Loading [MathJax]/extensions/tex2jax.js

0

2
2

文字

分享

0
2
2

「把生物分子看得更清楚!」結構生物學最新神器──冷凍電子顯微鏡

研之有物│中央研究院_96
・2019/09/27 ・4938字 ・閱讀時間約 10 分鐘 ・SR值 611 ・十年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|廖英凱、美術編輯|林洵安

冷凍電子顯微術,能在原子尺度,快速且不破壞性地觀察生物分子,榮獲 2017 諾貝爾化學獎的殊榮,是今日結構生物研究最具發展潛力的技術。2018 年,蔡明道院士主導的中研院研究團隊建置全國首座高解析度冷凍電顯中心,取得與頂尖國際研究團隊競爭的門票,吸引國內外研究團隊申請使用!

2019 年 4 月,中研院生化所特聘研究員蔡明道院士和中央大學生命科學系陳青諭助理教授的研究團隊,在《美國化學學會期刊》 (Journal of the American Chemical Society) ,發表了研究團隊如何運用冷凍電子顯微術,揭示酵素在原子尺度的結構。

這是國際上第一篇利用高解析度冷凍電顯技術來探討酶學的論文,期刊並將此次研究成果選為當期封面,呈現出宛如藝術品的蛋白質酵素 3D 立體結構圖。

-----廣告,請繼續往下閱讀-----
4 月 17 日出版的《美國化學學會期刊》,蔡道明院士此次的研究成果「蛋白質酵素 3D 立體結構圖」,獲選為當期封面,可見原子級的解析力。
圖片來源│《美國化學學會期刊》(Journal of the American Chemical Society)

冷凍電子顯微術 (Cryo-electron microscopy, cryo-EM) ,是今日結構生物學研究最重要的技術突破。百年來,生物學家逐漸了解蛋白質、脂、核酸與醣等生物分子對生命運作的影響與機制,但過去缺乏原子級解析度的觀測工具,大大限制了生物學家的「視野」。

近半世紀,觀測技術不斷突破,構築了結構生物學一窺生命奧秘的諸多觀測方法,像 X 射線晶體學、核磁共振光譜法,以及質譜法,各有優缺點。冷凍電子顯微術以其原子級的解析力,成為最受期待的觀測神器!

結構生物學的新「視」界:冷凍電顯技術

在過去,研究者想要看到高解析度的微觀世界,電子顯微鏡絕對是不二選擇。因為電子波長比可見光還短,使解析度可高於光學顯微鏡,甚至能看見個別原子的位置。

可惜的是,電子顯微鏡也有限度!它使用高強度的電子束照射樣本,還要讓樣本處在真空環境中,導致生物分子會嚴重變質,無法觀測。 2017 年諾貝爾化學獎冷凍電顯技術,正可突破電子顯微術的問題。

-----廣告,請繼續往下閱讀-----

冷凍電顯技術的問世,起源於蘇格蘭學者韓德森 (Richard Henderson) 以電子束觀測蛋白質「菌紫質」 。他利用留在細胞膜內的菌紫質不易因真空環境乾掉變形,以及在液態氮的冷凍環境下樣本不易受到電子束破壞的特性,証明了冷凍電顯技術可以用來觀測生物分子,並提供足以媲美 X 射線晶體學的解析度。

瑞士學者杜波克特 (Jacques Dubochet) 進一步改善冷凍環境!他的設計是:先將液體樣本鋪在金屬網格上,形成如泡沫一般的薄膜,再將薄膜浸入攝氏負 190 度的液態乙烷。這時樣本中的水會變成「玻化水」 ,意思是水凝固時不會產生冰晶干擾觀測,而是形成無結晶的玻璃化狀態。如此一來,就算將樣本放在真空的環境,也不會影響到樣本的結構。

第一步:將樣品放在金屬網上,並移除過多的樣品,樣品會在網目上形成薄膜。
資料來源│諾貝爾獎官網 2017 化學獎冷凍電子顯微鏡簡介
圖說設計│廖英凱、林洵安
攝影│林洵安
第二步:將金屬網快速射入攝氏 -190 度的液態乙烷,樣本將被急速冷凍的「玻化水」包覆。
資料來源│諾貝爾獎官網 2017 化學獎冷凍電子顯微鏡簡介
圖說設計│廖英凱、林洵安
攝影│林洵安
第三步:在攝氏 -190 度的低溫中,研究員進行電子顯微鏡的觀測,可保生物分子結構不受影響。
資料來源│諾貝爾獎官網 2017 化學獎冷凍電子顯微鏡簡介
圖說設計│廖英凱、林洵安

把樣本薄膜化,再急速冷凍,就彷彿按下時間暫停器, 使生物分子保持在凍結前一刻的結構。研究者可先將生物材料調整到想觀測的環境條件下,例如:給予不同的酸鹼值,不同的反應時間,再透過急速冷凍保持其結構,就能針對同一生物分子,觀察它在不同生化機制進程的結構變化。

不過,生物分子製備成樣本,排列的角度是隨機的,拍攝的影像是二維,怎麼組合成三維的分子結構呢?美國學者法蘭克 (Joachim Frank) 發展出一種演算法,可將不同角度的二維影像分類與整合、自動合成出三維圖像。

第一步:電子束撞擊隨機排列的生物分子,形成不同的影像。電腦把上千張相似的影像放在一起,變成一組,合成ㄧ張高解析度的二維影像。
資料來源│諾貝爾獎官網 2017 化學獎冷凍電子顯微鏡簡介
圖說設計│黃曉君、林洵安
第二步:電腦整理出所有角度的高解析度二維影像,計算影像的關聯性,得到高解析度的三維影像。
資料來源│諾貝爾獎官網 2017 化學獎冷凍電子顯微鏡簡介
圖說設計│黃曉君、林洵安

關關難過關關過!科學家就這樣逐一克服冷凍電顯技術的難題。隨著技術與零組件的持續精進,冷凍電顯技術成為今日研究生物分子最具潛力的新興技術。2017 年諾貝爾化學獎,即由韓德森、杜波克特和法蘭克三人共享。

結構生物學的四大神器

除了冷凍電顯技術,結構生物學的研究也運用到 X 射線晶體學核磁共振光譜法,以及質譜法。三項技術的原理、適用範圍有所不同,既能互相補足,也各有限制,研究者必須綜合不同技術的數據,才能推敲資料背後的自然法則。

-----廣告,請繼續往下閱讀-----

結構生物學發展初期,研究蛋白質等生物分子的主力是 X 射線晶體學(X-ray crystallography, XRC),只能觀測結晶後的生物分子。

1950 年代起,X 射線晶體學問世!科學家利用 X 射線照射結晶後的生物分子,由於生物分子的結晶會使 X 射線繞射,只要觀測繞射後的 X 射線紋路,就可經由數學方法計算出晶體的結構。

然而 ,X 射線晶體技術觀察的生物分子,本身必須能形成分子排列整齊的晶體,但不是所有蛋白質都能形成晶體。即使可以,很多蛋白質分子必須在特定的酸鹼和溫度等環境條件下才會結晶。研究者想要觀察生物分子在不同環境下的結構變化,往往缺乏分子晶體而無法如願。

核磁共振光譜法(Nuclear Magnetic Resonance Spectroscopy, NMR),可研究液體樣本,但較適用小分子。

核磁共振光譜法,是將樣本放置在磁場中,利用樣本中有些原子核 (如 1H 和 13C 等)可與磁場共振,先吸收強磁場,再放出電磁波。因為分子不同,可共振的原子核數量、位置都不一樣,因此釋放出的不同電磁波訊號。研究者可從接收的電磁波訊號,反推這些原子核在分子內的數量與分布。

1980年代起,核磁共振光譜法廣泛運用在觀察溶液中比較小的生物分子,例如:比較小的蛋白分子、RNA 結構或是構築生物膜的脂質分子。但就像一把雙面刃,核磁共振光譜法難以觀測較大、較複雜的生物分子。

-----廣告,請繼續往下閱讀-----

質譜法(mass spectrometry, MS),透過量測帶電粒子質量/電荷(m/z)比值的方式,了解物質的組成,無法「看見」物質的立體結構。

早在 1913 年,科學家就已提出質譜法。近二十年來,開始運用質譜法分析生物分子,例如正常細胞與癌細胞的差異,作為判斷癌症等疾病的輔助分析。但質譜法只能告訴我們物質的種類與數量,無法幫助我們解析物質的三維樣貌。

總括而論,既有三項技術雖揭開大量生物分子結構的奧秘,但都有限制與改善的空間。而冷凍電顯的問世,正克服了過去技術的限制,而開拓了結構生物學研究的視野。可惜的是,在生物技術研究的國際浪潮中,過去我國相關技術的建置速度,仍略遜國際科研大國。

2000 年起,因為「基因體醫學國家型科技計畫」支持,以及後續計畫經費的持續挹注,中研院陸續購入 X 射線晶體學、核磁共振光譜法,以及質譜法等儀器。2018 年 9 月,蔡明道團隊建置完成了國內首創的冷凍電顯中心。

中研院的一台高階冷凍電子顯微鏡:Titan Krios。為了不干擾冷凍電顯的觀測,整個環境設計為防震、吸音、控溫、控濕,一絲絲微風也沒有。圖中立者為中研院生化所副研究員何孟樵,坐者為冷凍電顯中心經理張淵智。
攝影│林洵安

至此,中研院結構生物研究的四大神器已然完整到位,取得與頂尖國際研究團隊競爭的門票!

冷凍電顯中心研究什麼?

「冷凍電顯技術可以克服其他儀器的限制,在可預期的未來,勢必慢慢成為主流研究方式。」蔡明道院士堅定地說。

2019 年 4 月,在冷凍電顯中心設立短短半年後,長期投入酵素研究的蔡明道院士與中央大學生科系陳青諭老師,利用冷凍電子顯微術,觀察 KARI 酵素在原子尺度的結構,並在不破壞酵素且提高實驗效率的情況下,研究 KARI 酵素的活性如何受到酸鹼環境的影響。

這是國際上第一篇利用高解析度冷凍電顯結構來探討酶學的論文,引發關注。

-----廣告,請繼續往下閱讀-----

這是因為 KARI 酵素與生質燃料的生產有密切關係,這項研究不只有助於理解生物機制的奧秘,還可能進入工業運用,實際解決當代能源危機與減碳難題。

除了理解生物分子結構,蔡明道院士認為冷凍電顯更重要的研究方向是:將過去生物學家對生物分子功能的理解,結合化學家對原分子尺度化學反應的理解,讓科學家更了解生化反應的機制。

除了長期投入的酵素研究以外,冷凍電顯中心可配合中研院專精的醣科學研究,以原子級的高解析度觀測蛋白質上的醣結構。或是對於疾病管制影響甚鉅的病毒研究,過去傳統上判定病毒或判斷生物是否感染病毒,常常利用血液中該病毒抗體的數量來間接推測。目前,蔡明道院士也與成大醫學中心的團隊合作,研究傳染病毒的微結構,協助疫苗研發。

台灣蛋白質計畫的野望

在 2017 年諾貝爾化學獎的加持下,今天冷凍電顯技術已是學術界人人追求的神器。

早在諾貝爾化學獎公布之前,2016 年下半年,蔡明道院士已經洞見時代的浪潮,規劃中研院冷凍電顯中心的建置。在中研院的支持下,很快地,在 2017 年 3 月訂購了儀器,經過一年半的建置與人才培訓,在 2018 年 9 月完成建置。

-----廣告,請繼續往下閱讀-----

冷凍電顯中心的建置,不只是取得與國際競爭的門票,蔡明道院士也戮力於優秀人才發掘與培養。

以冷凍電顯技術的 PI 和儀器經理來說,因為相關人才稀少又熱門,難以招募到已有相關經驗的外籍學者。蔡明道院士帶著國內結構生物學的研究人員,透過自學與參與國外課程、研究計畫等方式,訓練自己的技術人才。如今,中心已建置四台不同級別的冷凍電子顯微鏡,可供應初階使用者訓練、初階研究,自動化中高階研究與自動化高階研究。

此外,冷凍電顯技術的建置與人力成本高昂,最高階使用費用更需每日一萬四千元,年輕研究者的計畫經費往往難以支付。因此,蔡明道院士所主持的「台灣蛋白質計畫」,主動尋覓相關領域的優秀年輕研究者,不只是提供經費與儀器資源,更參與研究方向與科學探索的知識辯證,達到研究與知識的合作與傳承。

近期,台灣蛋白質計畫也著手於產學合作的發展。蔡明道院士認為蛋白質研究本身複雜度且難度夠高,研究內容也夠新穎,所需的儀器與知識,業界難以自行承擔。所以應由業界提出難度極高的問題,交由學術界研發解答,以充分發揮學術界的優勢與特性。

蔡明道院士打造的冷凍電顯中心,不僅是在儀器使用上能做到便利研究者的一體化服務,而是將厚植國家科研能力、協助產業發展、培養年輕研究人才等等崇高理想,耦合而成的知識傳承典範。

-----廣告,請繼續往下閱讀-----
中研院生物化學研究所特聘研究員蔡明道院士,創立中研院冷凍電顯中心,以厚植國家科研能力、協助產業發展、培養年輕研究人才。
攝影│廖英凱

延伸閱讀

本文轉載自中央研究院研之有物,原文為「把生物分子看得更清楚!」結構生物學最新神器–冷凍電子顯微鏡,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3663 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
筆耕卅五載,洞鑒電路板春秋——專訪PCB切片權威白蓉生
顯微觀點_96
・2024/03/30 ・4463字 ・閱讀時間約 9 分鐘

本文轉載自顯微觀點

低調的電子產品之母

拆開任何現代電子產品,都可以發現印刷電路板(Printed Circuit Board, PCB)的踪影。從地球外的人造衛星、最新款 iPhone 到傳統桌上型電話,印刷電路板都在其中乘載元件、傳遞訊號,因此也被稱為「電子產品之母」。

臺灣是舉世聞名的 PCB 出口大國,儘管出現廠商逐廉價勞動力外移的趨勢,臺灣企業的市占率依然超過三成,位居全球第一。

在追求精密化、提高良率的產業進步過程中,分析 PCB 切片顯微影像是不可或缺的步驟。要看得細膩真確,則有賴 PCB 樣本製備及影像判讀,兩項需要精密操作、耐心和敏銳判斷力的技術。

-----廣告,請繼續往下閱讀-----

從拋光臺到編輯臺

現年 85 歲的白蓉生,是兩岸 PCB 業界備受尊敬的分析技術權威,曾獨立經營《電路板資訊雜誌》8 年,並擔任臺灣電路板協會《電路板季刊》總編輯 25 年。他磨練 PCB 切片檢驗與判讀能力 40 餘年,持續對業界分享他的獨門 PCB 顯微分析心得。

影像來源:顯微觀點

自 1980 年代以來,白蓉生公開發表超過 800 篇圖文並茂的 PCB 檢測技術文章,並擔任國內外重要廠商的技術顧問。他不藏私的經驗分享,促成 PCB 製造商的技術躍進與營業成長。

PCB 檢測過程中,光學顯微檢驗是最為基礎,也提供最多資訊的步驟。進入顯微載物台之前,PCB 需要經過切片取樣、封膠、研磨、拋光、微蝕等步驟。其中切片與研磨、拋光需要格外細緻的操作能力,才能在顯微鏡下呈現清晰平整的切面。

良好的 PCB 切片樣本,可以將整個切面維持在同一個焦平面,均勻呈現孔道的鍍銅品質、不同金屬間介面的良窳,整個水平面上的顯微景觀都維持清晰對焦。透過尋找細微瑕疵,來改進 PCB 的製造過程。

-----廣告,請繼續往下閱讀-----

「在放大 1000 倍、3000 倍後,都可以維持切面對焦的樣本,才是合格的切片樣本。」

—在每一篇技術文章都分享數十張顯微影像的白蓉生如此強調。
平焦與起伏對比切片小圖20231013163621
圖 1 與圖 2 是常見 QA 等級的切片,同一個視野中就出現失焦。圖 3 與圖 4 則整個視野都能清晰成像,符合白蓉生要求的 FA 切片標準。影像來源:白蓉生

精細樣本製備與多重顯微技巧

白蓉生以業界檢驗分級 QC(Quality Control, 品質管理), QA(Quality Assurance, 品質保證), FA(Failure Analysis,故障分析)為案例,「合格的 FA,追求整個切片視野的焦聚一致,一覽無遺。一般 QC 或 QA 人員,慣於接受觀察球面樣品,對於看不清楚的部分不了了之。」

他指出,業界常見的球面切片無法得到清晰的全面影像,是研磨與拋光的技術與耐心不足。焦點起伏不定的切面無法展現細節中的魔鬼,工程師自然也無法精進製程、更換材料以祛除瑕疵,。

現任職欣興電子技術顧問的白蓉生,在廠內建立 FA 切片師的培訓與考試機制,30 年來僅有 20 多人合格。製備合格切片之後,影像判讀是分析製程的必須能力,因此白蓉生設立與 FA 切片師並行的 FA 判讀師制度,迄今也只有 20 多人合格。

白蓉生感嘆,「切片與判讀都需要下苦功練習,30 年來只有 3 個人獲得切片師與判讀師雙料合格。」

—來向他學習切片與判讀技術的,往往是 PCB 業界的資深工匠或管理階級,要放下既有經驗與身段並不容易。

白蓉生笑說,「來學切片判讀的,常常是經理或副理,對專業經驗自視甚高。但他們所學愈深,就愈是謙遜。登堂入室,才發現前方學海無涯。」

-----廣告,請繼續往下閱讀-----
白蓉生善用多種顯微技巧,樣本中的細微差異都無法逃脫他的法眼。影像來源:白蓉生

隨著顯微技術演進,業界流行使用電子顯微鏡觀察切片,認為看愈小愈好。白蓉生卻堅持以光學顯微影像作為判讀依據。因為在電子顯微鏡下,只有黑白影像,無法利用顏色分辨不同材質。

白蓉生說「用電顯判讀的結果,無法分析顏色。我認為都是胡說,像是文盲在看書。儘管能看到很小的顆粒,分析人員也只能看著黑白影像說:『那是雜質』。」

切換明視野、暗視野、偏光干涉等光學技術,再搭配透視與立體顯微鏡的組合,PCB 切片中不同金屬在白蓉生鏡下呈現明顯對比,相同金屬也會因為歷經不同處理而呈現不同顏色。電鍍銅與化學銅的差異、電鍍與焊接的品質,都在白蓉生的顯微影像中一覽無遺。

領導業界規格 畢生追求精進

除了基本的明場自然光,白蓉生也分享他常用的顯微技巧:以明場光源搭配干涉,在最暗與最亮的偏光下可獲得透視效果。明場兼用偏光與干涉可以使銅面呈現立體效果,且電鍍銅會呈現藍色易於分辨。採用偏光與干涉的單純暗場則能呈現最佳的材質對比效果。

-----廣告,請繼續往下閱讀-----

白蓉生強調,「因為能看出金屬介面的細緻型態,我們才能知道技術要如何改進。」

—「而不是把顆粒都標籤為『異物』,說服自己製程、材料很完美,失去進步的機會。」

在白蓉生指引的工藝改革下,原本表現平庸的欣興電子成為精密載板的重要國際供應商。他得意地說,「我們製作的 Daisy Chain 載板佈線連貫強韌,承受 500 次熱漲冷縮測試之後,電阻增加不到 5%。技術紮實到連 Nvidia 這種頂級客戶都大吃一驚。」

欣興電子雇用白蓉生為顧問後,他追求精進的態度製程水準帶來革命般的改變。白蓉生回憶,早先欣興電子的產品良率不到八成,「或許剛好可以維持公司運作,但也無利可圖。」

現在欣興電子的高階 IC 載板良率已穩定超過 9 成 5,股價也成長超過十倍。白蓉生笑說,「我沒有因為公司股票賺錢!我原本就不想要賺大錢,因為錢多了沒用,只是徒增煩惱。」

電鍍銅細微變形
電動車用的 5G 通訊電路板,在 50 次回焊之後必須維持電阻值變化在 5% 之內。圖中的細小變形就會導致電阻值增加。影像來源:白蓉生
電鍍銅在50次回焊後軟化變形
電路板回焊 50 次後,電鍍銅軟化變形,可能導致電阻增加。業界進行品質管控時經常忽略這種細節。需要細緻的顯微觀察技術才能發現。影像來源:白蓉生

以紙上技藝傳遞電路板工藝

話雖如此,白蓉生也坦承,「當年創立《電路板資訊雜誌》是生活所需,因為從安培離職,沒工作就沒收入啦!」

-----廣告,請繼續往下閱讀-----

從資深工程師轉為科技月刊發行人兼總編輯,白蓉生的生活更加忙碌,全副精神都浸泡在 PCB 技術知識的研讀和傳遞中。

他回憶,當時他自己擔任總編輯兼送報生,手稿交由妻子與另一位打字員處理,在沒有網路的時代,每一期要繳出 5 萬字圖文並茂的稿子。除了努力訪問國內廠商、專家,也要大量編譯國外刊物內容。當年雜誌收入以廣告費為主,每個月可以得到超過 20 份廣告委託,在沒有前例的科技月刊市場上,開拓出意外佳績。

《電路板資訊雜誌》從 1988 年發行至 1996 年,白蓉生在 8 年間自力編譯、採訪、寫作,從早晨六點到午夜睡前,都在蒐集資料、勤奮筆耕。

「我一周六天都在編雜誌,沒有應酬娛樂,也沒請過病假,因為連生病的時間都沒有!」

—月刊生涯的辛勤讓白蓉生難以忘懷。

雜誌停刊之後,白蓉生享受了兩年退休生活,發現自己閒得發慌。他受邀擔任臺灣電路板協會(Taiwan Printed Circuit Association, TPCA)的顧問及《電路板季刊》總編輯,繼續研究、傳授電路板顯微影像的判讀方法,以及細緻的製程改善技巧。

-----廣告,請繼續往下閱讀-----
白蓉生老師 小圖

《電路板季刊》迄今已發行 100 期,白蓉生也成為華語世界最重要的電路板知識傳遞者。

懷有珍貴 PCB 分析知識與技術的白蓉生,在兩岸業界深受重視,是各大廠商極力邀請的講師。他的判斷力不是來自學校或公司的教育體系,而是靠著多年來的勤奮自學。

好學、勤奮與謙虛的自我養成

白蓉生說,他少時家貧,因此就讀師範學校以省下學費,還能領錢和白米幫助家境。但師範學校學歷不如一般大學(當時師範學校專門培育小學校教師,僅需 3 年教育),心有不甘的白蓉生在小學任教三年後,考上中興大學化學系,同時擔任小學老師和大學生。

白蓉生在大學畢業後進入中華航空擔任化學工程師,反覆的電鍍工作並未帶給他成就感,他於是轉職美商安培電子(Ampex)。1969 年起,白蓉生在安培電子大量接觸 PCB 製造與檢測的第一線作業,開啟了鑽研 PCB 分析判讀的專業道路。

-----廣告,請繼續往下閱讀-----

1969 年,安培電子於桃園設廠,是臺灣 PCB 生產王國的發軔時刻。白蓉生在此接觸到國內最先進的 PCB 工藝。他樂於在下班之後繼續研究檢測材料,探索各種慣例外的顯微方法,逐步建立自己的 PCB 切片檢查技巧。

手動拋光使刮痕消失
樣品拋光也是白蓉生長年執著而深入的技術。他對學生一概要求手動拋光,以免電動轉盤拋光機的力量導致表面起伏不平。他強調,要用衣物布料等級的棉質針織布輕柔拋光,才能得到平坦無刮痕的樣品。影像來源:白蓉生

除了 PCB 製造工藝的獨到見解,對文學的喜愛也是白蓉生筆耕不輟的動力來源。他說,自己求學時力求節儉,一直步行上學,超過 40 分鐘的漫漫路途是他背誦古文的時間,對文學的興趣、寫作的欲望隨著路程逐漸滋長。

對於中年轉行,成立沒有前例可循的專業技術雜誌,白蓉生笑稱,「當初發行頭幾期雜誌就燒完 6 萬塊積蓄,我還真不知道能不能回本。」

從技術專家、顧問到專業刊物總編輯,白蓉生拓展並傳承 PCB 分析工藝將近半世紀。他至今保持30年前「永晝方塊每隨飯,長夜蟹文伴枕眠」的強韌動力,投入 PCB 檢測、寫作與講課,建構低調踏實的臺灣電路板工藝文化。

他認為,電子產業是臺灣立國基礎,業界訓練可以彌補產學落差,但好學、勤奮與謙虛的心態是學校或企業不能代勞的,得要由年輕世代主動保持。端正的學習心態結合不藏私的深入技術指導,能養成更多專業人才,使電路板工藝精進,提升業界整體價值。

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
1

文字

分享

0
3
1
凝固的時光:人體冷凍真的可行嗎?把自己冰起來要多少錢?——《真的假的!奇怪知識又增加了》
晴好出版_96
・2023/08/02 ・1906字 ・閱讀時間約 3 分鐘

還好礙於倫理考量,沒有人打算經由技術手段將奧茲冰人復活。不過冷凍人的復活倒是不少科幻小說中常用的哏。

最早的一篇可以追溯到 1931 年,故事的主角叫詹姆斯,他死後遺體被保存在低溫和真空中發射到太空裡,就這樣漂泊了幾百萬年。後來他的遺體被外星人復活,復活的方式也十分特殊:只復活了他的頭顱,並為他裝上了機械身體。就這樣在人類已經滅絕的時代,詹姆斯獲得了永生。

其實在現實中,雖然幾百上千年不好說,但要讓一個人凍上幾十年,並且仍具有「復活」可能性的技術早已出現,那就是人體冷凍技術。

獲得永生的起點——人體冷凍

1962 年,羅伯特.艾丁格博士(Robert Ettinger)出版的《永生不死的前景》一書,是現實中的人體冷凍的起點。艾丁格博士在書中指出:人類和大量低等動植物一樣,具有「冷凍復活」的潛力。他還在書中預言人體冷凍技術可以使「我們大多數人獲得永生不朽的機會」,並對此進行了嚴密的科學論證。這本書的出版標誌著人體冷凍保存運動的開端,艾丁格博士後來也因此被稱作「人體冷凍之父」。

-----廣告,請繼續往下閱讀-----

人體冷凍並不是簡單地將人一凍了之,而是以在未來的某個時刻將冷凍的人體喚醒為目的的冷凍。因此,在技術上,不但要考量如何將人凍住,也要考量在冷凍以及化凍時不會對人體產生傷害。像奧茲冰人那樣凍成一具乾屍,肯定是不行的。

不過經由前面小象由香和奧茲冰人的故事,我們已經了解,在生物體死後及時讓其進入低溫環境,可以很大程度上延緩甚至叫停讓屍體腐爛。同樣,人死後越快進入冷凍,細胞和身體受到的影響就越小。當然,只要提前簽好協議、做好準備、安排好一切事宜,及時進入冷凍狀態並不是什麼困難的事情。

要怎麼把活人冰起來?

常煮飯的廚藝愛好者都應該知道,一塊鮮肉,在經過冷凍再化凍後,往往會滲出大量的血水。這是因為在冷凍時,細胞中的水分會結冰,而這些冰晶會破壞細胞結構,從而造成細胞的死亡。凍肉化凍時滲出的血水,很大一部分就來自這些破損的細胞。這顯然是我們在以喚醒為目的的人體冷凍中不願意看到的結果。

因此,在對人體進行冷凍之前,需要經由手術和灌注,將人體中的血液替換為冷凍保護劑。冷凍保護劑可以降低冰點,減少冰晶的產生,最大限度地避免對身體細胞組織造成破壞。然後,人體才會進入降溫程式。經過 60 小時的降溫後,冷凍的屍體就可以被轉移到巨大的液氮罐中長期保存了。

-----廣告,請繼續往下閱讀-----

如今世界上冷凍人的數量已經接近 500 人,但能夠獨立實施人體冷凍的機構只有 4 家,分別是美國的阿爾科生命延續基金(Alcor Life Extension Foundation)及人體冷凍研究所(Cryonics Institute)、俄羅斯的 KrioRus 和中國的山東豐銀生命科學研究院。其中人體冷凍研究所是由「人體冷凍之父」艾丁格博士創立,而阿爾科生命延續基金會中保存著全世界第一個被冷凍保存的人詹姆斯.貝德福(James Bedford)的身體。

按照計畫,貝德福本應該在進入冷凍狀態 50 年後,也就是 2017 年被喚醒,但阿爾科生命延續基金會至今並未行動。

一方面,我們可能仍未對喚醒冷凍人在技術上做好準備;另一方面,據傳聞,貝德福當年所使用的冷凍保護劑似乎對人體傷害甚大,也就是說,就算技術完備,貝德福是否能夠醒來也十分不好說。

人體冷凍很貴嗎?

進行人體冷凍的費用倒是並沒有想像中那麼高昂,以這幾家機構中收費最高的阿爾科生命延續基金會在 2017 年的報價為例,進行全身冷凍的費用約為 20 萬美元,還有一個更便宜並且更具有科幻意味的選擇——單獨冷凍頭部,僅需 8 萬美元。不過,在現有的技術手段之下,選擇人體冷凍,比起「追求永生」和「無限可能」,更像是在參與一場結果未知的科學實驗。

-----廣告,請繼續往下閱讀-----

當然,技術仍然不斷進步,關於人體冷凍的最新進展似乎為貝德福以及其他被凝固在液氮罐中的人們帶來了一些希望:據報導,2020 年 12 月,一個在液氮罐中沉眠了 27 年的胚胎被取出植入一位母體的子宮,並分娩出一名健康的女嬰。

如果有一天,我們真的像艾丁格博士所說的那樣,打破生與死的邊界,獲得「永生」之時,生命是否也就失去了很多意義?

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
晴好出版_96
3 篇文章 ・ 2 位粉絲
晴方好,雨亦奇,換個角度都是「晴好」