遴選過程中,卻幾乎是眾望所歸。推動國家衛生研究院成立,並擔任國衛院首任院長的吳成文回憶,在遴選首屆得主時,他也曾被評審團諮詢,那時他毫不遲疑地推薦了彭汪嘉康。

「當我一說出這個『彭汪嘉康』這個名字,你可以感覺到,幾乎所有評審,那都是相當、相當認可的,」吳成文笑著說。雖然他與彭汪嘉康是熟識 3、40 年的摯友,甚至可以說是一起打拚的戰友,但他內舉不避親,後來果不其然順利獲得眾位評審同意,第一屆的得主,就是彭汪嘉康。

-----廣告,請繼續往下閱讀-----
彭汪嘉康在癌症研究的貢獻有目共睹。圖/取自書籍《她們,好厲害:台灣之光.18位女科學家改變世界

努力拉起抗癌防線,對抗國人十大死因之首

1932 年出生、現年 80 多歲的彭汪嘉康,經常被形容為是台灣「癌症研究之母」,而從她累積的各種頭銜與經歷,更可以看出她不凡的一生。

她在美國國家衛生研究院 (NIH) 工作時,曾因為成功證實人類的癌症腫瘤細胞起因於染色體改變,從此在全球醫界聲名大噪,並成為首位獲得美國亞瑟.佛萊明獎 (Arthur Flemming Award) 的外籍人士。

在美國國家衛生院工作長達 33 年,早已經是研究室主管的她,原本可以選擇退休,或是繼續研究工作,但她卻於 1993 年、在人生剛滿一甲子時,放下在美國的四個兒女,回到台灣,付出自己多年所學,為台灣建立起癌症防線。

原來,彭汪嘉康一直與台灣保持聯繫,深知自 1982 年起,癌症即開始蟬聯國人十大死因榜首,但 80 年代的台灣,對於癌症的治療卻尚未成熟,專科人才明顯不足,病人自然無法得到最佳照顧。

-----廣告,請繼續往下閱讀-----

 

癌症連續多年蟬聯國人死因榜首。圖/衛福部資料

彭汪嘉康回台 20 年間,可以說是馬不停蹄。她在中央研究院成立了國內第一所癌症實驗室,之後推動國衛院癌症研究所成立,並擔任首任所長,幾年前雖從國衛院退休,但旋即被聘請為由萬芳、北醫、雙和醫院所組成的癌症中心擔任主任,而她在台大醫院的門診,更是自 1993 年回國以來,就不曾間斷。

更值得一提的是,彭汪嘉康甚至投入了自己在美國累積多年的寶貴人脈,對培養台灣的抗癌人才,貢獻良多。

在 1985 年,彭汪嘉康尚未正式回到台灣前,當時她與幾位旅美的中研院院士,包含曹安邦、吳成文等人都擔憂著,台灣尚無腫瘤內科的概念,也就沒有專門全方位對付癌症的內科腫瘤醫師。

在包含彭汪嘉康等人的奔走下,到了 1987 年,終於促成台灣首次的腫瘤內科醫師訓練。 訓練對象包含台大、榮總、三總等的菁英醫師,而授課教授,竟都是全球最知名的抗癌專家,他們輪流從海外飛抵台灣,輪班執教三個月,完成了為期三年兩期的訓練,為台灣培訓出十三位種子醫師。

-----廣告,請繼續往下閱讀-----

當年的種子醫師,目前都成為台灣抗癌的超級戰將。例如:台大腫瘤醫學部主任鄭安理、成大醫學院院長張俊彥、國衛院癌症研究所所長陳立宗及主治醫師劉滄梧等人。

「那時候,我們就覺得很訝異,為什麼有這麼多大師級人物,紛紛請假兩、三個月,到台灣來幫我們上課?後來我們跟某一位教授聊,才發現原來他曾經很受 Jackie(即彭汪嘉康女士)的照顧,因為 Jackie 開口,他就義不容辭,」劉滄梧指出,彭汪嘉康在海外 30 餘年奠定學術地位,並廣結善緣,最後貢獻在台灣開花結果,因此有「癌症研究之母」的封號,正是名實相符。

因童年經歷立志學醫,絕不輕言放棄

現年 80 多歲的彭汪嘉康,仍活力十足,談起行醫看診,更是熱情滿滿。至於為何對醫學有這麼大的熱情、至今仍堅持看診,站在第一線付出,彭汪嘉康透露,這其實與她年輕時的經歷有關。

「我最小的弟弟,在我唸中學的時候,感染了肺炎,那時我們送他去看醫生,那醫生還是我父親的朋友,但他卻沒有竭盡全力去救我小弟,」彭汪嘉康沉默了一下,繼續說:「但那時明明已經有盤尼西林問世,醫生卻沒有試著採用,僅告訴我父親,應該要放棄了。最終,我的小弟就在家中過世。所有家人,都很無助地看著他離去,」事隔多年,彭汪嘉康仍有不捨。

-----廣告,請繼續往下閱讀-----

「經歷這件事情後,我告訴母親,如果我是醫生的話,絕不會這麼輕易就放棄醫治!這句話出口,也就立下了我學醫、行醫的志向,」彭汪嘉康強調,病人在最脆弱、無助的時候,已把生命託付給醫師,醫師怎能輕言放棄?

彭汪嘉康因目睹親人因病去世而發憤鑽研醫學領域。圖/取自書籍《她們,好厲害:台灣之光.18位女科學家改變世界

即便時代動盪,也未放棄志向

要當醫師,第一步要先考入醫學院。彭汪嘉康出身於蘇州書香世家,祖父是絲綢商人,但極重視教育,她的叔伯們在民國初年的動盪時代,卻大多能留學海外,反映出家族對孩子們教育的看重。

「我們家族有一個故事,那時我祖父去選墳地,風水先生問他是希望後代能當官,還是能致富?我祖父卻說,如若可以,讓子孫們把書唸好即可,」彭汪嘉康笑著說,祖父對教育的重視,無疑就是給子孫最大的資產。

彭汪嘉康以自己為例,在民國 30 年左右,女性唸書的比例其實相當低,但因為家族有著大力栽培孩子唸書的祖訓,也讓她在當時成為少數接受教育的女性,這也才能往醫學院逐步邁進。

-----廣告,請繼續往下閱讀-----

「我在蘇州唸中學,最想考入的醫學院,就是上海醫學院;當時雖然有聽說台灣的台大醫學院也非常好,甚至比上海醫學院還有過之,但因為人在蘇州,也真沒想過,有一天會來到台灣唸台大,」彭汪嘉康微笑著回憶。

民國 37、 38 年,國共內戰、局勢紛亂,政府陸續遷台,還只是中學生的彭汪嘉康,被大時代的洪流給推著,就這樣上了船,飄洋過海來到台灣。

搭上了船,雖然是頭等艙位置,但彭汪嘉康卻因為嚴重暈船,在船上吐了好幾日,到最後已經是虛弱無力。然而一下船,已經先到台灣的父親前來接船時,隨手遞了一根香蕉給腹內早已空無一物的彭汪嘉康,說也奇怪,香蕉的甜香味,竟讓彭汪嘉康精神大好!

香蕉的甜香味,曾讓彭汪嘉康記憶深刻。圖/giphy

「至今,我仍然記得那甜香味;或許,這就說明我跟台灣有緣吧!」彭汪嘉康很有精神地說著。果不其然,彭汪嘉康來到台灣後,真的如願進入台大醫學院就讀。

-----廣告,請繼續往下閱讀-----

考入台大醫學院後,彭汪嘉康開始勤練基本功,挑戰一本又一本磚塊般厚重的原文書。

「台大教授,不少是非常嚴格的;我最記得教我們病理的葉曙教授,他上課很精彩,但也很嚴厲,例如:高我們一屆的學長姊,竟有超過一半的人得多唸一年、跟我們這屆一起畢業,就是因為他們都被葉曙教授當掉了,」彭汪嘉康苦笑著回憶,但她也認為就是在這種要求之下,方能練就一身扎實的基本功。

畢業後,彭汪嘉康跟隨著知名的外科手術醫生林天佑實習一年,林天佑給了彭汪嘉康高度肯定。林天佑是肝臟手術的權威,他採用的「手指切肝」手術法,更讓台灣成為全球肝臟手術的先驅。而自小苦讀出身的林天佑,對每天總是在上午六點多就報到、任勞任怨的菜鳥實習醫生彭汪嘉康,留下了很好的印象,他最後給彭汪嘉康的實習分數,竟是打了 99 分。

「林天佑醫師從來沒有覺得我是女生而對我少過任何要求;他是我的恩師,言教、身教都讓我受益良多,」彭汪嘉康至今仍記得,在實習結束之後,林天佑就希望她投入台大外科團隊,但那時候的彭汪嘉康,卻打算赴美再學習。

-----廣告,請繼續往下閱讀-----

「我那時就答應林天佑老師,在美國練功有成之後,一定回到台灣貢獻。這個承諾,我始終放在心中,雖然我是隔了 30 餘年才完成,」彭汪嘉康感性地說,自己後來會在 60 餘歲的「高齡」返台行醫,就是因為一定要完成與老師的約定。

有了技術卻不能執刀,轉彎開啟新篇章

然而,這位在台灣被視為極有潛力的手術外科明星,到了美國之後,卻屢屢碰壁,最後甚至被迫放下手術刀,投入研究。

原來,在 1960 年代的美國,尚未開放非美國公民開業行醫。事實上,以當時的限制,彭汪嘉康只能專攻病理研究,或者是麻醉專科。

「那時候,其實有些挫折。不是因為我的醫術不好,只是因為我不是美國人。但也有人告訴我,或許這個法條很快會修改,我也就硬著頭皮留下來,」彭汪嘉康苦笑著回憶,這限制對她來說,也不知是福是禍,因為當時若沒有這一法規,她在美國執刀行醫可能會賺很多錢,但就未必有機會走上研究之路。

只是,在美國,初期打擊彭汪嘉康的,還不只她不是美國人,更因為她的「女人」身分。 彭汪嘉康原本順利申請到在華盛頓某一頗具規模的醫院工作,醫院已經回函通知她報到,但在報到第一天,對方才驚覺她是女性,而彭汪嘉康也坦承告訴對方,自己即將準備婚事,將來可能請幾天婚假。

「對方看我的中文名字,可能原本也不曉得我是男是女,再一聽我要請婚假,將來搞不好還要請育嬰假,竟當場連忙跟我說『Sorry』,他們無法聘用我了!」回想這段往事,彭汪嘉康只能搖搖頭,一臉無奈。

接連的不順利,讓彭汪嘉康陷入了低潮。

然而就在一切都不如預期時,彭汪嘉康的貴人卻出現了。透過先生在美國國家衛生研究院的友人推薦,彭汪嘉康順利在那裡找到研究工作,從此她在美國國家衛生院一待就是 30 餘年,為人生寫出了全新的一章。

美國國家衛生研究院。圖/ Wikimedia Commons

「從那時候起,我就期盼自己也能做別人生命中的貴人;因為有時候你一個小小的幫助,卻可能對這個人的人生,起了料想不到的幫助與改變,」受人提攜、擺脫低潮,彭汪嘉康始終不忘要傳承這份溫暖。

為什麼會有癌症?原是與基因有關

進入美國國家衛生研究院,彭汪嘉康更是得遇名師──華裔科學家蔣有興。1960 年代,染色體的研究正逐漸成為主流,而蔣有興正是研究染色體的大師,他的研究證實,人類的染色體數應該是 46 個,而不是之前被錯認多年的 48 個,對遺傳學研究有重要貢獻。

蔣有興是美國細胞遺傳學家,為公認首位辨明正常人類染色體數目的學者。圖/Wikimedia Commons

跟隨名師蔣有興,彭汪嘉康從此踏上染色體的研究,逐漸奠定在學術界的貢獻,她也首度證實了癌症的發生與基因缺陷、損壞有關,因而名留醫界。

研究第一年,彭汪嘉康就從六位白血病患者身上,發現與白血病相關的染色體,當時她原本想發表論文,但蔣有興希望她找到十個案例之後,再行發表。

沒想到,費城醫院的研究團隊只找到四個案例時,就搶先發表論文。

「這個染色體,從此被命名為費城染色體;如果我們當時先發表的話,應該就叫 NIH 染色體了,」彭汪嘉康難掩失落,因為這費城染色體的研究團隊,後來更憑藉這項發現繼續努力,最終獲得了拉斯克獎(Lasker Award)的肯定。

費城染色體形成機制。圖/Wikimedia Commons

但是,個性開朗的彭汪嘉康,並沒有讓這個失落影響她太久,她仍繼續鑽研,陸續發現其他諸如淋巴腺癌、淋巴性白血病等相關的染色體。

在美國國家衛生院一待 30 餘年,彭汪嘉康也逐漸累積起自己的實力,成為了院內不可或缺的重要戰將,最終擔任癌症研究所細胞遺傳研究室主管。30 年來,面對艱難、沒有邊際又日日進步的研究工作,彭汪嘉康透露,要把研究工作做好,除了自己的持續努力外,跟其他研究人員互通有無,也是關鍵。

「你不懂的東西一定會愈來愈多,這時候跟朋友合作就很重要了;討論跟交流,無疑會讓你知道自己的盲點,」彭汪嘉康笑著說,研究人員要學會合作,讓自己跟合作夥伴,成為彼此的貴人。

為了奉獻,從實習醫生開始打掉重練

時間快轉 20 多年,在美國的彭汪嘉康,經常接到來自台灣的求助電話,原來是在台灣的癌症病人,希望到美國看診求醫。

「那些『有辦法』的人,可以花錢到美國看病,但沒辦法的病患,又該怎麼辦?」彭汪嘉康分析,自 1982 年起,癌症就居於國人十大死因榜首,但台灣面對癌症來襲,似乎還沒做好準備。

「即便是到美國求診,美國醫師對於經常發生在國人身上的肝癌、鼻咽癌,研究也不多,因為在美國較常見的是肺癌、乳癌,」經過種種分析,以及與旅居海外的院士曹安邦等人討論,眾人的結論是,必須為台灣建立一批新的種子醫師,專門對付癌症腫瘤。

也因此,在 1987 年到 1989 年,這三年中間,彭汪嘉康等人促成了台灣的首屆腫瘤內科醫師訓練,不僅師資來自美國,就連考照方式也比較美國辦理。

然而,1989 年一到、訓練結束,吳成文等人原本也要回到美國繼續工作,但彭汪嘉康卻開口請吳成文留在台灣,繼續推動抗癌、培訓人才,而她自己,會在三年之後回到台灣。

「她果真言而有信,三年後回到台灣;更感人的是,這三年間,她為了也要拿到腫瘤內科醫師執照,竟然回到醫院,從最基層的實習醫生做起!」吳成文相當敬佩彭汪嘉康的決心與行動力,已經 50 多歲、早已是主管級的她,願意回到基層再學起。

「辛苦難免,但是我心中一直記得,我承諾過我的老師林天佑,有一天我得回到台灣奉獻、行醫,」彭汪嘉康感性地說,既然答應過老師,那她就一定要完成,而為了做好這件事情,辛苦一些、從實習醫師練起,雖然慢,卻扎實。

團結力量大,整合台灣醫界共同抗癌

回台 20 餘年,彭汪嘉康除了自己的門診外,更整合了台灣醫界的力量,共同抗癌。

彭汪嘉康推動、成立台灣癌症臨床研究合作組織 (TCOG),至今已經有二十餘家醫院加入,醫院間互通有無、分享臨床資料,打開了醫院與醫院之間的門戶之見,受益的則是病患。

「在我初期接手的時候,TCOG 只有三、 四家醫院,換她接手後,很快啊,就十家、二十家地加入,」吳成文笑著說,彭汪嘉康就像一個母親般,凝聚台灣抗癌人才。

「很久以前,我們會笑說,台大跟榮總兩院的距離可能比兩岸還遠,很少往來,但透過彭汪院士的凝聚、號召,台灣醫界在癌症這一塊,卻相當團結,」出自台大,國衛院癌症所主治醫師劉滄梧分析,當年透過彭汪嘉康等院士的號召,台大、榮總等醫師們一起上課受訓,有了革命夥伴的情誼,加上彭汪嘉康會找大家聚餐,因此不同醫院的醫師也就有了建立感情的機會。

「聚餐時,有時候彭汪院士甚至會帶衣服給我們;她說她在美國過耶誕節時會買衣服給家人,想到這幾件衣服好像適合我們,就帶回台灣給我們,」劉滄梧感性地說,某程度而言,彭汪嘉康的確就像是個母親。

彭汪嘉康認真地維繫著大家的情感,讓抗癌陣線更加堅強。圖/wikipedia commons

在工作上,彭汪嘉康如同母親照顧夥伴,但聊到家庭,彭汪嘉康則十分慶幸,有一個好好先生,始終是她的後盾。「那時候,我跟我先生開玩笑,我們絕對不能離婚,因為孩子一定都會跟你,」彭汪嘉康苦笑著說,自己的忙碌難免疏於照顧孩子,所幸先生的體諒與支持,讓她能全力衝刺研究。

不過,工作再忙,彭汪嘉康卻堅持為家人準備晚餐,即便她在晚餐後,仍會開車回研究室打拚。「我的廚藝未必很好,但那是一份心意,以及陪伴,」彭汪嘉康感性地表示。

彭汪嘉康因為目睹小弟的過世而立志學醫,為了完成與老師的約定而回到台灣行醫;她的努力與成就,用台灣癌症研究之母來形容,恰如其分。2008 年獲選為首屆「台灣傑出女科學家」,更是一個最貼切的形容詞。

台灣傑出女科學家獎設立於2008年,是台灣第一個專為表彰傑出女科學家、並鼓勵女性參與科學而成立的獎項,由台灣萊雅及吳健雄學術基金會共同主辦。


 

本文摘自《她們,好厲害:台灣之光.18位女科學家改變世界》,2013 年 12 月,遠見出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
腹瀉不一定是腸胃炎!解析大腸直腸癌早期症狀與治療重點
careonline_96
・2025/11/11 ・1909字 ・閱讀時間約 3 分鐘

劉育志醫師:大家好,我是劉育志醫師,歡迎彭上軒醫師接受我們的訪談。

彭上軒醫師:大家好,我是彭上軒醫師。

劉育志醫師:進入夏季後,很多人都會有腹瀉、腹痛、噁心、嘔吐的問題,請問這些症狀是否會跟大腸直腸癌的症狀混淆?

彭上軒醫師:氣溫炎熱的關係,食物保存問題常常會導致民眾朋友會遇到腹瀉、噁心、嘔吐等等的問題。這些如果和大腸癌有直接關聯的話,通常都是比較晚期的症狀。常見大腸直腸癌的症狀包含,第一是排便習慣的改變,第二是直腸出血或者是直腸的腫塊。再來就是可能會有腹痛、體重減輕等等的症狀。如果有上述這些症狀,當然就是建議第一時間就醫。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問大腸直腸癌在不同分期的存活率?

彭上軒醫師:大腸直腸癌在早期,比如第一、二期,當腫瘤還在腸道內,還沒有侵犯到附近的淋巴結,甚至遠端轉移的時候,五年存活率是高達九成。當侵犯到淋巴結的時候,五年存活率就來到七成左右。如果今天是不幸發現的時間較晚,或者是復發有產生轉移等等的情況的時候,就是算第四期。第四期的存活,雖然說五年存活率是大約兩成左右,但是透過藥物的治療可以大大改善生活品質,進而提升存活率。

劉育志醫師:請問第一期到第四期大腸直腸癌的主力治療為何?

彭上軒醫師:早期的大腸癌包含一到三期,主力的治療是手術。一般在手術完之後,會接受輔助性的藥物治療來降低復發的風險,進而改善病患的存活。甚至在特殊的狀況會先考慮做藥物的治療,之後再轉介到治癒性的手術。在第四期的大腸癌跟第四期的直腸癌,病患已經發生遠端轉移或是無法再做局部的手術或是放射線治療的情況時,藥物治療目的是希望控制腫瘤,甚至有些病患可以透過很好的藥物治療,腫瘤在達到最好的反應的時候,再轉介到治癒性的手術。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問基因檢測在大腸直腸癌治療前扮演什麼角色?

彭上軒醫師:大腸直腸癌第四期的治療以藥物治療為主。藥物治療前,我們會將病患的腫瘤做相關的基因檢測,是因為這樣可以選用合適的標靶藥物,提升腫瘤縮小的機會、提升控制的時間跟改善存活。

劉育志醫師:請問目前最關鍵的基因檢測項目有哪些?

彭上軒醫師:第一個是RAS基因,有突變或是沒有突變,也是攸關到標靶藥物的選用,甚至它的順序如何選,是可以提升病患存活率最大的機會。第二個基因則是BRAF基因。第三個則是MMR, MMR中文的全名是錯位修補機制。

-----廣告,請繼續往下閱讀-----

劉育志醫師:請問單株抗體標靶可為患者帶來哪些好處?

彭上軒醫師:單株抗體有分成兩類,一類是EGFR單株抗體,另外一類是VEGF單株抗體。標靶藥物加上化療,可以大大的提升腫瘤縮小的機會,延長存活的時間,也可以延長控制的時間。甚至在有些病患腫瘤縮小到一定的深度的時候,可以橋接到治癒性的手術。

劉育志醫師:請問在使用藥物縮小腫瘤之後,再接續進行手術會有何優勢?

彭上軒醫師:透過藥物治療,腫瘤達到最小的狀況,這時候就可以透過多專科團隊的討論,來看看病患是否合適做治癒性的手術,一併將原發以及轉移處的腫瘤做切除,達到長期的存活。

-----廣告,請繼續往下閱讀-----

彭上軒醫師:我曾經遇到一位病患, 原發的腫瘤在他起初發病的時候已經先做切除了。轉移處的腫瘤在透過藥物治療達到最小、最深的時候,我們讓他去接受肝臟轉移相關的治療,包含動脈的栓塞,或者是肝臟的切除。這位病患目前是服用口服的藥物來做維持性的治療。所以第一線的單株抗體標靶藥物加上化學治療,再橋接這些治癒性的手術之後,是有辦法讓病患達到長期的存活,只靠維持性的口服藥物,也可以改善病患的生活品質。

彭上軒醫師:目前國健署有將部分民眾納入篩檢的條件,比如45歲到74歲的民眾是可以每兩年接受一次糞便潛血的檢查。如果糞便潛血檢查異常,將會轉介相關的專科再做進一步的大腸鏡檢查。如果是40到44歲有家族史,或者是具有癌症基因相關遺傳的話,也建議在40到44歲提早做篩檢。

劉育志醫師:感謝彭醫師接受我們的訪談,我們下次再見,掰掰。

彭上軒醫師:掰掰。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。