1

6
1

文字

分享

1
6
1

布爾與邏輯--《科學月刊》

科學月刊_96
・2015/12/12 ・5223字 ・閱讀時間約 10 分鐘 ・SR值 560 ・八年級

董世平/中原大學應用數學系教授,美國伊利諾大學數學博士,專長數理邏輯,曾任符號邏輯協會東亞委員會委員九年。

布爾追尋真理的熱忱,導引他發現思想的法則。他以代數的手法將思想法則表現為後人所稱的布爾代數,不僅成為電腦硬體設計的基礎理論,更開創了數理邏輯學的深刻發展。

天上的星星,依照牛頓所發現的「萬有引力定律」而運動;而人的思想,也有它運作的法則嗎?1854年,布爾出版了他的著作《思想法則之探討》,在這本書中,布爾給了上述問題的答案:人的思想是有法則可循的。不僅如此,我們可用數學的方式來描述這些法則。這本書出版之時,能明瞭的人甚少,但這本書對人類影響之大,絕對是當時的人,甚至布爾本人都難以想像的。

理性是人行事的基礎,如巴斯卡(Blaise Pascal, 1623~1662)所說:「人是會思考的蘆葦。」我們也說:「物有本末,事有先後。知所先後,則近道矣。」雖然人人做事都有其背後的邏輯,但意識到邏輯本身,應是後來的事,正如人人都呼吸,但意識到呼吸,乃至知道空氣的存在,都是相當後來的事了。一個人沒學過邏輯,甚至沒聽過邏輯,並不表示這人做事沒有邏輯,或不需要邏輯。

-----廣告,請繼續往下閱讀-----
01
巴斯卡。 Source: shutterstock

邏輯學門的發展

02
亞里士多德(左)與他的學生亞歷山大。Source: shutterstock

一般來說,把邏輯或理則學當作一門系統知識來學習,是從亞里士多德開始,故傳統邏輯被稱為亞里士多德邏輯,大家最熟悉的即所謂的「三段論」。

大前提:人會死
小前提:蘇格拉底是人
結論:蘇格拉底會死

當我們從所知或已知的事物而得到結論時,這個思考或邏輯過程,皆使用三段論。人會犯錯,也會犯邏輯的錯誤,有可能是前提錯,即他的認知就是錯的,但也常發生的是,推論的過程產生錯誤:

大前提:人會死
小前提:蘇格拉底死了
結論:蘇格拉底是人

我們也許會說這種錯誤太不應該了,但犯這種錯誤的人比比皆是,在報章雜誌及電視上不時可見這些錯誤的推論。因這些人的心態是先有結論,再為結論找理由,也難怪會犯這種錯誤。希望我們能如孟子所說:「淫辭知其所陷」,而不為其所陷。邏輯在希臘哲學時期的建立,也就是為了分辨辯士在辯論時,何者是講理,何者是狡辯,進而使個人能合理的思考,正確的判斷。

邏輯不僅在希臘發展,在同時期的中國亦現其蹤跡。春秋戰國時期的名家及墨家的論述中也都有「邏輯詭論」,或如莊子所說:「一尺之杖,日取其半,萬世不竭。」;在希臘有完全相同的說法,如「飛矢不動」,也與「阿基里斯詭論」有相通之處。但可惜的是,中國的邏輯後來未有系統性的發展,僅留下了「矛盾」這個有趣的典故:楚人有鬻盾與矛者,譽之曰:「吾盾之堅,物莫能陷之。」以譽其矛曰:「吾矛之利,於物無不陷也。」或曰:「以子之矛陷子之盾,何如?」其人弗能應也。夫不可陷之盾與無不陷之矛,不可同世而立。」─《韓非子》。

-----廣告,請繼續往下閱讀-----

邏輯數學化

人類用亞里士多德的方式學習邏輯,至今已2500 年了。然而,我們必須用「理性」,才能得到邏輯正確的結果嗎?唯有「理性」,才能知道「理」之「則」嗎?

布爾提出兩個突破性觀念:其一,用符號表示邏輯命題;其二,可用代數作符號運算。總體來說,我們可先用符號代表命題,用公理表示邏輯的規則,再以代數的方式運算。在運算的過程中,不需考慮符號本身及運算的意義,運算完畢,將符號再帶回原本的命題,即為邏輯正確的結果。至此,推論的過程完全被公式的運算取代,不僅大大增加處理命題的能力,完全避免人有意無意的錯誤,藉著公理的選擇,可發現命題之間的關聯,亦可清楚看見邏輯的本質,其好處不勝枚舉,更有許多後世才發現的益處。

布爾在他著作中未曾提出一套完整的公理系統,也因此現今我們有許多種不同的布爾代數系統,本文僅列出一個較簡潔的系統,我們藉此來討論布爾將邏輯符號化及代數化的意義。

在討論符號化的意義之前,我們先引用布爾在他1847年所出版《邏輯之數學分析》中所說的:「認識現今符號代數情形的人都明瞭,分析過程的正確性並非建立在對符號所用的解釋,而是在它們組合的定律上。」使用符號不僅為方便表示,亦使我們不再受限於特定的解釋,因此可擴展應用的範圍,也才有現今各樣的數位產品。

-----廣告,請繼續往下閱讀-----

我們藉由布爾曾用的交換律b+a=a+b 來說明。你可把ab視為兩個集合,+為聯集,=為集合相同;亦可把ab視為整數,+為加法,=為數字相等;亦可把ab視為命題,+視為邏輯連辭「或」,而=視為意義相等。在應用時我們固然需要對這些符號賦予特定的意義,但在推導性質時,我們只需按著他們組合的定律來做,如交換律,如此所得的性質可用在集合、數字或命題及其他可能的解釋上。

03

對於邏輯的數學化,我們可用布爾所用的另一個例子來說明:

x2 = x xx2 = 0 → x(1-x)=0

這個過程相信是任何學過解方程式的人都明白的,當把0視為空集合,1視為包含所有個體的宇集(universalclass),1-x為包含所有不在集合x內個體的集合,x2=x 則意義為「具性質P 且具性質P 的集合,即為具性質P的集合」,因此布爾用上述的代數過程得到了古典邏輯中集合的「矛盾原則」,即不可能有一個集合同時具有性質P及性質非P,亞里士多德視矛盾原則為邏輯的基礎公理,但布爾則用數學方法顯示矛盾原則可由另一個看來更直觀的x2=x 公理所導出。

-----廣告,請繼續往下閱讀-----

邏輯的符號化及數學化並非始自布爾,有不少的先驅者,最著名的當是萊布尼茲(Gottfried Wilhelm Leibniz,1646~1716),較布爾早生了約170 年。萊布尼茲曾期望當兩個人辯論時,兩個人能坐下來說:「我們算一算。」也就是用數學方法來解決爭論。符號化及數學化的威力已為現今所認知,但這兩者也意謂著抽象化,離人的直觀與經驗越來越遠。這似乎為認識事物本質所必要的,我們亦見此於物理的發展。由布爾的成就我們亦可見,透過抽象化,我們可更清楚認識及了解「思想」這個原本極為抽象的概念。

04
萊布尼茲。Source: shutterstock

范氏圖與真值表

邏輯在布爾之後有極迅速的發展,現今常用兩種工具:范氏圖及真值表。由前列布爾代數公理,我們可見「集合代數」是一個布爾代數。史東(Marshall H. Stone, 1903~1989)亦證明了任一布爾代數可用一「集合代數」表示。范氏圖即為我們常用來表示集合關係的一個視覺化工具,而視覺化表示亦為布爾使用符號所希望能達到的目標,使人有更直觀的認知,但使用視覺化工具須注意其侷限性。

范氏圖用圓表示集合,1、2、3個圓交疊後,分別可得2、4、8個區域,每一個區域代表每一個集合僅使用一次可得交集的情形,在3個圓交疊的情形下,區域2為,區域為。那4 個圓交疊可得幾個區域呢?我們也許會猜21=2、22=4、23=8、24=16,16個區域,但我們若認真的去畫,我們會發現最多只能畫出14個區域。

然而,4個集合實際上應該有16個區域,所以范氏圖無法表示n ≥ 4個集合所有可能的情形,用n個圓最多可畫出多少個不同的區域?這個例子告訴我們,用歸納法一開始所得的歸納結果有可能是錯的,有興趣的讀者可嘗試用歸納法得到正確的公式,再用數學歸納法證明公式是正確的。

-----廣告,請繼續往下閱讀-----

另一個有用的工具則是真值表。它用P、Q代表命題,∧(且)、∨(或)、¬(非)、→(若⋯,則)、→(若且唯若)、T(真)、F(假),我們有下列定義:

05

我們可看見P → Q 和¬Q → ¬P 及¬P ∨ Q 對應的真假值完全一樣,即此三者為邏輯等價,當我們要證明「若P則Q」(P→ Q) 時, 我們證明「若Q為假,則P為假」(¬Q → ¬P),則「若P 則Q」得證,此即為「歸謬證法」或「矛盾證法」的本質,同理,若我們能證¬P ∨ Q 為真,我們亦證明了「若P 則Q」。

布爾之後的邏輯

邏輯非自布爾而始,亦非自布爾而終,但邏輯自布爾後,就再也不一樣了。我們也許可以如此比擬:克卜勒藉著對行星運動的觀察數據,以計算及歸納得到了「克卜勒行星運動定律」。牛頓依此發現了「萬有引力定律」,如此不僅可解釋「克卜勒行星運動定律」,我們亦可藉此定律計算出物體的運動軌跡。同樣的,亞里士多德歸納出正確思想應該遵守的規則,而布爾用代數的方法解釋了正確思想的規則,我們便可藉著他的發現,計算出正確思想應得的結論。

布爾的觀念及符號就留在現今數學裡,因為他使用符號的方式來處理邏輯,我們也就有了「符號邏輯」這個名詞。現今邏輯界最重要的學會,即「符號邏輯協會」(The Association for Symbolic Logic),而它所出版的代表期刊即名為《符號邏輯期刊》(The Journal of Symbolic Logic)。當代對邏輯的研究主要來自數學、哲學與計算機領域,對布爾代數本身的研究亦極活躍,蒙克(Donald Monk)主編了共三冊的《布爾代數手冊》(Handbook of Boolean Algebras),從其中包含的多樣主題,即可見布爾在數學的影響之廣。

-----廣告,請繼續往下閱讀-----

現今一些較熱門的題目也和布爾邏輯有所關聯,例如,哲學界所研究的「非古典邏輯」,其研究的方式多為先將布爾代數用不同的公理表示,再將其中一些公理,基於哲學方面的考量加以弱化,如此可得如直觀邏輯(Intuitive Logic),模態邏輯(Modal Logic)等等不同的邏輯。

人工智慧

人工智慧則是一個常被討論的題目:機器能有智慧嗎?布爾告訴我們,機器藉由代數推導後,可得到正確的結論。在命題邏輯不考慮計算複雜度(computational complexity)的前提下,人所能做到的,機器都可做到。但在一階邏輯時,筆者認為由「哥德爾不完備定理」可知,機器所能做的無法跟人一樣,這也是潘洛斯(Roger Penrose)在《皇帝新腦》(Emperor’s New Mind)書中所用的論證,這仍是人工智慧學者一個爭論不休的問題。

乏晰邏輯

-----廣告,請繼續往下閱讀-----

乏晰邏輯(Fuzzy Logic)在工業界已有許多的應用,其特點是,一個命題的真假值可為一個介於0 與1 之間的實數p,亦可視為[0, p] 區間;而傳統邏輯下,一個命題的真假值限定為假與真,或布爾所用的0 與1 表示。

1960 年代, 邏輯學者逐漸發展出布爾值模型(booleanvalued model),其命題的真假值對應至一個布爾代數,並以此將柯亨(Paul J. Cohen, 1934~2007)的結果( 註) 給予一個相對簡潔的證明。此處須特別強調「無法證明是對的」和「錯的」其意義是不相同的。由布爾值模型後,又發展出布爾值分析(boolean-valued analysis),並由此得到數學上有意義的成果,乏晰邏輯可說是布爾值模型另一個有用的特例。

註:此結果得到數學最大獎菲爾茲獎,其敘述在使用一般通用的集合論公設時,無法證明選擇公設(Axiom of Choice)和連續統假說(Continuum Hypothesis)是對的。

量子邏輯

另一個著名的非古典邏輯為「量子邏輯」,由量子邏輯可衍伸出「量子計算機」。其使用量子演算法,可在多項式時間內做「因數分解」,這是一般計算機與圖靈機(Turing machine)至今仍無法得到的結果。但量子計算機與圖靈機所能計算的函數總體是相同的,量子計算機與現今使用的計算機相較,或許其計算複雜度有差別,但從可計算性(computability)來看,兩者並無不同。

06
英國科學家潘洛斯,在物理、數學等領域有卓越貢獻。他曾撰寫過一系列探討人類意識與物理之間關係的書籍,如1989 年出版的《皇帝新腦》。Source: Festival della Scienza

綜合上述,我們可說現今邏輯與計算的發展,都是建立在布爾的基礎上,我們是沿著他給我們的方向繼續前進,而他的影響不僅遍及數學各領域,亦延伸至其他領域,如哲學、計算機科學、語言學等。

對真理的追求

我們不禁要問:為什麼布爾能有如此偉大的成就?當然他一定是個天才,但他的成就並非憑空而來,他也經過時間的醞釀,使他的思想日漸成熟。也由於這些成就,使他對符號的能力有更清楚的認識。他先前出版的《邏輯之數學分析》不僅不成熟也包含謬誤。在思考的過程中,他也曾面對失敗與挫折,但他不放棄,因此得以出版《思想法則之探討》。另外他勇氣過人,他敢思想「思想」,這個極端抽象卻又最根本的問題,大名鼎鼎的萊布尼茲嘗試過、努力過,但無特別的成果,而布爾不畏艱難,終於有所成。

最後,因布爾具有「對真理追求的真誠」(It is integrity in pursuit of the truth),在他寫給好友笛摩根的信中,他先說笛摩根具有這個特質,而他在這一點並不會輸給笛摩根,他甚至寫了下面的話:「我不認為任何人比我寫那本書時的心智,曾充滿更熱烈的渴望,僅為了要發現並說出真理,而不為其他。(I don’t think any man’s mind ever was imbued with a more earnest desire to find out the truth and say it and nothing else, than mine was while writing that book.)」就是這種真誠讓布爾發現了「思想」的法則,這個發現也改變了人類。

front本文選自《科學月刊》2015年11月號

延伸閱讀:
喬治.布爾─自學成大器的數學家
布爾與電腦

什麼?!你還不知道《科學月刊》,我們46歲囉!

入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
科學月刊_96
249 篇文章 ・ 3704 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
通信三本柱:通信模型大解密
數感實驗室_96
・2024/06/30 ・654字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

想像一下,你和朋友在咖啡廳聊天。這看似簡單的互動,其實包含一個基本的通信模型喔。你是傳輸端(transmitter),朋友是接收端(receiver),而環境中的其他聲音則構成了通道(channel)。這三者共同組成了基本的通信模型。在接下來的文章中,我們將深入探討這個模型的每一個部分,並了解它們如何影響我們日常的通信體驗。

以上就是數位通信系統的三大支柱:傳輸端、通道和接收端的簡單介紹。實際上,它們的功能遠不止於此,整個通信系統的複雜程度超乎想像。除了數位物理層的演算法和電路設計外,還涉及類比電路、網路層等不同面向,真的是一門博大精深的領域。

通信技術致力於解決全球數十億人每天遇到的實際問題。如果你對於挑戰高難度的數學、物理、演算法問題感興趣,這將是一個充滿寶藏的領域。成功解決這些挑戰,不僅具備巨大的商業價值,更能推動通信科技的進步,提升全人類的通信體驗。你是否已經躍躍欲試了呢?

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/