0

0
0

文字

分享

0
0
0

藥物設計開外掛!深度學習如何應用在新藥開發?

研之有物│中央研究院_96
・2018/08/28 ・4913字 ・閱讀時間約 10 分鐘 ・SR值 561 ・九年級

  • 採訪編輯|柯旂 美術編輯|張語辰

當藥物設計碰上電腦運算──節省成本又降低風險

中研院應用科學研究中心、生物醫學科學研究所合聘的林榮信研究員,同時也是台大醫學院藥學系與長庚大學工學院的合聘教授,與團隊以分子動力學、統計物理、結構生物等學問為法,藉由電腦的高速運算能力,模擬藥物分子如何與體內的標靶分子作用。此舉不但能縮減藥物研發的時間及成本,也有助了解藥物在人體中的生化反應,降低藥害風險。

每種藥物,都是得來不易的基礎研究與後續研發成果。有些要十年、有些要等二十年、有些直到現在還在等。圖片來源/iStock

現代的藥物研發流程,可簡要地敘述為以下步驟:1. 先透過大規模基因體學、與蛋白質體學實驗,找到可成為藥物的分子及治療標靶 → 2. 解出其分子結構 → 3. 依此分子結構來設計合成藥物化合物。雖然這過程幾行字就打完,但不僅需要生物醫學、藥理學、生物化學、藥物化學等跨領域團隊投入研究,也耗費超乎想像的金錢與時間。 一種藥物,從實驗室研發、臨床試驗、爾後上市的時程十分漫長,政府與科學家們皆在思考如何加速此流程,減少研發資源的錯置,並協助更多民眾緩於苦痛。

我們使用的藥物之所以有藥效,是因為藥物分子與體內的標靶分子(大多是蛋白質),產生交互作用所致。

以往主要是透過生物化學實驗、或生物物理實驗來了解此交互作用,但是這些實驗方式,並不能提供「藥物分子」與其作用的「標靶生物分子」之間作用的動態關係,而且大部分的實驗方法,無法提供原子尺度的資訊,因此對藥物設計的直接用處有限。要知道,許多藥物分子只要差了一個原子,其藥效就有可能截然不同。此外,這些藥物開發需要的實驗所費不貲,一個錯誤的決策,便會導致研究進度的推遲與研究資源的耗損。 有鑑於此,林榮信團隊的著眼點為:如果能夠在藥物研發初期,先利用電腦模擬藥物開發所選定的「標靶分子」,來快速篩選出有機會的「候選藥物分子」,高精度計算兩者相遇後會如何作用與運動,就能很大程度地協助實驗團隊少走冤枉路,減少藥物開發失敗耗損的人力、物力與光陰。 要達到這個目標,不僅有賴電腦逐年進步的高速運算能力,以及計算物理、化學界對計算方法的精進,也有賴科學家對於生物分子結構的了解。

本文專訪林榮信,從物理出身,跨足計算機科學與分子動力學,現將專業運用於藥物設計。攝影/張語辰

藥物設計核心概念:蛋白質結構會隨時間改變

Q:藥物設計,最重要的觀念是?

藥物設計不能只停留在「結構」層次,也需把蛋白質的「動態」考慮進去。

要模擬藥物在原子、分子層次的藥理作用反應,需先得到會和藥物分子作用的體內蛋白質分子、或其他生物分子的結構。 雖然有蛋白質結構資料庫 (Protein Data Bank) 提供了許多利用 X-ray 結晶學、核磁共振學、低溫電子顯微術所決定出來的高解析度分子結構,但該資料庫裡的分子結構實質上仍只是模型。舉例來說,不可能分子裡面每個原子的 X, Y, Z 位置都真的固定在那裡,我們知道一般實驗條件中,蛋白質是相當動態的。因此,這需要有結構生物學的知識,來理解蛋白質結構資料庫中「分子結構」的真實意義。

諾貝爾獎得主克里克 (Francis Crick, 1916~2004) 有一句名言:「如果你要了解功能,你要研究結構」。這邊所謂的功能,是指生物分子的功能。圖片來源/Wikipedia 。資料來源/〈挑戰神奇子彈—高效能計算與藥物設計〉,作者:林榮信

我們做藥物設計,相當需要和結構生物學的團隊合作。我們以分子動力學 (molecular dynamics) 模擬出來的蛋白質動態資訊,需要透過進階的生物物理實驗,間接驗證所得到的動態訊息,例如:帶有時間解析度的 X 射線晶體學、甚至是自由電子雷射。不過,這些實驗技術雖持續有進展,仍然進展得十分緩慢。 學術研究有趣的現象是,學術界像個很大的生態環境,有些人會進來、有些人會出去;進來的時間點不同,看到的世界也很不同;而每個人獲得與提供的資訊都不太一樣,每次進來的人都會留下不同程度的進展。像這樣逐步推進,從歷史來看,通常要用二、三十年或以上的時間尺度,才比較看得出很突破性的研究進步。

用深度學習預測藥物和標靶分子反應活躍度

Q:目前實驗室的研究方向?

藥物分子如何與體內的生物分子結合、交互作用,是我們研究的核心主題。

例如,若要開發天然物 (Natural product) 製成現代西方醫學的藥物,過往要從古籍或文獻去看某種草藥或複方有什麼可能的活性,接著萃取、純化出有效化合物之後,要再透過生化實驗測試其生物活性,這是一個很漫長的測試過程,期間也需要很多的推測。 這幾年來,我們發展出計算藥物分子和不同蛋白質系統反應的程式,並建構成 idTarget 「藥物標靶預測平台」,開放給大家運用,方便其他研究人員探索藥物可能的作用標靶。 我們的想法是,要多多重視、運用結構生物學近二十年的大量結構資料,配合藥物分子和蛋白質結合的自由能計算,先找出藥物分子和那些蛋白質較有可能作用。我們知道,化學上一個反應會不會發生、或多容易發生,可以由自由能來預測。因此,生物系統上快速、準確的自由能計算,一直是我們實驗室的核心基礎課題。我們最近也運用深度學習,來開發自由能計算的方法。

林榮信團隊建立的「藥物標靶預測平台」 idTarget ,只要上傳藥物分子結構圖,便能預測蛋白質資料庫 (Protein Data Bank) 其中可能結合的標靶蛋白質分子。資料來源/idTarget

我們實驗室另一個重點,是將傳統常見的藥材以科學方法再研究,這也是目前醫藥研究的重要方向之一。 例如,本草綱目記載「天麻」具有安神與鎮定的效果,而現職中國醫藥大學的林雲蓮教授團隊發現,天麻中有個叫作 T1-11 的新的分子,與過去較熟知的天麻素有很不同的作用;另一方面,中研院生物醫學研究所的陳儀莊博士團隊則發現, T1-11 分子能用於治療亨丁頓舞蹈症。基於這些研究發現,我們實驗室透過電腦設計適合的藥物分子,並由台大化學系的方俊民教授團隊將藥物合成出來。這就是一種新藥開發的跨領域合作方式。

不受限於科系,從高中點滴為未來鋪路

Q:您以前讀物理,怎麼會跨領域至藥物設計?

我想要研究藥物設計,不是某天靈機一動決定的,而是做研究的路上漸漸地朝這方向發展。 一開始,也就是讀台大物理系時,某次導生聚會中,那時的導師陳永芳教授對我們說:「21 世紀的物理,應該是生物物理 (Biophysics) 」,那次以後我心中就一直有個想法,覺得日後研究「生物物理」會是個不錯的方向。 後來,大三時開始發現統計力學 (Statistical mechanics) 是很有意思的領域,因為這門學問關注如何理解所謂的複雜系統。很多物理是關注比較單一的系統,例如原子鑽進去有夸克;但有另一個物理研究方向,是去看如何處理很大、很複雜的問題。現在我研究藥物設計,也是關注體內的生物分子和藥物分子之間,整個系統如何產生複雜的反應。 時間點再往前一點回顧,我在建中時很幸運地得以參加第一屆的「北區高中理化學習成就優異學生輔導實驗計畫」,每兩個禮拜的週末,要從台北坐車去清華大學受訓一整天。當時由清華大學物理系、化學系的各六位老師(包含:李怡嚴、陳信雄、王建民、古煥球、劉遠中、張昭鼎、儲三陽等教授),教我們很多不是高中課本裡的知識。比較早接觸這些大學才能學到的物理和化學,我們就能提早思考將來有興趣的是什麼,因為那時候高中還沒分系,沒有框架綁住自己,這算是蠻難得的人生經驗。

不同的課程,會提供不一樣的世界,如果沒有接觸,就不會知道有那種思考的存在。

但是,我第一次在研究上真的從事「生物物理」相關的題目,已經是 1996 年到德國于利希研究院 (Forschungszentrum Jülich) 讀博士班的時候了。在這之前,我在台大物理碩士班的研究領域是計算物理 (Computational physics);到了德國,我的指導教授 Artur Baumgaertner 原本是研究高分子物理,其博士後的指導教授是著名的 Prof. Flory,他那時已經跨足在生物物理做了十年左右的研究,問我對生物物理有沒有興趣?我一聽也覺得不錯,便一頭栽進去了。那時研究的題目,是探討像蜂毒蛋白這樣的多胜肽大分子,究竟是透過什麼物理機制穿過細胞膜這樣的屏蔽。 德國的于利希研究院 (Forschungszentrum Jülich) 的型態很像中研院,由三十幾個不同的研究所組成,擁有超過 5000 位研究員,在廣大的校園內,走幾步就到另一個所,非常容易做跨領域合作。這裡在當時有全歐洲最大的超級電腦中心,因此對我的研究非常有幫助。我 2007 年回去訪問,他們剛添置了 72 座 IBM 剛推出的 Blue Gene P,因此我與同事在這新建置的機房留影。

于利希研究院的超級電腦中心。圖片來源/林榮信提供

2000 年博士畢業後,我在美國加州大學聖地牙哥分校的霍華休斯醫學研究所工作,2001 年初,有天指導教授 J. Andrew McCammon 發了一封郵件到實驗室群組,問:「我有個新的藥物計算方法的初步構想,有沒有人想開發這個方法?」之前我就希望我的研究成果能有較大的產業價值,因此很快就回應,而我也成為這個方法開發的小組領導人。 當時的藥物計算程式,剛得到一個很大的進展,但仍只考慮蛋白質等生物分子為一個靜態的結構。我們在那時首度將「藥物設計」的計算與「分子動力學」結合,這剛好是我德國博士班時的專業,我又剛好具備許多寫程式及平行計算的經驗,就將所需要的不同計算工具整合在一起。

 無所畏懼擁抱跨領域新知,藥物設計一點也不難

Q:「藥物設計」很難學嗎?

我發現其實現在學生們學習速度非常快,一旦他決定想進到這個領域,便會盡其所能去學,只是目前國內還沒有適當的藥物設計課程,提供完整的訓練。 因此,2018 年 3 月我們在中研院舉辦了「計算藥物設計方法與應用的前沿進展」工作坊,除了回顧藥物設計的重要文獻,介紹藥物設計的程式工具,也選了一些藥物分子與其作用的蛋白質分子讓學生們上機演練,了解其中的計算細節、眉眉角角。 如果對這領域有興趣,千萬不要認為看起來很難,想等到研究所再來了解。其實越早學習、並習慣接觸跨領域的學科,絕對是事半功倍。 延伸閱讀:

本著作由研之有物製作,原文為《高效能計算藥物設計:更精準的新藥開發》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

在網站上看不過癮?研之有物出書啦! 《研之有物:穿越古今!中研院的25堂人文公開課》等著你來認識更多中研院精彩的研究。

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2355 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
有圖沒真相!?GAN 人工智慧系統的發展與未來——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/31 ・4731字 ・閱讀時間約 9 分鐘

醉後成為 GAN 之父

2013年秋天,伊恩.古德費洛(Ian Goodfellow)與大學實驗室夥伴在酒吧舉行歡送派對。大家就座,開始猛灌精釀啤酒。酒過三巡,古德費洛已有些微醺,這群研究員開始爭論什麼才是製造能夠自我創造相片寫實影像的機器之最佳途徑。

他們知道可以訓練一套神經網路來辨識影像,然後逆向操作,使其產生影像。但它只能產生一些精細、有如相片的影像,這樣的結果實在難以令人信服。

不過古德費洛的夥伴們有一個主意。他們可以對神經網路產生的影像進行統計分析──辨識特定像素的頻率、亮度,以及與其他像素間的關係。

然後將這些分析結果與真正的相片進行比對,這樣就可以顯示神經網路哪裡出錯了。問題是他們不知道該如何將這些資料編碼輸入他們的系統之中──這可能需要數十億的統計次數。

古德費洛提出一個完全不同的解決之道。他解釋,他們應該做的是建立一套能夠向另一套神經網路學習的神經網路。第一套神經網路製造影像,企圖欺騙第二套神經網路認為這是真的。第二套會指出第一套的錯誤,第一套於是繼續嘗試欺騙,就這樣周而復始。他表示,如果這兩套相互對抗的神經網路對峙得夠久,他們就能製作出寫實的影像。

但是古德費洛的夥伴們並不認同。他們說這主意甚至比他們的還爛。同時,若非他已有些醉了,古德費洛可能也有同感。

「要訓練一套神經網路已經夠難了,」清醒時的古德費洛可能會這麼說,「你不可能在正在學習演算法的神經網路中訓練另一套神經網路。」不過他在當時完全相信可以做到。

當天晚上他返回公寓,他摸黑坐在床邊的桌前,仍然有些微醺,筆記型電腦螢幕的光反射在他臉上。「我的朋友是錯的!」他不斷告訴自己,同時用其他計畫的舊編碼來拼湊他所說的兩套對抗的神經網路,並且開始以數百張相片來訓練這套新裝置。

幾個小時後,它開始顯現他所預期的效能。生成的影像很小,和一片指甲一樣,而且還有一些模糊。不過它們看來就和相片一樣。他後來表示,他完全是運氣來了。

「如果它不成功,我可能就會放棄了。」他後來在發表此一概念的論文中將它稱作「生成對抗網路」(generative adversarial networks,GANs)。自此之後,他成為全球人工智慧研究圈口中的「GAN之父」。

生成對抗網路的蓬勃發展

2014年夏天,他正式加入谷歌,當時他已在積極推廣GAN,強調這有助於加速人工智慧的研發。他在說明概念時,往往會以理查.費曼為例。費曼曾在教室黑板上寫道:「我創造不出來的東西,我就不了解。」

古德費洛相信費曼此一名言除了人類之外,也可以適用於機器:人工智慧創造不出來的東西,它就不了解。他們指出,創造,能夠幫助機器了解周遭的世界。

GAN使人工智慧互相訓練與學習。圖/envatoelements

「如果人工智慧可以用逼真的細節去想像世界──能夠學習如何想像逼真的影像與逼真的聲音──這樣可以鼓勵人工智慧學習現實存在的世界結構,」古德費洛說道,「它能幫助人工智慧了解所看到的影像與所聽到的聲音。」如同語音、影像辨識與機器翻譯,GAN代表深度學習又向前邁進一大步。或者,至少深度學習的研究人員是這麼認為。

臉書人工智慧研究中心主任楊立昆(Yann LeCun)在2016年盛讚GAN「是深度學習近二十年來最酷的概念」。古德費洛的成就激發出許多圍繞其概念的計畫,有的是加以改進,有的是據此進一步發展,有的則是發起挑戰。

懷俄明大學的研究人員建造一套系統,能夠產生細小但是完美的影像,包括昆蟲、教堂、火山、餐廳、峽谷與宴會廳。輝達(NVIDIA)的一個研究團隊則是建造一套神經網路,可以將一幅顯示炎炎夏日的相片影像轉變成死氣沉沉的冬日。

加州大學柏克萊分校的研究小組則設計出一套系統,能夠將馬匹的影像轉變成斑馬,把莫內的畫變成梵谷的畫。這些都是科技界與學界最受人矚目與最有趣味的研發計畫。

可是,就在這時,世界發生劇變。2016年11月,唐納.川普贏得美國總統大選。美國生活與國際政局隨之出現天翻地覆的變化,人工智慧也難以倖免。幾乎是立即出現的衝擊,政府開始打壓移民引發人才流動的憂慮。

美國排外政策造成 AI 產業衝擊

在美國就讀的國際學生已在減少之中,如今更是大幅銳減,對外國人才依賴甚重的美國科學與數學界也因此開始受創。「我們是開槍打自己的腦袋,」西雅圖著名的艾倫人工智慧研究所(Allen Institute for Artificial Intelligence)的執行長說,「我們不是打在腳上,是腦袋。」

一些大企業已在擴張他們的海外研發作業。臉書分別在蒙特婁與楊立昆的家鄉巴黎設立實驗室。川普政府移民政策所帶來的威脅在2017年4月就已顯現,距離他上任不過三個月。

與此同時,「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)幫助成立向量人工智慧研究所(Vector Institute for Artificial Intelligence)。這是多倫多的一所研發育成機構,設立資金達一億三千萬美元,其中包括美國科技巨擘如谷歌與輝達的挹注。

此外,加拿大總理賈斯汀.杜魯道(Justin Trudeau)也承諾以九千三百萬美元來扶持在多倫多、蒙特婁與愛德蒙頓的人工智慧研發中心。年輕的研究員莎拉.薩波爾(Sara Sabour)是辛頓一位關鍵性的合作夥伴,她的事業歷程足以說明人工智慧圈內的國際色彩是多麼容易受到政治影響。

2013年,在伊朗的謝里夫理工大學(Sharif University of Technology)完成電腦科學的學業之後,薩波爾申請到華盛頓大學深造,攻讀電腦視覺與其他方面的人工智慧,校方接受了她的申請。但是美國政府卻拒絕給予簽證,顯然是因為她在伊朗長大與就學的關係,而且她所要攻讀的領域,電腦視覺,也是潛在的軍事與安全科技。第二年,她成功進入多倫多大學,之後追隨辛頓加入谷歌。

在此同時,川普政府持續阻擋移民進入美國。「現在看來是美國企業獲益,」亞當.席格(Adam Segal)說道,他是美國外交關係協會(Council on Foreign Relations)有關新興科技與國家安全的專家,「但是就長期來看,科技與就業機會都不會在美國實現。」

2016年川普當選美國總統,開始打壓外國移民。圖,/wikipedia

人工智慧等技術讓製造假訊息變得更容易

但是人才的遷移還不是川普入主白宮所造成的最大變化。自選舉一結束,國內媒體就開始質疑網上假訊息對選舉結果的影響,引發社會大眾對「假新聞」的憂慮。

起初祖克柏試圖消除這樣的關切,他在選舉的幾天後於矽谷的一個公開場合,輕描淡寫地表示,選民受假新聞左右是一個「相當瘋狂的想法」。但是許多記者、立法者、名嘴與公民都不予苟同。

事實上此一問題在選舉期間十分猖獗,尤其在臉書的社交網路,有數以萬計,甚至可能是百萬計的網民,分享一些虛假編造的故事,這些故事的標題例如「涉嫌希拉蕊電郵洩密案的聯邦調查局人員被發現死亡,顯為謀殺後自殺」或是「教宗方濟各支持川普競選總統震驚世界」。

臉書後來揭露有一家與克里姆林宮關係甚密的俄羅斯公司,花了超過十萬美元向470個假帳戶與頁面買網路廣告,散播有關種族、槍枝管制、同性戀權利與移民等方面的假訊息,此一事件使得公眾更感關切。

與此同時,社會大眾的憂慮也投射到GAN與其他相關的科技上,使它們以完全不同於過去的面貌成為世人焦點:這些科技看來是產生假新聞的管道。

人工智慧讓假新聞更容易。圖/envatoelements

然而人工智慧科學家當時的研究卻完全是在助長這種看法。華盛頓大學的一支團隊,利用神經網路製作出一段冒用歐巴馬說話的影片。中國一家新創企業的工程師則利用相同的科技讓川普說中文。

其實偽造的影像並不是新玩意兒。自照相術發明以來,人們就開始利用技術來偽造相片。不過由於新式的深度學習可以自我學習這些工作──或者至少部分的工作──它們使得這樣的編輯變得更容易。

政治人物與活動、民族國家、社會運動人士、不滿分子往後不需要僱用大批人手來製造與散播假圖片和假影片,他們只要建造一套神經網路就能自動完成這些工作。

在美國總統大選期間,人工智慧的圖像操作潛能距離完全發揮仍有幾個月的時間。當時GAN只能產生如指甲大小的圖像,而要將字句置入政治人物的口中仍需要罕有的專業技能,更別說其他一些費力的工作了。

不過,在川普勝選一週年時,輝達在芬蘭實驗室的一支團隊開發出新款GAN,稱作「漸進式GAN」,可以利用對抗式的神經網路製造出實際尺寸的圖像,包括植物、馬匹、巴士與自行車,而且幾可亂真。

圖像不再能代表證據

不過這項科技最受矚目的是它能夠製造人臉。在分析數千張名人照片後,輝達這套系統可以製造出看來像是某位名人,但其實並不是的人臉圖像──一張看來像是珍妮佛.安妮斯頓(Jennifer Aniston)或席琳娜.戈梅茲(Selena Gomez)的臉孔,而實際上並非真人。這些被製造出來的臉孔看來都像真人,有他們自己的皺紋、毛孔、暗影,甚至個性。

「這項科技的進步速度太快,」菲利浦.艾索拉(Phillip Isola)說道,他是幫助開發此類科技的麻省理工學院教授,「剛開始時是這樣的,『好吧,這是一項有趣的學術性問題,你不可能用來製造假新聞,它只能產生一些略顯模糊的東西。』結果卻演變成『噢,你真的可以製作出像照片一樣逼真的臉孔。』」

在輝達宣布此一新科技的幾天後,古德費洛在波士頓一間小會議室發表演說,演說的幾分鐘前,一位記者問他該科技的意義何在。他指出他知道其實任何人都早已可以用 Photoshop 來製造假圖像,不過他也強調,重點是使得這項工作更為容易。「我們是促使已經具有可能性的事情加速實現。」他說道。

他解釋,隨著這些方法的改進,「有圖有真相」的時代也將結束。

「從歷史來看,這其實有些僥倖,我們能夠依賴影片作為事情曾經發生過的證據,」他說道,「我們過去常常是根據誰說的、誰有動機這麼說、誰有可信度、誰又沒有可信度,來看一件事情。現在看來我們又要回到那個時代。」

可是中間會有一段很艱難的過渡期。「遺憾的是現今世人不太會批判性思考。同時大家對於誰有可信度與誰沒有可信度都比較傾向於從族群意識去思考。」這也代表至少會有一段調整期。

「人工智慧為我們打開了許多我們不曾打開的門。我們都不知道在門的另一邊會有什麼東西,」他說道,「然而在此一科技方面,卻更像是人工智慧關閉了我們這一代人已經習慣打開的門。」

人們若不具有批判性思考的能力,就會容易被假圖像欺騙。圖/envatoelements

調整期幾乎是立即展開,某人自稱為「深度偽造」(Deepfakes),開始將一些名人的頭像剪接至色情影片中,然後再上傳至網路。這個匿名的惡作劇者後來把能搞出這些花樣的應用程式公開,這類影片立刻大量出現在討論板、社交網路與如 YouTube 的影音網站。

如 Pornhub、Reddit 與推特等平台趕忙禁止這種行為,但是此一操作與相關概念已滲透進入主流媒體。「深度偽造」也變成一個專有名詞,意指任何以人工智慧偽造,並在線上散播的影片。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載。

時報出版_96
154 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

1

38
0

文字

分享

1
38
0
回到 AlphaGo 打敗棋王的那一天,看 AI 如何顛覆世界——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/30 ・4915字 ・閱讀時間約 10 分鐘

谷歌收購深度心智(DeepMind)幾週後,深度心智創辦人德米斯.哈薩比斯(Demis Hassabis)與其他幾位深度心智研究人員搭機來到北加州,與他們母公司的領袖舉行會議,並向他們展示深度學習如何破解「打磚塊」。

幕後推手——德米斯.哈薩比斯

會議結束後,哈薩比斯和谷歌創辦人賽吉.布林(Sergey Brin)聊了起來。他們聊著聊著發現有一共同的興趣:圍棋。布林表示當初他和賴利.佩吉(Larry Page)建立谷歌時,他沉迷在圍棋中,害得佩吉擔心他們根本無法成立公司。

哈薩比斯表示,如果他和他的團隊想要的話,他們能夠建造一套系統來打敗世界冠軍。「我覺得這是不可能的。」布林說道。就在這一刻,哈薩比斯下定決心要做到。

深度心智創辦人、英國人工智慧研究者——德米斯.哈薩比斯(Demis Hassabis)。圖/維基百科

「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)將哈薩比斯比作羅伯.奧本海默(Robert Oppenheimer),二戰期間做出第一顆原子彈的曼哈頓計畫主持人。奧本海默是世界級的物理學家:他懂得眼前重大任務的科學原理,不過他更深諳激勵之道,他結合手下不斷擴大的科學家,將他們的力量合而為一,並且接納他們的弱點,一起為計畫目標努力。

他知道如何感動男人(以及女人,包括辛頓的堂姊瓊安.辛頓),辛頓在哈薩比斯身上看到同樣的特質。「他主持 AlphaGo 就像奧本海默主持曼哈頓計畫,如果是別人來主持,他們可能就不會這麼快成功。」辛頓說。

揭開比賽序幕

深度心智的研究員們在 2014 年中曾發表一篇關於他們初期研究的論文,之後他們的研究規模大為擴大,並在第二年擊敗歐洲圍棋冠軍樊麾。此一結果震驚了全球圍棋界與人工智慧研究圈,但是 AlphaGo 對戰李世乭所造成的聲勢更是轟動。

IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。

圍棋在中、日、韓具民族性,AlphaGo 與李世乭的對弈備受矚目。圖/維基百科

在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。

第二天下午,在展開第一局對戰的兩小時前,他與幾名記者共進午餐,他拿著一份《韓國先驅報》(Korea Herald),這是用桃色紙張印刷的韓國英文日報。他和李世乭的照片都出現在報紙的頭版上半部。他沒有想到竟會受到如此重視。

「我知道會受到關注,」這位像孩子般矮小,39 歲但已禿頂的英國人說道,「但是沒有想到會這麼多。」不過,在吃著餃子、韓式泡菜的午餐時,哈薩比斯表示他對這場棋賽「審慎樂觀」。他解釋,那些名嘴並不知道 AlphaGo 在十月的棋賽後仍在繼續苦練棋藝。

他和他的團隊初始是將三千萬步棋路輸入深度神經網路來教導機器學習圍棋,自此之後,AlphaGo 就開始不斷與自己對弈,並且記錄哪些棋路是成功的,哪些又是失敗的——其運作與實驗室用來破解雅達利老遊戲的系統類似。自擊敗樊麾以來這幾個月,AlphaGo 已和自己對弈了數百萬局;AlphaGo 持續自學圍棋,學習速度之快遠超過所有人類。

在四季飯店頂樓的賽前餐敘,谷歌董事長艾力克.施密特(Eric Schmidt)坐在哈薩比斯的對面,以他一貫冷峻的態度闡述深度學習的優點。一度有人稱他為工程師,他糾正他們,「我不是工程師,」他說道,「我是電腦科學家。」

艾力克.施密特(Eric Schmidt)2001~2011 年間在 Google 擔任 CEO。圖/維基百科

他回憶他在 1970 年代研讀電腦科學時,人工智慧看來前景一片大好,但是隨著 1980 年代過去,進入 1990 年代,這樣的美景從未實現。如今,終於實現了。「這一科技,」他說道,「力量強大,引人入勝。」他表示,人工智慧不只是辨識照片的戲法,同時也代表谷歌 750 億美元的網際網路事業與其他無數的產業,包括保健產業。

機器與人類高手對決

在第一局,哈薩比斯是在私人觀賞室與走廊另一頭的 AlphaGo 控制室之間來回兩頭跑。控制室滿是個人電腦、筆記型電腦與平面顯示幕,這些設備全都與遠在太平洋彼端的谷歌數據中心內部數百台電腦相連。一支谷歌團隊在比賽前一週就已架設一條專屬的超高速光纖電纜直達控制室,以確保網際網路暢通無阻。

不過結果卻顯示控制室根本不需要進行多少操控:幾過多月的訓練之後,AlphaGo 已能完全獨力作業,不需要人為的幫助。同時,就算哈薩比斯與團隊想幫忙,也無用武之地。他們沒有一人的圍棋棋力達到大師級的水準,他們只能觀看棋局。

「我無法形容有多緊張,」深度心智研究員說道,「我們不知道該聽誰的。一邊是評論員的看法,你同時也看到 AlphaGo 的評估。所有的評論員都有不同的意見。」

在第一天的棋賽,深度心智團隊與谷歌的重要人物都親眼目睹 AlphaGo 獲勝。

賽後記者會上,李世乭面對來自東、西方數百名記者與攝影師表示他感到震驚。這位 33 歲的棋士透過口譯員說道:「我沒想到 AlphaGo 下棋竟能夠如此完美。」經過逾四小時的對弈,AlphaGo 證明自己的棋力可與全球最厲害的高手匹敵,李世乭表示他被 AlphaGo 殺了個措手不及,他在第二局會改變策略。

左為代替 AlphaGo 移動棋子的深度心智台灣研究員黃士傑,右則為李世乭。圖/YouTube

神來一筆的第三十七手

第二局對弈進行一小時後,李世乭起身離開賽場,走到露台抽菸。坐在李世乭對面,代替 AlphaGo 移動棋子的是來自台灣的深度心智研究員黃士傑,他將一枚黑子落在棋盤右邊一大塊空地上單獨一枚白子的側邊下方,這是該局的第三十七手。

在角落的評論室內,西方唯一的圍棋最高段九段棋手邁克.雷蒙(Michael Redmond)忍不住多看了一眼確認,然後他告訴在線上觀看棋賽的兩百多萬英語觀眾:「我真的不知道這是高招還是爛招。」他的共同評論員克里斯.戈拉克(Chris Garlock)則表示:「我認為下錯了。」他是一本網路圍棋雜誌的資深編輯,同時也是美國圍棋協會的副會長。

李世乭在幾分鐘後返回座椅,然後又緊盯著棋盤幾分鐘。他總共花了 15 分鐘才做出回應,在棋局的第一階段他有兩小時的時間,而這一手占用了他不少時間——而且此後他再也沒有找回節奏。在經過逾四小時的對弈後,他投子認輸,他連輸兩局了。

第三十七手也讓樊麾大感詫異,他在幾個月前遭到 AlphaGo 徹底擊敗,自此之後他就加入深度心智,在 AlphaGo 與李世乭對弈前擔任它的陪訓員。他從來沒有擊敗過這部人工智慧機器,但是他與 AlphaGo 的對弈也讓他對棋路的變化大開眼界。事實上,他在遭 AlphaGo 擊敗後的幾週內,與(人類)高手對弈連贏六場,他的世界排名也升至新高。

現在,他站在四季飯店七樓的評論室外面,在第三十七手落子幾分鐘後,他看出了此一怪招的威力。「這不是人類會下的棋路,我從來沒有看過有人這麼下,」他說道,「太美了。」他不斷地重複說道,太美了、太美了、太美了。

第二天上午,深度心智的研究員大衛.席瓦爾溜進控制室,他想知道 AlphaGo 如何做出第三十七手的選擇。AlphaGo 在每一局對弈中都會根據它所受過數千萬種人類落子變化的訓練,來計算人類做出此一選擇的機率,而在第三十七手,它算出的機率是萬分之一。

AlphaGo 在對弈中會根據千萬種落子變化,計算出人類下此一步棋的機率。圖/YouTube

AlphaGo 知道這不是專業棋手會選擇的路數,然而它根據與自己對弈的數百萬次經驗——沒有人類參與的棋局——它仍是這麼做了;它已了解儘管人類不會選擇這一步,這一步棋仍是正確的選擇。「這是它自己發現的,」席瓦爾說道,「透過它的內省。」

這是一個既甜美又苦澀的時刻,儘管樊麾大讚此一步棋是神來之筆,但是一股鬱悶之情席捲四季飯店,甚至整個韓國。一位中國記者表示,儘管他為 AlphaGo 贏得第一局感到高興,可是現在他深感沮喪。

第二天,一位在首爾彼端經營一家新創企業育成中心的韓國人權五亨表示他也感到悲傷,這並非因為李世乭是一位韓國人,而是因為他是人類,「這是全人類的轉捩點,」權五亨說道,他的幾位同事點頭表示同意,「它讓我們了解人工智慧真的已在我們眼前——也讓我們了解到其中的危險。」

在那個週末,此一鬱悶的情緒只增不減。李世乭第三局也輸了,等於輸掉整個棋賽。坐在賽後記者會的桌子後面,李世乭懺悔之情溢於言表。「我不知道今天要說什麼,但是我首先要表達我的歉意,」他說道,「我應該拿出更好的成績,更好的結局,更好的比賽。」但是坐在李世乭身邊的哈薩比斯卻發現,自己衷心期盼這位韓國棋手在接下來的兩局中至少能贏一局。

AlphaGo 認輸的那一局

在第四局的七十七手,李世乭再度陷入長考,就和第二局的情況一樣,但是這一回他考慮的時間更久。棋盤中間有一堆棋子,黑白相間,他有近二十分鐘只是緊盯著這些棋子,抓著後頸前後擺動。最後,他將他的白子落在棋盤中央的兩枚黑子之間,將棋勢一分為二,AlphaGo 方寸大亂。

在每一場對弈中,AlphaGo 都會不斷重新計算勝率,並且顯示在控制室的一台平面顯示幕上。

在李世乭落子後——第七十八手——這部機器的反擊很差,在顯示幕上的勝率立刻大降。「AlphaGo 累積到那一步之前的所有戰略都算是報銷了,」哈薩比斯說道,「它必須重新再來。」就在此刻,李世乭抬頭看著對面的黃士傑,彷彿他擊敗的是這人,不是機器。自此之後,AlphaGo 的勝率一路下跌,在近五個小時後,它投子認輸。

DeepMind 製作的 AlphaGo 與李世乭對弈紀綠片。/YouTube

兩天後,哈薩比斯穿過四季飯店的大廳,解釋 AlphaGo 為什麼會輸。AlphaGo 當時是假設沒有人類會這樣下第七十八手,它計算出來的機率是萬分之一——這是一個它熟悉的數字。

就像 AlphaGo 一樣,李世乭的棋力也達到一個新境界,他在棋賽最後一天的私人聚會場合中這樣告訴哈薩比斯。他說與機器對弈不僅讓他重燃對圍棋的熱情,同時也讓他茅塞頓開,使他有了新想法。「我已經進步了。」他告訴哈薩比斯,一如幾天前的樊麾,李世乭之後與人類高手對弈,連贏九場。

AlphaGo 與李世乭的對弈,使得人工智慧在世人眼前大爆發,它不僅是屬於人工智慧領域與科技公司,同時也是屬於市井小民的里程碑。在美國如此,在韓國與中國更是如此,因為這些國家視圍棋為人類智慧結晶的巔峰。這場棋賽彰顯出科技的力量與其終將超越人類的恐懼,同時也帶來樂觀的前景,此一科技往往會以出人意表的方式推動人類更上層樓。儘管馬斯克等人警告其中的危險性,但是這段時期人工智慧的前景一片光明。

裘蒂.英賽恩(Jordi Ensign)是佛羅里達州一位四十五歲的程式設計師,她在讀完棋賽報導後出去在身上紋了兩幅刺青,她在右臂內側紋了 AlphaGo 的第三十七手——左臂紋了李世乭的第七十八手。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載

所有討論 1
時報出版_96
154 篇文章 ・ 29 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。