0

0
0

文字

分享

0
0
0

臺灣會發生海嘯嗎?東部海域的地震「烽火台」海纜觀測系統

科學月刊_96
・2019/09/25 ・4045字 ・閱讀時間約 8 分鐘 ・SR值 548 ・八年級
  • 林祖慰/中央氣象局地震測報中心。

海嘯,是一種具有強大破壞力的海浪。當地震發生於海底,因震波動力而引起海水劇烈起伏,形成強大波浪向前推進,進而將淹沒沿海地帶。因著海底及海岸地形的不同,所引發的海嘯也有所不同,所以,檢視地形、地理位置與海底觀測,便成防範海嘯一重要課題。

臺灣地處菲律賓海板塊與歐亞大陸板塊碰撞擠壓交界區域,地震活動頻繁且常造成社會大眾生命財產的威脅,其中芮氏規模 6 以上的中大規模地震,有將近 70%分布於東部海域(下圖)。

臺灣地區1900~2018年芮氏規模6以上地震分布圖。source:作者提供

東部海域的地震不僅威脅臺灣的安全,過去也曾發生數起宜蘭、花蓮雖未致災,卻在臺北盆地發生傷亡災情的地震事件,例如 1986 年 11 月 15 日芮氏規模 6.8 的地震,造成當時臺北縣中和市華陽市場坍塌、2002 年 3 月 31 日芮氏規模 6.8 的地震,造成當時正在興建中的台北101(TAIPEI 101)大樓頂樓大型塔式起重機吊臂斷裂砸落等案例。

臺灣會發生海嘯嗎?

此外,地震伴隨著海嘯的發生,2004 年南亞大海嘯與 2011 年東日本大地震海嘯均造成嚴重傷亡與財產損失。而臺灣所在的環太平洋「火環帶(Ring of fire)」,是全球 90% 地震的發生地,過去也有文獻記載,臺灣及附近區域疑似因大規模地震或海底山崩引發海嘯衝擊,例如 1867 年臺灣北部基隆地區海嘯災害、1771 年鄰近的日本石垣島發生 85 公尺高海嘯災害,都顯示臺灣近海地區有災害性海嘯發生的可能性。

海嘯具有不容忽視的衝擊力。source:pixabay

因此,科技部也曾針對臺灣鄰近地區的海溝型大地震引發海嘯侵襲的可能情境進行模擬分析,顯示臺灣西南方馬尼拉海溝(Manila Trench)、太平洋中的亞普海溝與花蓮外海(琉球海溝)是引發高海嘯災害潛勢的可能地震源。因此,如何防範東部海域大規模地震與可能的海嘯威脅,成為臺灣所需面臨的重要課題。

海上沒有地震測站

地震海嘯防災工作的最重要基石是地震速報系統,而速報作業的主要關鍵包括測站分布、即時傳輸與維運管理。在 2011 年之前,交通部中央氣象局地震觀測網的測站均設置在本島與離島陸地範圍,對於發生於周圍海域的地震,偵測能力與計算精度都受到限制。

如果能在臺灣東部海域設置地震海嘯海纜觀測系統,就能將海域地震納入臺灣地震網觀測範圍之內,既彌補陸上地震測站的不足,也能有效改善海域和近岸的地震定位問題。如此一來,也能強化氣象局地震觀測網強震即時警報系統的正確性和可信度,提供更準確的即時防救災資訊。

地震海嘯海纜觀測系統能提供更準確的即時防救災資訊。source:pixabay

以同樣處於環太平洋地震帶的日本為例,日本的東部與南部海域也面臨地震海嘯的威脅,為此日本政府耗費鉅資建造「地球號」鑽井船,於日本南海海槽(Naikai Trough)作深部地殼鑽探,研究板塊聚合帶巨大地震的孕震機制。

同時,日本於周圍海域也建立 10 餘條海纜系統,裝置數十座地震與海嘯觀測站,嚴密監測海域的地震活動。2011 年 3 月 11 日芮氏規模 9.1 東日本大地震發生後,更投入超過日圓 230 億日圓,於日本東部海域建置全長超過 5600 公里的海纜觀測系統,並設置 150 座以上的地震海嘯觀測站。

海底的地震警報烽火台

在政府預算經費的支持下,氣象局於 2007 年起開始進行東部海纜觀測系統的設置,將地震海嘯監測的衛哨由陸域向外拓展到東部海域。這個海纜觀測系統就像是古代示警的烽火,在偵測到地震、海嘯時能迅速將資訊傳進地震偵測網。每個即時觀測站就是一座烽火台,由一個能抵抗海水壓力的長條型圓柱桶構成,內部封裝著各式偵測儀器,包含加速度型地震儀、速度型地震儀、傾斜儀、海嘯壓力計與水下聽音計等儀器。

這些儀器就像烽火台上拿著火把的衛兵,一看情況不對就點燃烽火台,將警告訊息傳遞出去。而一個個圓柱桶會被橫放於海床上,並透過光纖海底電纜纜線進行電力供應與觀測資料傳輸。由於海纜系統資料傳輸速度近乎即時,結合氣象局既有陸上地震監測網測站進行海陸聯合觀測,面對臺灣東部海域中大型災害地震與海嘯的威脅,預期將可縮短強震即時警報系統的偵測時間,也能提高預警的效益。

氣象局東部海纜觀測系統即時觀測站外觀圖。觀測站外觀為橫放的長條形耐水壓外殼圓柱桶,長度約2.26公尺,透過海底纜線供電與傳輸資料,配置觀測儀器包括加速度型地震儀、速度型地震儀、傾斜儀、海嘯壓力計與水下聽音計。source:作者提供

氣象局於 2011 年 11 月完成第 1 期海纜系統,由宜蘭頭城陸上站往東南外海舖設 45 公里海纜,尾端設置 1 座即時觀測站。又在 2017 年 10 月完成第 2 期海纜系統擴建,將海纜長度延長 70 公里,總長 115 公里,並增設 2 座即時觀測站,將監測範圍擴展至和平海盆與南澳海盆鄰近區域。

氣象局目前正在辦理第 3 期海纜系統的建置作業,規劃由第 2 期海纜系統尾端,向東南方穿過耶雅瑪海脊至加瓜海脊西側,再往西穿過呂宋島弧,轉向南邊繞經恆春半島外海至屏東枋山登陸,第 3 期計畫預計增建海纜 580 公里及新增 6 座即時觀測站,規劃於 2020 年底完成。

氣象局東部海纜觀測系統路線圖。底圖為科技部自然司海洋學門資料庫的臺灣周圍海域海底地形圖,圖中實心綠線為2011年完成的第1期海纜路線,實心黃線為2017年完成的第2期海纜路線,紅色虛線為正在執行的第3期海纜預定延長路線。海纜最終在屏東枋山陸上站登陸,連同原有宜蘭頭城陸上站形成雙邊登陸的完整地震觀測網;黃色圓點為現有3座即時地震海嘯觀測站位置,紅色圓點為第3期規劃設置6座觀測站位置。source:作者提供

海纜系統怎麼維護?

過去所架設的海底電纜,最大的困境是遭外力破壞損毀。舉例來說,在海底坡度較陡之處,可能會因地震或颱風等因素而發生海底山崩。2006 年 12 月 26 日芮氏規模 6.7 的恆春地震,就曾造成臺灣南方多條國際電信電纜斷裂,而嚴重影響亞洲網路傳輸。除此之外,因漁業活動致電纜損壞而中斷網路傳輸的例子,也時有所聞。

海底電纜經層層保護,以降低自然因素或人為外力造成斷纜的風險。source:wikimedia

針對上述情況,海底電纜本身可考量鋪設沿線的地質狀況,選擇不同類型鎧甲防護纜線,以降低自然因素或人為外力造成斷纜的風險。自然環境條件可藉由海底地形與地質調查分析、鑽井岩心採樣與洋流觀測資料,協助判斷最適宜的鋪設路線。

海纜觀測系統主要有嵌入式(in-line)與節點式(Node)兩種架構系統,嵌入式是將纜線與內含觀測儀器的即時觀測站採一體成型方式製作,其優點是體型相對較小且可掩埋,較不易受外力損毀,缺點是個別觀測站儀器不能擴充;節點式系統則透過纜線連接節點,再由節點連接觀測儀器設備,其優點是可以自由擴充與更新儀器設備,但缺點為即時觀測站體稍大且因設置於海床上而較易受外力損毀。

因此,在第 2 期海纜系統擴建時,便選用嵌入式的即時觀測站型態,同時也盡可能將站體設置於較深水域,分別為945、1114 與 2732 公尺,且系統沿線水深淺於 600 公尺的海纜需掩埋 1.5 公尺,以降低天然與人為破壞。

本鯊才沒這麼無聊,要怪去怪海底山崩。source:pixabay

除了前述提到的即時觀測站及電纜纜線,海纜觀測系統中還有一個位於陸地的陸上監控站。其所扮演的角色是海纜傳輸訊號「登陸」的機電與通訊控制端。在海纜觀測系統出現故障時,首先會透過陸上監控站來嘗試排除故障,當狀況無法解除,就只有海上作業一途。如果要維修水下的線路與站體,就需要利用特殊船隻與儀器協助,例如透過無人水下載具(remotely operated vehicle, ROV)進行攝影巡視,查看海纜觀測系統的情況,排除可能威脅,降低海纜故障風險。

而海纜與漁業活動如何和平共存,還需要更多的溝通與互信體諒。第 1、2 期海纜系統建置完成後,氣象局均彙整海纜路由點位資訊,請海軍大氣海洋局協助進行長期航船布告。而第 3 期海纜系統擴建,也在作業開始前拜會相關漁會進行說明,並請漁會協助向漁民宣導,以降低施工風險。

作業期間,於每航次亦將事先備妥舖設作業區域圖、作業期程、作業船舶及人員名冊等資訊,請內政部、行政院農業委員會漁業署和相關漁會等機關單位協助宣導與溝通;另備妥舖設作業區域圖請海軍大氣海洋局協助發布航船布告,提醒航行作業船隻注意避讓。以上作為,皆是為了盡可能減少對漁業活動影響的措施。

氣象局海纜觀測系統已納入實際地震海嘯監測作業,2017 年 10 月 18 日至 2018 年 10 月 17 日這1年間,就在宜花海域監測 73 個芮氏規模 3 以上的地震事件。如果把海纜系統的監測結果納入強震即時警報自動定位的案例進行分析,發現這 3 座海底即時觀測站平均可提升地震定位準確度約 8.59%,相當於水平與深度綜合定位誤差由 12.45 降低至 11.38 公里。另外,也能增加預警時效約 7.9%,相當於預警報告產製時間由 20.52 秒降低至 18.90 秒。由於氣象局在發布強震即時警報或海嘯警報時,皆須依據震央位置與地震規模推估各地的S波到時與預估震度大小,因此提升震源參數的準確性後,可以增加警報的可靠性。

地震海嘯海纜觀測系統持續建置中

臺灣四周環海,不僅地震與海嘯的防災作業非常重要,其他海域資源有關民生經濟的發展,亦需仰賴前瞻性的探勘研究與水下技術,因此需要海洋領域人才的培育與經費的投入。以海纜觀測系統建置為例,相關專業知識與技術門檻實屬困難,目前臺灣水下技術尚在起步發展階段,專業人才仍屬不足,短期內須仰賴國外專業廠商協助,所幸已有國家級海洋研究機構與部分民間業者投入人力物資開發研究,期待將來能累積更多實務經驗,厚植海洋科技發展。而氣象局仍將持續推動與建置地震海嘯海纜觀測系統,結合強震即時警報系統,發揮地震測報與災防預警效能。


 

本文摘自《科學月刊 09 月號/2019 第 597 期:正視震知識》科學月刊社出版

文章難易度
科學月刊_96
216 篇文章 ・ 1238 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。


2

6
0

文字

分享

2
6
0

地球在20年間「亮度」變低了!——地球暖化讓陽光反照率直直落

Mia_96
・2021/10/23 ・2757字 ・閱讀時間約 5 分鐘

地球暖化會造成溫度升高?不稀奇!地球暖化會造成人類生活環境越來越嚴峻?也不稀奇!但你有聽過,因為地球暖化,讓我們的亮度竟然逐年遞減,地球變得越來越暗嗎?

地球亮度的改變並不是近期才出現的新興議題,關於地球亮度的變化,科學家早在 1990 年代前後便提出一種現象「全球黯化」(global dimming)去解釋為何地表獲得的太陽光能量越來越低。

當時透過資料指出,進到地球的太陽能量大幅降低,從 1950 到 1990 年入射至地表的太陽光能量,竟然平均減少 4%! 也就是身處在地球上的人類會覺得地表的亮度似乎逐漸地降低。

但入射地表能量降低的原因並非是太陽發出能量的變化,而是因為近幾年我們最常耳聞的,空污現象! (圖/pixabay

當人類使用石油、煤炭等非再生能源發電時,會在環境中產生許多氣膠微粒,而這些氣膠微粒進入大氣,微粒可以吸收、反射入射到地球的太陽光,使太陽之能量無法進到地球表面,進而造成地球亮度降低。

而全球黯化同時也影響著人們過去對於全球暖化的理解,當全球黯化造成入射到地表的太陽光減少時,代表著地球所獲得的能量並不如過往我們所想像的這麼多。換句話說,全球黯化所造成的冷卻效應竟比不上人們所造成的暖化速度!

知曉地球改變亮度的方法——地照!

近期最新研究更是顯示,1998 年到 2017 年近十年內,地球的反照率逐年下降!除全球黯化造成地表獲得太陽能量減少外,當從外太空看著地球時,地球竟然也越來越暗了!

反照率是一種常用於亮度表示的方式之一,其指的是太陽電磁波段入射至地表的總量質,除以被地表反射的量值所得出的數字。不同的地表特性即有不一樣的反射量質。因此,透過反照率的升降,科學家也可以推估氣候變遷對環境所產生的變化與影響。

計算反照率的方式十分特別,在科學中我們將其稱為「地照」!

地照現象指的為當太陽光照射到地表,地表會反射部分太陽光,而當地表反射太陽光至月球未被太陽照到的地方時,月球又會將地表所反射至月面的光線反射回地球。

看似應該沒有被太陽光照射到的月球表面,其實也會因為地球反射之陽光而產生微弱的光。而最適合觀測地照的時間通常為弦月時分。 (圖/Wikipedia

地照的變化與地表的改變息息相關。例如冰雪的反射率較高,當地表溫度較低,累積較多冰雪時,地照數據便可能會上升;而洋面的反照率較低,當地表溫度較高,造成冰雪融化成海洋,則地照數據便可能會下降。

透過地照反射的光線強弱,可以推測地球反照率的變化,進而推測地表本身變化。 (圖/Wikipedia

除了利用地照觀測地球反照率外,為使觀測更加精確,科學家利用於 2000 年發射的 CERES 儀器(Clouds and the Earth’s Radiant Energy System)觀測大氣至地表的太陽光輻射與地表放出之輻射,並進一步分析對影響地球溫度的重要因子──雲,和太陽輻射的交互關係。

CERES 主要希望可以解答雲在氣候變遷中所扮演的角色與造成的影響,是美國國家航空暨太空總署地球觀測系統(EOS)計畫中的一部分。 圖/Wikipedia

研究結果分析發現,從 2000 年到 2015 年,地球反照率曲線一直維持接近平坦的狀態,但近年,地球反照率的衰退卻日益明顯,如下圖表示:

(圖/參考資料 1

橫軸座標為年度,縱軸座標為地照反照率之異常改變(單位為每瓦/平方公尺),黑色為地照異常之數據,藍色為 CERES 觀測到異常之數據,而灰色陰影區域則為誤差範圍。從圖中可以看出,地照反照率在這幾年下降約 0.5 W/m2,而 CERES 之數據則是下降約 1.5 W/m2

十年一變──太平洋年季震盪

科學家推測,改變反照率的原因,是週期性發生在太平洋的氣候變化──太平洋年季震盪。

太平洋年季震盪指的為太平洋的海水溫度會以十年為週期尺度產生變化:當北太平洋和熱帶太平洋間的海水溫度較高時,稱作暖相位;而當北太平洋和熱帶太平洋間海水溫度較低時,稱作冷相位。

而地球亮度改變的原因,正是因為太平洋年季震盪到了暖相位,造成海面低雲減少,反照率降低!

低雲較為溫暖,其主要成分是由水滴組成,當太陽輻射照射水滴時,較多太陽反射至太空,地球的反照率較高,也造成地表溫度降低;而高雲主要成分由冰晶組成,透光性較佳,再加上高雲通常體積較低雲薄,故太陽輻射可以順利進入地表,地球反照率相對降低。

當北太平洋與熱帶太平洋間海水溫度升高時,洋面上空氣需達到飽和的水氣量相對增加,氣塊達到飽和條件較高,低層雲較難生成。(其實背後原因極其複雜,作者僅是以最簡單的方式嘗試解釋。)當低層雲減少時,反射率降低,造成較少太陽輻射至太空,地球亮度因此變得越來越暗。

雲在地球輻射能量中一直扮演著重要的角色,低雲反射太陽輻射的能力較強,高雲吸收地球輻射的能力較強,因此較多的低雲往往造成地表降溫,而較多的高雲則會造成地表增溫。 (圖/pixabay

交織纏繞的反饋機制

看完整篇文章也別急著下結論!其實地球上的現象不僅環環相扣,影響因素更是族繁不及備載,從海溫改變的原因、高低雲量多寡的變化、反照率升降的主因……,我們都很難用單純或是絕對的一段話去完整解釋自然界的現象。

科學家所能做到的,是透過原因推導、盡力的去解釋現象,所以關於地球反照率下降的趨勢原因,除了太平洋年季震盪、海溫升高、低雲變化等,或許也還有科學家尚未清楚的其他可能性。

但同時,令科學家擔心的事情是,因全球暖化造成地表的反照率降低,代表地表接收到的能量、進到地表之能量相對增加,而吸收的能量又加速全球暖化的速度,地球或許會因為這樣的回饋機制持續升溫,造成更加嚴重的溫室效應。如何去因應溫度上升造成的種種問題,也將會是我們需要不斷去思考問題。

參考資料

  1. AGU AdvancesEarth’s Albedo 1998–2017 as Measured From Earthshine
  2. science alert,《Two Decades of Data Show That Earth Is ‘Dimming’ as The Planet Warms Up
  3. Wikipedia,《Clouds and the Earth’s Radiant Energy System
  4. Wikipedia,《行星照

所有討論 2
Mia_96
156 篇文章 ・ 375 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策