Loading [MathJax]/extensions/tex2jax.js

4

31
3

文字

分享

4
31
3

一窺生物分子私底下在幹嘛!低溫電子顯微技術原子等級突破

linjunJR_96
・2020/12/08 ・1462字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

生物體中的蛋白質分子通常長得非常複雜,不是幾行化學式能解決的。如果想把它的分子結構鉅細靡遺的描繪出來,你有幾種選擇。

讓人類發現 DNA 雙股螺旋的 X 光晶體學

其中一個是 X 光晶體學,也就是讓許多蛋白質分子一同排列成整齊的晶體,接著將 X 光打進去,用繞射圖案進行分析。從 1950 年代以來,科學家便常常使用這種技術來探索分子結構。DNA 的雙股螺旋結構便是透過 X 光晶體學被發現。

圖 1/著名的 51 號照片 (Photograph 51)。葛斯林 (Raymond Gosling) 和富蘭克林 (Rosalind Franklin) 拍到了DNA晶體所繞射出的X型圖樣,帶領了華生與克里克等人提出了雙股螺旋的模型。圖/Raymond Gosling, King’s College London

不過這種方法有其根本上的限制。X 光晶體繞射後的強度很弱,必須藉由晶體內多個重複且整齊的晶格,進行同步繞射來增強訊號,因此沒辦法處理太大的蛋白質分子(單位體積內重複晶格太少),或是結構複雜的蛋白質(像是核糖體是由兩個次單元組成的),而且因為 X 光晶體學仰賴的是晶體結構的繞射,那些無法好好結晶的蛋白質,便不在它的防守範圍內,而細胞中許多的蛋白質都很難形成整齊的晶體。

另外,就算可以成功的結晶,被結晶的蛋白質分子也無法呈現出平常運作時的多種風貌,產生的影像也無法捕捉關於分子的任何動態資訊。

不斷跨越解析度門檻的低溫電子顯微技術

於是我們有另一個選項:低溫電子顯微技術 (cryo–electron microscopy) 。待觀察的分子被凍結在超低溫環境中,而研究人員用電子束轟炸分子,透過電子留下的影像來還原分子的立體結構。這種技術不需要蛋白質進行結晶,不過解析度普遍較差,最後的影像往往只能看出幾個模糊的團塊,因此通常只會用在大的蛋白質分子。

-----廣告,請繼續往下閱讀-----
近年來,低溫電子顯微的解析度有明顯的進步。左方為 2013 前的解析度,右方為 2013 年後。 圖/Martin Högbom, The Royal Swedish Academy of Sciences

隨著相關領域人員的持續努力,低溫電子顯微的解析度已經大有進展。2017 年的諾貝爾化學獎便是頒給三位科學家在高解析度低溫電子顯微技術方面的突破。前一陣子的紀錄保持者是日本團隊對缺鐵基蛋白 (apoferritin) 的研究,解析度到達 1.53 埃。不過如果想要清楚的呈現個別原子,解析度差不多需要到達 1.5 埃,還差了一些。

在今年十月 Nature 期刊的一篇最新研究中,一個跨國研究團隊利用改良過的電子束與分析軟體,成功達到了 1.25 埃以上的解析率,足以清楚標示出每顆原子的位置。

聽起來很厲害,不過這代表的是什麼?

低溫電子顯微技術的突破,有助於人類了解複雜蛋白質是如何運作的。圖/giphy

由於生物分子可以在行動中被降溫並「定格」,我們現在能夠清楚的看見蛋白質這類複雜的分子機械如何運作,清楚到每顆原子的動態都盡收眼底。毫無疑問地,這樣的技術將為分子與結構生物學帶來重要的進展。

-----廣告,請繼續往下閱讀-----

目前,原子等級的解析度只適用於結構較堅硬的蛋白質分子。做為下一階段的目標,研究團隊希望能將同樣的技術運用在一般柔軟的大型蛋白質結構,並達到一樣好的解析度。在結構生物學的領域中,使用低溫電子顯微鏡的研究人口逐年成長,而這次的技術突破有望繼續加速這個趨勢。

  1. Yip, K.M., Fischer, N., Paknia, E. et al. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).
  2. Cryo–electron microscopy breaks the atomic resolution barrier at last
  3. X-光晶體繞射學與結構生物學
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
linjunJR_96
33 篇文章 ・ 920 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
19 世紀的微觀之眼:顯微繪圖師韋斯特
顯微觀點_96
・2024/12/12 ・6365字 ・閱讀時間約 13 分鐘

本文轉載自顯微觀點

Fourty Three Single Cellular And Multi Cellular Animals. Colour Wood Engraving By E. Evans After T. West

攝影之前的顯微傳播

在顯微鏡已是博物學家必備工具的 19 世紀中葉,銀版攝影技術才剛發明不久,結合兩者的顯微攝影(photomicrograph)隨之邁出第一步。但顯微攝影直到 19 世紀末才真正普及化、以客觀與速度成為自然科學研究的技術。

在此之前,由繪圖師在顯微鏡前臨摹描繪是顯微影像 200 年來的記錄與傳播方法,從休閒式的顯微圖鑑,到科學界的分類學文獻,都有賴精細可信的顯微繪圖。當時的分類學家或解剖學家經常培養出顯微繪圖能力,但與顯微繪圖師分工可以提升效率與美學。儘管有投影描繪器(camera lucida)可作為素描輔助,每個顯微繪圖師的筆觸還是會呈現鮮明的技巧與個人風格差異。

韋斯特(Tuffen West)是維多利亞時代最為人稱道的顯微繪圖師之一,職業生涯長達四十年,以精美版畫將成千上萬種生物型態傳達讀者眼前。他的顯微繪圖可見於醫學、動植物與微生物的科學著作與期刊,並在後世被評論為藝術品,盛年時往往受到最負盛名的博物學家與科普作家雇用。同時,他也是積極的博物學家和顯微技術推廣者。

-----廣告,請繼續往下閱讀-----

失去聽力 放大視覺

1823 年,韋斯特出生於英格蘭約克郡。父親是個熱衷化學實驗的藥師,在不列顛科學促進會 ( British Association for Advancements of Science ) 位居要職。韋斯特從小就展現對自然與博物學的興趣,他一面按照父親的安排習醫,一面維持蒐集動植物標本的愛好,他 19 歲時發表的鳥類比較解剖學論文贏得了一筆可觀的獎金。

韋斯特 22 歲那年,他的醫學生涯戛然而止。他在父親的化學實驗室遭遇爆炸,幾乎完全失聰,失去行醫的基本能力。但他繼續使用顯微鏡觀察樣本,並開始練習版畫技術;在 25 歲時完成第一幅署名的版畫,並在 27 歲受女王學院雇用,為矽藻進行一系列顯微繪圖。

石版印刷:科普浪潮的技術基礎

Half Hours With The Microscope Coutresy Of Nih
韋斯特兄弟為 《顯微鏡前的半小時》 繪製的自然樣本顯微版畫。 Coutresy of NIH National Library of Medicine

韋斯特的弟弟威廉(William West)是在倫敦執業的版畫家及印刷匠,曾為達爾文繪製《物種起源》第一版的物種樹狀圖(也是該版唯一的圖片)。兄弟兩人經常合作為醫學著作繪畫製版,通常是韋斯特繪畫,威廉製版。儘管最後韋斯特的科學繪圖作品豐碩許多,但他最初的版畫技術很可能是由威廉傳授。

這對兄弟對版畫內容的志趣可能不同,但對美學有著共同的堅持。他們經常在作品下方註明,使用彩色平版印刷(Chromolithography)技術,而非新穎的技術競爭對手—石板淡彩畫(Lithotint)。

-----廣告,請繼續往下閱讀-----

1796 年發明的石版印刷,在新世紀成為廣受歐洲各國歡迎的大量圖片複製技術,科學刊物中的印刷版畫,無不經過「繪圖、製版、印刷」三道工序。其中製版的工藝關乎圖畫如何呈現在出版物上,對美感與技術的需求不下於繪製原圖。

19 世紀早期流行的彩色平版印刷中,每一種顏色需要一塊獨立的石板,每一塊石板的圖案必須精準對齊,以繁複的工藝堆疊出豐富亮眼的色澤。而石板淡彩畫每一幅圖畫則只需一塊石板,效率高、成本低,但能表現的顏色有限。韋斯特兄弟堅持較費工夫,色彩美感更為豐厚的彩色平版印刷。

醫學與公衛潮流中嶄露頭角

韋斯特在解剖學繪圖成名的一系列作品也源自其家族成員,他的連襟、口腔醫學之父哈欽森(J. Hutchinson)。哈欽森出版的眾多創新醫學著作包含壁蝨、梅毒、豬囊蟲感染病徵的顯微圖像,都由韋斯特兄弟繪製。他們持續為哈欽森創立的新希德南協會(New Sydenham Society)出版物作畫,合作直到威廉過世。

透過著重翻譯歐陸醫學文獻的新希德南協會,韋斯特兄弟得以觀察、繪製當時嶄新的顯微解剖構造。例如,荷蘭精神疾病與癲癇研究奠基者:施洛德范德柯克(J. Schroeder van der Kolk)涵蓋脊髓到延腦的解剖學報告。韋斯特兄弟的工藝描繪出繁複寫實的神經細胞、腦葉解剖圖,將歐陸最新醫學知識帶到英國讀者眼前。

-----廣告,請繼續往下閱讀-----
Brain Wests
韋斯特兄弟為新西德南協會繪製、印刷的腦部解剖圖,這是從腦部下方觀察的角度。Courtesy of P. Paisley

韋斯特的生涯起步階段深受 19 世紀英國的重大瘟疫與食安議題影響。他曾參與公衛先驅哈索爾(A. H. Hassall)的病源調查任務,在 1855 年倫敦霍亂疫情後,出版檢驗市內民生用水的《各處水質顯微檢驗》。

水質檢驗報告中生動的微生物繪圖,皆由繪圖師前輩米勒(H. Miller)作畫,韋斯特製版。透過精細均衡的版畫成品和大眾對水質的關注,韋斯特奠定了技術細膩的名聲。

後來,哈索爾以《刺胳針》期刊曝光當時常見的食品摻假惡行時,持續與小有名氣的韋斯特合作繪圖,以寫實顯微圖像向大眾呈現來自倫敦四處商販的食品樣本。

直到食品摻假報告集結成冊,哈索爾才在序言說明,他多年前的醫學成名作《人體的顯微解剖:疾病與健康》也包含許多韋斯特的畫作,那是韋斯特參與的第一個科學顯微繪圖作品,合作期間哈索爾還讓初出茅廬的韋斯特住在自己家裡,在充沛的支援下工作。可惜的是,哈索爾的主要著作中,多數顯微繪圖都沒有畫家署名,因此無法判斷哪些繪圖是由韋斯特繪圖或製版。

-----廣告,請繼續往下閱讀-----
Serpentine Water Hyde Park小圖
哈索爾、米勒、韋斯特合作的倫敦水質研究版畫:Serpentine Water of Hyde Park. Courtesy of Wellcome Collection.

畫筆風靡大洋兩岸

醫學領域以外,韋斯特也用鮮明精密的畫風描繪博物學圖像。史密斯(W. Smith)所著《不列顛矽藻概要》裡面層次豐富、色彩飽滿的顯微繪圖,使韋斯特作品在博物學家、科普讀者間一時洛陽紙貴。

韋斯特因此受到海洋生物學先驅、水族館創始人葛斯(P. H. Gosse)邀請,合作出版科普讀物。身為博物學家的葛斯具備出眾的顯微繪畫技能,甚至比 19 世紀末聞名歐洲的博物學兼繪畫家海克爾(E. Haeckel)更具聲望。受到葛斯邀請繪圖,表示韋斯特已躋身當時最傑出的顯微繪圖師行列。

葛斯的著作《顯微鏡前的夜晚》 是當年大西洋兩岸最受歡迎的科普著作。書中以創造論解釋生物型態多樣性的宗教觀念、鮮明多樣的生物插圖廣受歐美讀者歡迎。韋斯特與著名的解剖學家兼科學畫家福特(G. H. Ford)合作為本書繪圖,但兩人都沒有署名,難以分辨書中精湛的繪圖分屬哪位作者。

Lead Technologies Inc. V1.01
葛斯本人是畫工出色的科普作家,但他仍雇用韋斯特為其著作繪畫。圖為葛斯在《不列顛海葵與珊瑚》中自行繪製的 5 種海葵。Courtesy of Wikimedia

韋斯特也曾為當時最熱門科普作家伍德(J. G. Wood)巨著《博物學》作畫。伍德的作品包含從藻類、草履蟲到寵物犬等生物萬象,他的文字和韋斯特的繪圖深刻影響讀者對生物多樣性與人類起源的想像。當時知名文學家如馬克.吐溫和柯南.道爾都曾在小說中引用伍德的科普內容。

-----廣告,請繼續往下閱讀-----

離開顯微鏡,韋斯特的巨觀博物學繪圖依然出色,尤其是針對節肢動物。蛛形動物學開拓者,布萊克沃(J. Blackwall)的《不列顛與愛爾蘭蜘蛛史》、維多利亞時代罕見的女性昆蟲學家史戴維利(E.F. Staveley)的《不列顛蜘蛛》都由韋斯特繪製版畫。栩栩如生的細節、緊密的版面,彰顯了韋斯特博物學繪圖的特色。

韋斯特受雇進行顯微繪圖時,通常由博物學家郵寄為他特製的顯微玻片,讓他自行細細觀察、從容描繪。令人好奇的是,韋斯特的蜘蛛博物學版畫上,總是註明 ”sc. ad nat.” 表示他觀察自然樣本(after nature)進行描繪,而非臨摹他人作品。或許,這些蜘蛛也是由郵差送到韋斯特手上的。

Blackwall Spiders
韋斯特兄弟為布萊克沃所著圖鑑繪製的蜘蛛版畫,從針對眼睛、足部的細節可見當時顯微鏡觀察實體樣本的能力。Image source: Bee, L., Oxford et al.

圖文交織,拓展微觀

除了陸地生物,韋斯特為專書、期刊描繪的主題包括有孔蟲、單細胞動物、從海葵到鯨豚等海洋生物,栩栩如生的彩色圖畫拓展了大眾對博物學的興趣。

其中一群可能受彩色圖畫吸引而親近博物學的目標讀者,就是維多利亞時代的中上階層女性。她們雖曾受高等教育、具備社會地位與經濟資本,卻無法加入學會,也罕有機會研究自然、從事博物學相關職位。

-----廣告,請繼續往下閱讀-----

例如,倫敦雅典娜俱樂部(The Athenaeum Club),這個以希臘女神為名、服從英國女王的組織,在19世紀初成立時,已經是科學、藝文、法政菁英紳士踴躍參與的知性俱樂部,卻直到2002年才開放女性成為會員。當年俱樂部中的動物學家如瓊斯(T. R. Jones)就強調利用「女性感興趣的」的自然題材、韋斯特栩栩如生的繪圖來吸引維多利亞時代女性讀者。

在林奈學會記錄中,韋斯特謙稱自己是顯微繪圖師,博物學只是業餘愛好。但是他在顯微技術推廣的成果,遠遠超出單純繪圖師的工作範疇。

韋斯特曾推出一系列的顯微知識專欄文章,分享自己的研究心得。1860年代在《休閒科學》(Recreative Science)上著重於他早期對矽藻的蒐集與觀察。1880至1890年代的〈顯微鏡前的一小時〉〈顯微鏡前的30分鐘〉(專欄命名顯然是模仿暢銷書《顯微鏡前的半小時》)則大幅擴展,包含微生物、種子、昆蟲器官的顯微素描以及顯微鏡操作技巧等。

經常以郵件接收顯微樣本的韋斯特在 1875 年成為「郵政顯微協會」(Postal Microscopical Society)主席。該組織建立各地顯微愛好者交流樣本與知識的平台,並在月刊上評析會員們郵寄分享的最新玻片。韋斯特對樣本的縝密觀察與評論,是當時會員們最為珍視的回饋。

-----廣告,請繼續往下閱讀-----
Tongues And Other Microscopic Parts Of Snails. Colour Wood Engraving By E. Evans After T. West After W. F. Maples
韋斯特依據博物學家梅波(W. Maples)原畫繪製而成的蝸牛口器顯微木板畫,後交由埃凡斯印刷。由此可見當時博物學繪圖的多層分工。

全能的科學傳播者

推廣顯微知識的行動中,韋斯特不僅從事評析或繪圖。在他參與的兩本暢銷科普讀物《顯微鏡前的半小時》《顯微鏡下的常見物體》中,他負責篩選樣本、精工製圖,科普作家再以這些顯微繪圖為核心寫作。韋斯特的選樣和繪圖決定了整本書的走向。

《顯微鏡前的半小時》文字作者蘭卡斯特(E. Lankester)在第二版序文中,感謝韋斯特精采的顯微版畫,搭配「作者」的後續著述介紹,在市場上大受歡迎。蘭卡斯特認為韋斯特佔據首要功勞。

與科普作家伍德合著《顯微鏡下的常見物體》時,韋斯特不僅擔任挑選顯微樣本、繪製版畫(此步驟決定了後續文字的走向),也負責印刷的校樣,責任比文字作者更加吃重。此書獲得讀者們熱愛,持續再版直到20世紀。

主導了兩本堪稱史上最受歡迎的顯微科普書,韋斯特卻不曾以作者名義出版專書。他曾在科學期刊發表數篇博物學論文,涵蓋植物、昆蟲、矽藻的顯微構造,採樣與觀察、寫作與繪圖都由他一手包辦。

Half Hours With The Microscope Coutresy Of Nih 2
韋斯特為《顯微鏡前的半小時》所繪的植物博物學版畫。Courtesy of NIH National Library of Medicine

據佚名資料,蒼蠅足部型態的比較形態學研究是韋斯特最得意之作。韋斯特在 1860 年代發表的矽藻博物學與蒼蠅足部論文,在西元 2020 年後依然有科學家引用。

在《顯微鏡下的常見物體》的出版過程中位居要角的韋斯特,在初版書名頁與印刷者並列,重要性僅次於作者伍德。但隨著版本演進,在 1949 年的再版中,韋斯特的名字已完全消失了。

同樣熱銷的科普圖書《顯微鏡前的半小時》出版歷程中,韋斯特也遭逢一樣的命運。儘管文字作者蘭卡斯特曾表示韋斯特的貢獻最為重要,但是他的名字卻在 1876 年及其後的各版本付之闕如,此時韋斯特的顯微繪圖與科學寫作工作也幾乎停擺。

空白與堅持

韋斯特在 1864 年前後,以及整個 1870 年代都遭遇生產力低落的問題,問世的畫作與文章寥寥無幾。直到 1882 年後,韋斯特才穩定地為期刊作畫並刊載科普專欄,但再也沒有產出研究論文或專書版畫。

創作死寂的階段,正是韋斯特頻繁進出精神療養院的歲月。他的症狀缺少明確醫療記錄,但研究者認為,頻繁的住院符合躁鬱症的週期特徵。

1862 年起,壯年的韋斯特病況不斷起伏,不時住院。即使到他退休後,依然無法逃脫精神症狀的折磨,1879 到 1883 年間,花甲之年的韋斯特在精神療養院裡度過了 31 個月。從首次入院到 1891 年過世,他在療養院居住的時間總和超過 60 個月。

韋斯特在逝世前 6 年寄信給林奈學會,表示自己受困於健康狀況,無法進行科學活動,只能滿懷遺憾地自請退出。

在文明劇烈變遷的 19 世紀後半葉,不少知名藝術家深受精神症狀所苦。梵谷(V. van Gogh)、孟克(E. Munch)和韋斯特的同胞,愛貓畫家韋恩(L. Wain)。這些藝術家的精神症狀影響繪畫風格,但並未阻止他們繼續創作,甚至成就他們名留青史的傑作。

可惜的是,定位自己為「顯微藝術家」(microscopic artist)而非傳統藝術家的韋斯特,沒能找到精神失調與繪畫結合的創作出口。

Image
韋斯特 1886 出版文章搭配的繪圖,品質與早年作品頗有落差。Courtesy of Dolan J. R.

繪圖與研究的生產力遠非韋斯特失去的最重要事物,他在即將成為醫師時失去聽力;他在新婚三年後(1860年)不幸喪妻,並在不久後開始進出精神療養院;在 1875 年,他青春期的兒子離開人世。

造化弄人的是,韋斯特分別在喪妻與喪子的年份,獲選為林奈學會成員與郵政顯微協會主席。遭遇精神疾病之後,他的科學繪圖產量從未恢復,但也不曾放棄推廣顯微科學,直到 1891 年逝世前,他仍在持續整理、刊登過去的顯微素描與筆記。

玻片之後的隱形人

58 歲就自稱退休的韋斯特留下不到 1000 件署名作品,沒有水彩畫展、自畫像的紀錄。以當時顯微版畫行情來看,韋斯特很難平衡他的家庭開支,但他留下 500 英鎊的遺產,表示他的報酬可能高出其他顯微繪圖師甚多,或者他還有許多未署名的畫作在維多利亞時代流傳。

如同韋斯特的貢獻在解剖學教科書出版多年後才被哈索爾公布,或是在科普暢銷書的再版生命中逐漸湮沒,功勞被忽略似乎是維多利亞時代顯微繪圖師的常態。隨著科技演進,顯微繪圖這個職業在 20 世紀初不可避免地被顯微攝影取代。

從 19 世紀的博物學到現代學術工作,在科學上得到信賴、美學上得到讚賞的顯微影像,都由許多人的技術與心力交織而成。當精彩的顯微影像映入眼簾,不妨也看看研究主持者之外,還有哪些猶如現代顯微繪圖師的影像技術人員隱藏在這幅微觀風景之後。

Image 1
韋斯特最得意的博物學論文中,關於矽藻和蒼蠅足部構造的繪圖。Courtesy of Dolan J. R.

參考資料

  • Dolan, J. R. (2021). Tuffen West FLS, FRMS (1823-1891): artist of the microscopic, naturalist, and populiser of microscopy. Arts et sciences5(1).
  • Paisley, P (2015).The Tuffen you probably missed, and some you’ve never seen. microscopy-uk.org
  • Paisley, P (2016). More Tuffen you possibly didn’t notice. microscopy-uk.org

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
為期刊拍張封面 顯微鏡下的科學魔法
顯微觀點_96
・2024/05/27 ・3010字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

希爾思使用VS120拍攝,小鼠大腦矢狀切口上的染色圖像。圖片來源:EVIDENT|Olympus官網

「我開始拍攝美麗的影像是出於興趣,因為我喜歡神經科學圖像藝術性的一面。」

史蒂芬妮.希爾思(Stephanie Shiers)是美國德州達拉斯大學的認知神經科學家,她拍攝的顯微鏡影像曾被選作多本期刊的封面,包括《神經科學雜誌》 (The Journal of Neuroscience)、《科學轉化醫學》 (Science Translational Medicine)等。要怎麼做才能讓自己拍攝的作品登上期刊封面呢?

希爾思在 2019 年取得認知和神經科學博士學位,目前從事疼痛研究,以移植捐贈者的神經組織探索慢性疼痛的臨床前機制和治療方法。

最驕傲的時刻——影像獲選期刊封面

希爾思攻讀博士期間,當第一篇論文獲得刊登且拍攝的照片一同被選為封面發表時,是她最引以為傲的時刻。她表示,第一篇論文被發表本身已經很令人興奮,當時並未預期會獲選封面,「因為我只是基於我對神經科學藝術的熱愛,而拍攝漂亮的圖片」。

-----廣告,請繼續往下閱讀-----

事實上,論文中所有影像都使用 40 倍物鏡拍攝,但她後來決定使用 100 倍物鏡拍攝,以捕捉一些漂亮的影像,加以觀察。

「我能看到所有的樹突和軸突初始段,這看起來令人震撼!」當希爾思與她的指導教授分享時,教授鼓勵她投稿期刊封面,同時提交論文。

希爾思表示,在攻讀博士學位時,面對周遭的同行都非常專業,自己曾感到無所適從。然而,當成功的數據和封面影像出現時,過去辛勤的工作和壓力都值得了。

歷經徬徨 受科學魔法吸引踏上研究路

對於自己選擇踏入神經科學研究,並繼續攻讀博士、成為科學家,希爾思坦承自己也曾經歷徬徨。「因為不知道自己想做什麼」,希爾思大學時曾選了三個主修、一個副修。

-----廣告,請繼續往下閱讀-----

原想攻讀醫學院的希爾思,在接受緊急救護技術(EMT)訓練時,意識到自己不想當醫師。因此她又選了神經科學和歷史專業,因為她自認可能喜歡人文學科、可能想成為律師。

直到完成學士學位後希爾思仍不清楚自己的職涯方向。但當她加入校內實驗室時,發現自己「真的很喜歡」,進而申請進入加州大學戴維斯分校的 NeuroMab 研究機構(UC Davis/NIH NeuroMab facility),從事免疫組織化學的工作。

在這份工作中,希爾思研究進行免疫組織化學染色、抗體驗證,在顯微鏡下觀察「肉眼」看不見的東西。這時她意識到「科學是最我們所擁有,最接近魔法的東西」,也因此確認了職業道路——走上學術研究之路。

而現在對希爾思來說,最難忘的時刻莫過於帶領在實驗室掙扎的學生領略科學的奇妙。

-----廣告,請繼續往下閱讀-----

曾經有一名學生未受太多訓練,因此希爾思帶著她完成染色工作、教她操作共軛焦顯微鏡;而當學生第一次看到顯微鏡下的影像時,露出驚訝的表情。 「看到別人也能體驗到科學的神奇,真是太好了!」希爾思這麼說道。

Science Trans 1
圖片來源:擷自《Science Translational Medicine vol. 13, issue 595》封面

超敏通道

圖像顯示小鼠背根神經節表現瞬態受體蛋白 5 (TRPC5,紅色)編碼瞬時受體電位規範 5(TRPC5,紅色)、抑鈣基因相關胜肽(CGRP,綠色)、P2X3 受體(藍色)和神經絲蛋白 200(青色)的基因。

希爾思為〈Transient Receptor Potential Canonical 5 Mediates Inflammatory Mechanical and Spontaneous Pain in Mice.〉的共同作者。

本篇論文主要探討,多種原因引起疼痛超敏反應,其中 TRPC5 的活化增加了囓齒動物對疼痛的敏感性,而 TRPC5 通道也在人類感覺神經元中表現,因此研究認為 TRPC5 抑制劑可能可有效減輕患者的疼痛超敏反應。

拍科學藝術照 封面也可以很抽象

對於如何拍出「封面等級」的科學藝術照,希爾思也給出幾點建議。首先,她強調擁有適合的儀器至關重要,以降低信噪比和提升影像品質。

此外,研究者必須接受更多基礎訓練。她表示,過去自己雖操作過很多次顯微鏡,但主要使用明視野照明觀察。直到開始博士課程後學習神經解剖學、蛋白質定位等知識,使用免疫螢光染色最適當的卻是使用暗視野照明。因此持續接受培訓,了解如何正確使用顯微鏡也是非常重要的。

希爾思也建議,在實驗數據收集階段,就可預先規劃影像拍攝;一邊構思論文中需要使用的圖像和材料,如果材料和研究內容一致,就當場拍攝解析度更高的影像。

-----廣告,請繼續往下閱讀-----

她也鼓勵研究者不斷嘗試新事物,例如使用不同染劑(明視野病理染色劑、鈣染色劑等)與顯微鏡搭配,將更容易拍攝出引人注目的影像。

希爾思鼓勵研究者盡可能地投稿封面影像,並強調封面不必與數據收集所用的影像完全相同;甚至許多期刊封面的圖片可以是抽象的、不一定要和照片一樣真實。

物種特異性表達

以原位雜合技術(in situ hybridization,左)和空間轉錄(Spatial Transcriptomics,右)並置的人類背根神經節,用於描述感覺神經元轉錄譜的特徵。

痛覺受器是專門的感覺神經元,存在於背根神經節(DRG)和三叉神經節中,對生成最終疼痛感知的神經元信號至關重要。

希爾思為〈Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.〉的第二作者。

本篇研究試圖為人類疼痛受器生成等效訊息,利用空間轉錄數據識別痛覺受器的轉錄組特徵,並藉以識別物種間差異和潛在的藥物靶點。

Sciencetrans2022 1
圖片來源:擷自《Science Translational Medicine (vol. 14, issue 632》封面 
Jneurosci 3
圖片來源:擷自《The Journal of Neuroscience vol. 38, issue 33》封面

圖像為患有神經性疼痛的小鼠內側前額皮質神經元,紅色為 PV 陽性細胞小白蛋白陽性中間神經元(紅色)與軸突初始段標記(Ankyrin-G,綠色)和核標記(DAPI,藍色)的共同標記。

希爾思為〈Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin〉的第一作者。

認知障礙是神經性疼痛的共病。本篇研究使用原治療糖尿病的藥物二甲雙胍,治療神經疼痛 7 天後出現逆轉,包括功能和解剖學出現變化,顯示該藥物或可老藥新用於治療神經性疼痛及其認知合併症。

  1. https://www.olympus-lifescience.com/en/discovery/behind-the-lens-dr-stephanie-shiers-creates-cover-worthy-neuroscience-art/
  2. Sadler, Katelyn E et al. “Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice.” Science translational medicine vol. 13,595 (2021).
  3. Tavares-Ferreira, Diana et al. “Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.” Science translational medicine vol. 14,632 (2022).
  4. Shiers, Stephanie et al. “Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 38,33 (2018).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。