Loading [MathJax]/extensions/tex2jax.js

1

7
0

文字

分享

1
7
0

推開地獄之門?冰島開挖全球首座「火山岩漿井」,開啟地球科學新篇章!

安比西林_96
・2021/10/20 ・2720字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

水井、石油井和天然氣井大家都知道,但你有聽過「岩漿井」嗎?最近,冰島著手開挖全球第一座「火山岩漿井」。這似乎是一個瘋狂的主意,滾燙的岩漿可高達攝氏上千度,還可能伴隨著可怕的火山災害。不過這個前所未有的大膽計劃,不僅具備新興可再生能源的巨大潛能,更有望開啓地球科學的新篇章!

冰與火之地——冰島,100% 依靠可再生能源的國家

落在北極圈邊緣的冰島(Iceland),擁有壯闊冰川與絢麗極光,同時也是地球上火山活動最頻繁的地區之一,可謂名副其實的「冰與火的國度」。這座大約 1500 萬年前才因火山活動形成的年輕島嶼,因位在大西洋中洋脊[註1]之上,受到歐亞大陸板塊與北美洲板塊往各自方向的拉扯,而有著 32 個活躍的火山系統,且平均每 4 年就會發生噴發。

圖/wikimedia

除了令人屏息的天然極地美景,冰島更是全球綠能國家中的模範生。得天獨厚的地理條件,讓冰島超過 99% 的電力都是依靠可再生能源,其中 73% 的電力源自水力發電,另 26.8% 則來自地熱能。在可再生能源,尤其是地熱能的開發應用技術上領先世界的冰島,在地發電厰不單是觀光旅游的賣點之一,更吸引了不少國外的投資入駐,以降低企業的碳足跡。

延伸閲讀:利用地球的熱情發電吧:深層地熱發電

通往「地獄」之門,也是推開科學新研究的大門

地熱能開發技術純熟的冰島,在 2009 年的一次鑽探中,卻遇到了意想不到的變故:原本想開挖深達 4500 公尺下的熱水,沒想到卻在 2100 公尺處挖到了一個岩漿庫[註2]!這此的開挖位於冰島北部的 Krafla 火山口附近,一個較小火山口 Víti (冰島語中正是「地獄」之意)邊上。

大量的蒸汽與玻璃從鑽孔中噴湧而出,在鑽探套管報廢之前,還觀測到破紀錄的 900°C 高溫。原先的計劃被迫喊停,但科學家卻從中看到進行地科研究的大好機會。

-----廣告,請繼續往下閱讀-----
2009 年時,原先要鑽探地熱井的冰島團隊,卻意外挖到了一口岩漿井。圖/science.org

這起事故,促成了克拉夫拉岩漿試驗臺( Krafla Magma Testbed,簡稱 KMT)研究計劃的誕生。時隔多年籌備,這個備受矚目與期待的計劃,在國際大陸科學鑽探計劃(International Continental Scientific Drilling Program)與多個科研機構的支持資助下,終於於今年展開。這一次,科學家們帶著更堅實的鑽探工具,與明確的鑽研目標,要來敲開通往「地獄」的大門。

「我們曾去過火星,也到過金星,但我們從未觀測過地表下的岩漿。」意大利國家地理物理與火山學的研究主任 Paolo Papale 如是説道。

過去火山學家一直缺乏直接觀測地底岩漿的機會,只能仰賴地震儀、GPS 感測系統和雷達衛星,來推測岩漿的運動。儘管他們可以調查噴發到地表的熔岩,但這些已固化的樣本,早已失去大部分原本所含有的氣體。這些氣體是驅動火山噴發,影響岩漿原始溫度、壓力與成分的關鍵。

自 2009 年與這口岩漿井打交道以來,科學家確認它的脾氣相當溫和,並無噴發的太大風險,加上位處偏僻無人居住之地,因此非常適合進行研究。未來若從 KMT 取得新鮮熱辣的岩漿樣本,將可用來驗證過去科學家對於岩漿的認知是否屬實。

-----廣告,請繼續往下閱讀-----

地底下的岩漿,揭開大陸形成的秘密

地球大部分海床,都是由玄武質熔岩[註3]構成,冰島也不例外 。然而組成大陸地殼的花崗岩,卻是由另一種更粘稠、富有二氧化矽的流紋質岩漿而來,而 KMT 岩漿井底下的就是流紋質岩漿。

為什麽構成海床與大陸地殼的熔岩種類有所差異?科學家相信,探究以玄武岩為主要構成的冰島上的流紋質岩漿樣本,將揭秘這個地質科學中很基本,卻未解決的問題。

要長期監測岩漿井的溫度、氣壓、化學成分等參數,實實在在地挑戰人類科技的極限,因為靠近岩漿處的溫度可是超過攝氏一千度。鑽探團隊正測試各種能耐高溫及膨脹的器械,而科學家也在研發各種可抵抗高溫高壓的新型偵測器。

這些研究成果不僅能用於地球科學,有朝一日更可能造福太空探索,如被運用在登陸太陽系中環境最惡劣的金星上。

-----廣告,請繼續往下閱讀-----
水手 10 號拍攝的金星,由可見光與紫外光影像疊合而成,可見其表面被一層厚厚的硫酸雲遮蓋。圖/維基百科

一口岩漿井,將成為世界重要的火山學中心

KMT 引領科技的創新,也為冰島的地熱能產業帶來突破的機會。越靠近熾熱的岩漿,利用地熱能發電的效率便會增倍,這麽一來便可減少為了滿足能源需求而開挖的地熱井數量,降低對周圍環境造成的衝擊。光是在 2009 年意外挖掘的這一口岩漿井,就具備可以供應一整個小鎮電力的潛能。

開挖岩漿井時,需要注入大量的水來冷卻與潤滑鑽頭,這個對火山系統進行擾動的過程,也提供科學家一個瞭解火山運動的絕佳觀測機會。進行鑽探後,地震波速度發生的改變,也可透露岩漿流動的範圍。透過探究這些細微的火山運動變化,科學家能更好預測火山的噴發,讓我們能建立更整全的火山預警系統。

「十年後,這裏將可能成為火山學的中心。」冰島地熱研究中心科學主管 Ottó Elíasson 這麽認為。觀察地底下流動的岩漿,就像在瞭解地球的脈動,可以告訴人類更多關於這顆星球的故事,更能帶領我們走向更多科學新的可能性。

註釋

  1. 大西洋中洋脊(Mid – Atlantic Ridge,又稱中大西洋帶),是橫跨大西洋及北冰洋、大部分地區位於海底的山脈。
  2. 岩漿庫(Magma chamber,又稱岩漿房),是地球表面下一至十公里處由熔岩和火山灰氣體形成聚集之處。由於其內的岩漿密度比周圍的母岩來得低,因此會產生使岩漿往上移動的浮力。如果出現可讓岩漿通往地表的管道,便會造成火山噴發。
  3. 玄武岩(basalt),由基性岩漿噴發凝結而成,主要成分是矽鋁酸鈉或矽鋁酸鈣,是一種細粒緻密的黑色火成岩。玄武岩質熔漿被認為源自地球的上部地函。

延伸閱讀

  1. Forget oil or water. In Iceland, well diggers seek to tap a volcano’s magma
  2. VisitIceland – Geography of Iceland
  3. VisitIceland – Renewable energy
  4. Magma chamber
  5. Krafla Magma Testbed
  6. Rhyolite
  7. Basalt
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
安比西林_96
10 篇文章 ・ 9 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)

0

1
0

文字

分享

0
1
0
「護國神山」越高 電力壓力越大:臺灣海洋能是解方?
PanSci_96
・2024/11/07 ・3548字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

半導體廠和資料中心的耗電量巨大,隨著護國神山的持續壯大,台灣的電力供應是否還能承受這種壓力?

或許,大海能夠給予我們答案。

在我們的周遭,有一個龐大且源源不絕的能源,但卻長期被我們所忽視——大海。太平洋上的鄰居夏威夷,已經部署了一座 1.25 百萬瓦特(1.25MW)的波浪能發電示範裝置,並即將併入夏威夷的電網。雖然這個發電量看似不大,但一台裝置只需要 38 公尺長、18 公尺寬的空間。想要放置更多的裝置,需要更大的空間嗎?大海有的是空間。

看來從海洋中擷取能源,或許就是台灣能源的終極解答。但為什麼還沒有人大力投入這個領域呢?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從海洋擷取能源

事實上,從海洋中獲取能量的想法並不新鮮。利用海洋的物理或化學特性所開發的能源,稱為海洋能。海洋能可以大致分為多種不同的形式,每種原理各有不同。

首先是波浪能。夏威夷建設的波浪能示範電廠,就是利用波浪的上下運動所產生的位能變化,或者是利用波浪中海水運動所帶有的動能,來產生電力。值得一提的是,無風不起浪。波浪的產生及其動能的來源,來自於風吹過海面時所產生的摩擦力。而風的出現,可能來自地球自轉,或者是太陽加熱地表和空氣所產生的氣壓差,空氣從高壓區流向低壓區,進而產生風。因此,波浪能的源頭其實是地球和源源不絕的太陽能,被視為永續能源。

其次是潮汐能。月球的引力是潮汐漲退的主要原因。潮汐造成海洋水位的變化,產生位能;同時,漲潮和落潮的水流也帶有動能,這兩種能量都可以用來發電。

另一種是海流能。這是利用海洋中洋流流動的能量。例如,台灣附近的黑潮,水流方向不論冬夏,都是由南向北,而且流速相當快,約每秒 1 至 2 公尺。只要在海流中放置水輪機,就能驅動發電機發電。

-----廣告,請繼續往下閱讀-----

接下來是較為特殊的兩種方式。溫差能(OTEC,Ocean Thermal Energy Conversion)利用海水表面和深海之間的溫度差來發電。我們知道,海水表面因為受到太陽照射,溫度較高;越往深海,溫度越低,一般溫差可達 14 至 25 攝氏度。我們可以利用這個溫差來發電,原理類似地熱發電。OTEC 系統除了發電外,還可以結合海水淡化、海洋養殖和空調冷卻系統等多種用途,可謂一舉多得。

最後是鹽差能。這是利用鹹水和淡水之間的鹽度差異所產生的化學電位差來發電。發電廠通常建設在河水和海水的交界處,將海水和淡水當作一個巨大的化學電池的兩極。

台灣適合發展海洋能嗎?

海洋每年蘊藏的能源遠超全球發電需求,潛力無窮。 圖/envato

地球表面約有 70% 是海洋,蘊藏著無窮的潛力。國際能源總署(IEA)在 2007 年發布的報告預估,海洋每年蘊藏了 21,100 到 93,100 太瓦小時的發電量。作為對比,根據統計公司 Statista 的資料,2022 年全球總發電量為 29,165 太瓦小時。也就是說,海洋蘊藏的能源,足以供給全球所需,甚至可能多出數倍。

海洋能除了蘊藏量龐大之外,發電不需要佔用陸地,又屬於不會造成環境污染的可再生能源,具備多重優勢。既然如此,為什麼我們不大力發展海洋能呢?畢竟台灣四面環海,感覺應該非常有利於開發海洋能。但事實上,不是每一種發電方式都適合台灣。

-----廣告,請繼續往下閱讀-----

根據工研院於 2018 年整理的資料,台灣的地理環境較有潛力發展的是波浪能、溫差能和海流能。在詳細介紹這些能夠發多少電之前,我們先有個概念作為對照。2023 年,台電系統(不包括民營電廠)發電總裝置容量約為 55 吉瓦(GW),而目前封存的核四,兩部機組的總裝置容量為2.7 GW。

首先,波浪能發電適合的區域包括東北角外海、富貴角一帶,以及澎湖和雲林、彰化外海,發電功率有望達到 2.4 GW。溫差能發電適合的範圍則在花蓮、台東外海,具有 2.8 GW 的發電潛力。至於海流能發電,適合的地區在富貴角、澎湖水道(台澎海峽),以及東部外海的黑潮,共有 4.2 GW 的發電潛力。此外,在金門和馬祖,也有一些潮汐能發電的潛力。

總計而言,台灣的海洋能蘊藏量至少有 9.4 GW 的潛力,相當於七部核能機組的發電量。這樣的發電潛力也意味著巨大的經濟價值,估計海洋能市場的產值可達數兆台幣。

發展海洋能的困難之處

既然海洋能蘊藏量龐大,為什麼我們至今未見台灣有大規模的海洋能開發計畫呢?

-----廣告,請繼續往下閱讀-----

首先,海洋能的技術發展仍存在許多挑戰。在各種海洋能中,潮汐發電目前最接近成熟的商業化階段,且已有正在運作的商業發電廠。例如,全球有十多座潮汐發電廠在運作中,其中韓國的始華湖潮汐發電廠是全球最大的,發電容量達 254 MW。此外,還有一些潮汐發電廠處於規劃或建造階段。

然而,潮汐發電的效益取決於潮差(滿潮和乾潮之間的水位差)的大小。一般而言,需要潮差達到 5 公尺以上才有經濟效益。台灣除了金門、馬祖等外島之外,潮差均不足5公尺,因此潮汐發電的潛力較低,並非首選。

至於台灣適合發展的波浪能、溫差能和海流能,目前全球的發展進度都較為遲緩。以波浪能發電為例,雖然蘇格蘭曾有過小規模的商業化案例,但已經退役。不過,最近也有新的波浪能計畫正在進行,包括本文開頭提到的夏威夷案場,這是愛爾蘭公司 OceanEnergy 在夏威夷設置的波浪能轉換器 OE-35,裝置容量為 1.25 MW。另外,瑞典公司 CorPower Ocean 在葡萄牙設置了 C4,裝置容量為 600 kW。雖然規模不大,但已達到商業化的程度,有望在不久的將來成為新的商業化發電方式。

至於溫差能、海流能和鹽差能,都還處於技術發展或小規模實驗測試階段,距離成功商業化發電還有一段路要走。

-----廣告,請繼續往下閱讀-----

那麼,海洋能發展緩慢的原因是什麼呢?技術層面是一大挑戰。首先,海水對電器設備具有腐蝕性。同時,海上的強風大浪可能造成設備損壞。海洋生物也會附著在設備上,影響其運作效能。因此,打造耐用且抗生物附著的海洋能發電設備,本身就是一個巨大挑戰。

海洋能發展緩慢因設備易腐蝕、受強風大浪及生物附著影響。圖/envato

此外,即使我們能夠製造出能夠承受各種海洋環境的發電裝置,是否能長期高效地發電也是一個問題。如果無法建立耐用且具有一定規模的海洋能發電設施,成本將無法下降,進而阻礙海洋能的開發。

台灣在海洋能開發的進展

波浪能方面,工研院開發了「懸浮點吸收式波浪發電」系統,包含具有運動模組和浮筒模組的上浮體,以及具有穩定作用的下浮體。當波浪經過時,上、下浮體會產生相對運動,能量擷取系統藉此吸收波浪的能量。

國家海洋研究院則與台灣海洋大學合作,進行「振盪水柱式波浪發電系統」的研究。該系統利用波浪的上下擺動,擠壓空氣艙內的空氣,將空氣擠出至口徑較小的排氣口,造成空氣流速加快,進而驅動排氣孔中的扇葉發電。成大也有實驗室透過數值分析軟體,進行發電裝置最佳化設計的研究。

-----廣告,請繼續往下閱讀-----

海流能方面,國家海洋研究院、台灣大學、中山大學和台灣海洋大學均參與了「浮游式洋流發電機組」的研發。發電機艙採流線型設計,類似一台風箏。機艙後方的葉片在受到洋流衝擊後轉動,驅動發電機產生電力。目前,20 kW 級的發電機組「錨碇」已在90公尺深的海中初步測試成功。中研院也正在研發 100 kW 等級的渦輪機,預計今年在台東外海下水測試。

在進度較慢的溫差能發電方面,台泥預計在和平火力發電廠打造台灣第一個溫差能發電系統。

未來展望與政策目標

不知不覺中,台灣在海洋能的開發上已經投入了不少資源,雖然還需接受海洋環境的考驗,但前景可期。根據目前的政策目標,台灣將從技術較為成熟的海洋能開始,分階段推進。目標是在 2030 年完成 10 萬瓦特到 100 萬瓦特等級的示範發電機組,並於 2035 年設置 100 萬瓦特到 1000 萬瓦特的商業發電機組。根據屆時的技術發展狀況,期望在 2050 年達成裝置容量 1.3 至 7.5 GW 的目標。

在政策執行方面,海洋能開發涉及多個部會的管轄,如環境部、農業部漁業署、內政部國土管理署等。為簡化申請流程並促進開發,設立單一窗口相當重要。值得一提的是,根據最近的消息,台灣已有民間公司提交了 100 kW 的波浪能示範電廠申請,預計最快在 2025 年完成台灣首個海洋能示範場。

-----廣告,請繼續往下閱讀-----

台灣作為四面環海的島國,有機會在這個領域取得突破,為未來的能源供應找到新的解決方案。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2405 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

9
0

文字

分享

1
9
0
做壞事會下地獄?地獄信仰跟降低犯罪率有關嗎?
PanSci_96
・2023/09/11 ・4845字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

「說謊的話,小心以後下地獄被閻羅王拔舌頭喔!」

「不把飯吃完,浪費食物,死後到地獄就要被逼吃廚餘喔!」

你小時候有沒有被這樣「超自然威脅」過的經驗呢?

或是曾經跟著長輩去過廟宇後面附設的「十八層地獄」,被嚇到晚上惡夢連連呢?

-----廣告,請繼續往下閱讀-----

很多人應該也有翻閱過寺廟送的《因果圖鑒》或是收到傳教士給的《末日近了》這類廣為發送的宗教勸世手冊,最常使用的手法就是插入驚悚又生動的地獄插圖,利用恐懼勸人悔改向善。

但這種「超自然的威脅」真的讓人不敢為非作歹嗎?還是只會把小孩嚇出心理陰影呢?

地獄信仰到底能不能嚇阻犯罪?

我們在公民課都學過,不論是法律或是民俗信仰,都能約束人民的行為,維持社會的安定。

但在討論效果之前,我們必須先知道,「地獄信仰」在不同文化和宗教間,對地獄概念的詮釋可能差異甚大,在不同的社會與時空環境中也會產生變化,難以在標準化的尺度上做衡量,講白話就是你的地獄不是我的地獄。

-----廣告,請繼續往下閱讀-----

面對此等難題,還是有許多社會學家願意接受挑戰,真是我不入地獄誰入地獄。

一項於 2011 年刊登在《國際宗教與心理學期刊》(The International Journal for the Psychology of Religion)的研究,就想了解,相信神明的形象是「好好神明」的學生,和相信神明是會懲罰你的「嚴厲神明」的學生,是否會影響到他們在考試中作弊的機率。

神明在學生心中的形象是否影響他們在考試中作弊的機率呢?圖/Giphy

他們招募了 61 位包含不同宗教背景的大學生,請他們填寫對於神的印象,是偏向寬恕、慈愛、溫柔等正面描述,還是嚴厲、憤怒、令人懼怕等負面描述。蛤?你說有沒有笨笨又無能的女神?這個研究沒有。

接著,研究者讓這些受試者進行 20 題測驗,測驗開始之前,研究人員假裝電腦出了一點問題,並告知如果在題目出現之後不馬上按空白鍵,答案就會自己跑出來,所以「一定要」在看到題目之後按下空白鍵。

-----廣告,請繼續往下閱讀-----

研究結果發現,無論受試者的宗教信仰為何,在前一項問卷中對神的觀點傾向負面的受試者,更高比例會依照研究人員的指示,會提早按下空白鍵,不會偷看答案。

研究推論,「相信有嚴厲的超自然懲罰」的人,在行為上比較傾向順從社會的道德規範。

那如果把影響層面從個人擴及到整個社會呢?

美國俄勒岡大學的 Azim Shariff 和荷蘭阿姆斯特丹大學的 Mijke Rhemtulla 兩位心理學家,在 2012 年六月也發表了一篇研究。

-----廣告,請繼續往下閱讀-----

他們援引了從 1981 到 2007 年間,前後 26 年、67 個國家的資料,其中包含了基督教、伊斯蘭教、印度教、日本神道教等各種宗教的信徒。結果發現,傾向相信地獄人口比例比較高的國家,犯罪率真的比較低!

相信地獄人口比例比較高的國家,犯罪率真的比較低。圖/Shariff, A. F., & Rhemtulla, M. (2012). Divergent effects of beliefs in heaven and hell on national crime rates. PloS one, 7(6), e39048.

而相信天堂的國家不但無法降低犯罪率,還與較高的犯罪率有關。更有趣的是,相信天國的人數百分比減去相信地獄的人數百分比越低,也就是相信地獄的人口比例越高,犯罪率就越低。

地獄信仰與犯罪率有相關性。圖/Shariff, A. F., & Rhemtulla, M. (2012). Divergent effects of beliefs in heaven and hell on national crime rates. PloS one, 7(6), e39048.

但研究團隊也表示,該研究只是確立了地獄信仰與犯罪率之間可能有「相關性」。是否真的是地獄信仰造成犯罪率下降這點,還需要更多後續的研究,無法立刻下結論。

畢竟各個國家的情況都不同,有時候,某些犯罪行為可能出於對不公正法律或制度的抵抗,不是存心行惡。有犯罪行為並不等於反社會,較低的犯罪率甚至可能僅僅反映出人們的服從程度,而非出自真心的利他行為。而且這個研究定義的犯罪行為是這些:

-----廣告,請繼續往下閱讀-----
研究中定義的犯罪行為。圖/PanSci YouTube

暴力犯罪,不包括可能影響更多人、長期傷害更大的白領犯罪、非暴力犯罪,這也是要考慮的限制。

一項於 2019 年發表於青春期研究期刊 Journal of Research on Adolescence 的研究,使用另一種方法來討論這個問題。研究人員對 760 名青少年進行了線上調查, 分析他們對於神的看法,試著了解受試者認為的神是偏向「懲罰性的」還是「仁慈的」。同時調查他們的日常行為,分析他們在生活中有多少身體、言語等「攻擊性行為」。

結果發現相信上帝是「慈愛的」的受試者,較少與攻擊性行為相關,而相信上帝具有「懲罰性的」則與較多的攻擊行為行為相關。這次的研究成果提供了另一個研究方向,但也模糊了超自然的懲罰與反社會行為之間的相關性。

這樣看起來問題似乎又繞回了原點,到底超自然威脅對社會發展有幫助嗎?

-----廣告,請繼續往下閱讀-----

地獄的存在真的對社會發展有利嗎?

2006 年演化生物學家 Dominic Johnson和心理學家 Jesse Bering 提出了一個有趣的理論,發表於演化心理學期刊 Evolutionary Psychology 的論文中,他們認為超自然的懲罰的概念,提供了人類社會在演化過程中的優勢。

他們提出,人類有兩點與其他生物不同。 首先,人類會本能地使用「心智理論」(Theory of Mind),也就是以其他人擁有與自己類似的心智的假設,來解釋他人的行為; 其次,人類的語言使我們能夠快速交流複雜的想法。

這兩個特點使早期人類得以利用社會約束,甚至控制對方做出自私的行為,這也是一種演化上優於其他生物的優勢。

舉例來說,黑猩猩 A 可以惡整​、創空 (tshòng-khang)​ 黑猩猩 B,甚至把牠的香蕉全部自己吃掉,而這些「自私自利」的行為,都不會被報告給其它不在場的黑猩猩 C、D、F 等知道。

-----廣告,請繼續往下閱讀-----

但如果是人類:我們知道其它人可以聽到、發現、推斷、記憶、報告、假設、計劃並根據他人的行為採取行動,也就是說,我們如果在他人面前做出攻擊性的行為,就可能受到群體的制裁。

但過去的人類並沒有監視器和大數據監視系統,我們不可能隨時隨地監視其他人有沒有做出錯誤的行為。因此這時候,有一個全知全能、可以隨時監視你,並懲罰你錯誤行為的神靈,也就是「人咧做,天咧看(Lâng teh tsò, thinn teh khuànn)」的概念,就非常有用了!

嚴厲的神靈讓人有隨時被監視、做錯事會被懲罰的感覺。圖/Giphy

Dominic Johnson 和 Jesse Bering 認為,隨著時間的推移,那些相信有「會懲罰你的神明」的社會發展,會比不相信超自然懲罰的社會來得好,並在演化長河中生存下來。

2003 年哈佛大學(Harvard University )的研究也發現,在已開發國家中,相信地獄的比例大於相信天堂的國家,他們國內生產總值(Gross Domestic Product)較高,似乎也支持了上述的論點。

然而並不是所有的科學家都支持這種看法。一篇 2013 年同樣發表於 演化心理學期刊 Evolutionary Psychology 的論文就提出,過去許多社會——包括古埃及、希臘、羅馬、阿茲特克、印加和瑪雅等高度發展的社會都有組織性宗教的存在,但當仔細檢視這些文明的宗教,就會發現他們的神明除了要求獻祭和忠誠以外,對於人類的道德行為和人類是否善待彼此並不是非常在意。

有看過希臘神話應該知道,希臘神話裡許多神明的道德觀相當一言難盡,甚至有些人可能覺得他們根本只是一群被神力寵壞的肌肉屁孩。

希臘神話裡許多神明的道德觀相當一言難盡。圖/Giphy

然而上述文明卻並沒有因為缺乏「道德化宗教」而停止發展,或發展得比其他具有「道德化宗教」的社會差。

因此他們不僅質疑超自然的懲罰被作為人類社會發展驅動力的理論,更進一步提出相反的看法,認為現今存在的宗教傾向道德化,是因為人類已經演化出道德直覺,而符合道德直覺的宗教比較深得人心,才會繼續存在。

說到這邊,既然「超自然威脅」在社會發展上有它存在的道理,那我現在是不是該準備一些恐怖故事回家嚇小孩了?不,先等等!

地獄信仰是否會造成心理陰影?父母該不該用地獄嚇小孩呢?

就像前面所說,目前只能證明地獄信仰與犯罪率和國內生產總值有相關性,而「相關性」不等於「因果關係」。

再者,雖然精心設計的「作弊實驗」似乎間接暗示了地獄與犯罪之間的因果關係,但此研究牽涉社會科學的範疇,由於社會系統中存在諸多相互關聯的作用因素。即使有實驗過程,我們還是不能確定這個研究理論能不能應用在日常決策。用下地獄嚇小孩?先不要。

2014 年,前面做過跨宗教犯罪率比較研究的 Shariff 和西門菲莎大學(Simon Fraser University)的心理學家 Lara Aknin 發表另一則研究,說明相信地獄的代價可能是降低你自身的快樂和生活滿意度。

這個研究援引了 2005–2009 年間,合計 155 個國家、455,104 個樣本的資料。評估受試者的生活滿意度和快樂程度,並對比宗教價值觀數據進行分析,結果發現一個國家的信仰越傾向相信天堂,人民就越快樂,越傾向相信地獄,就越不快樂。

但同樣的,統計上的數據分析只能證明地獄信仰與快樂程度的相關性,並不能用以支持「地獄導致快樂程度較低」的假說。比如,「有可能」生活比較悲慘的人傾向相信地獄,而不是相信地獄導致他比較不快樂。

可能生活比較悲慘的人傾向相信地獄,而不是相信地獄導致他比較不快樂。圖/Giphy

為了進一步確立兩者間的因跟果,他們進一步從「個人」的角度,利用促發效應 (priming) 研究相同的主題。怎麼做呢?他們招募了 422 位受試者,隨機分成三組後,請他們寫一段 100-200 字的短文,主題有三個,分別是「天堂」、「地獄」這兩組實驗組,以及「昨天你做了哪些事」這個控制組,然後請他們評估寫完文章後的心情,針對「快樂」、「悲傷」、「罪惡感」、「安全感」、「恐懼」、「羞恥」或「平靜」七種情緒給予輕微的 1 分到強烈的 5 分。

結果是,寫了天堂相關短文的那組人心情與寫了「昨天做了哪些事」的那組無顯著差異,但寫了地獄相關文章的那組人,無論本身有沒有宗教信仰,都比其他兩組更傾向於不快樂。

所以,對於地獄的信仰,的確很有可能造成心理上的負擔,尤其如果這樣的概念被強加在心靈尚未成熟的未成年孩童身上,對心理健康的影響更是無法估計。

再綜合前面討論的研究,地獄信仰鼓勵的可能也只是權威服從,而非真心的利他行為。

地獄信仰鼓勵的可能也只是權威服從,而非真心的利他行為。圖/Giphy

因此與其使用地獄的恐懼要求孩子就範,不如溫柔且坦率地和他們解釋錯誤的行為可能對他人造成的影響,進而培養同理心和責任心才是比較健康有效的教育方式。如果還是講不聽,那就放泛科學的 YouTube 給他看吧!連續看、而且只能看泛科學一整個月!哇哈哈哈哈~

說到這邊,也想問問大家,你小時候有被鬼故事嚇到晚上睡不著,甚至不敢一個人上廁所的經驗嗎?

  1. 有啊!而且我到現在還會怕。
  2. 我對鬼故事完全無感,就算陪朋友逛鬼屋、看鬼片我也完全不怕。
  3. 哼,跟數學或老闆比起來,鬼跟地獄有什麼好怕的!等等,這算地獄哏嗎?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1262 篇文章 ・ 2405 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

3
2

文字

分享

1
3
2
大家都知道「地球在動」,但你怎麼知道?
賴昭正_96
・2023/06/19 ・6467字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

  • 賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

在第一本書中,我將描述球體的所有位置,以及我歸因於地球的運動,因此本書可以說是包含宇宙的一般結構。 在剩餘的書中,我將其它恆星和所有球體之運動與地球的移動性聯繫起來,這樣就可以確定如果歸因於地球的運動,它們的運動和外觀可以保存到什麼程度。

-哥白尼(Nicolaus Copernicus,1473 – 1543)

隨便找個國中生問:「地球是宇宙的中心嗎?」相信他們都會回答說:「不是。地球除了自轉外,還在繞著太陽公轉。」可是如果你緊接著問:「你怎麼知道它在動呢?」相信大部分的國中生(甚至大學生)可能就不知道怎麼回答了:「嗯⋯這?⋯那?⋯??」

這事實上是一個非常難以回答的問題,因此雖然早在公元前 250 年希臘天文數學家阿里斯塔克斯(Aristarchus ,公元前 310 – 230)就曾經提出地球繞日說,但這一理論不但不為大眾所接受,還給他帶來了一生的嘲笑。

而希臘數學家歐多克索斯(蛇床子,Eudoxus of Cnidus,公元前 410 – 347)於公元前 380 年左右提出以不動之地球為中心的宇宙模型則幾乎統領了以後 2000 年的宇宙觀!

你該如何證明地球自轉?圖/envatoelements

1543 年,波蘭哥白尼基於在數學上處理起來比較簡潔,在德國紐倫堡出版六本題為《De Revolutionibus Orbium Coelestium》(論天體運轉)之書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其它行星一起在圍繞太陽的圓形軌道上運動。

-----廣告,請繼續往下閱讀-----

此後經伽利略(Galileo Galilei,1564 – 1642)、開普勒(Johannes Kepler 1571 – 1630)、及牛頓(Isaac Newton,1643 – 1727)等天文數學家的發展,地球繞日說不但慢慢地為天文學家所接受,也漸漸成為主流的宇宙觀。但這些發展似乎都是紙上談兵而已,並不是真正的觀察實驗結果。

有什麼方法可以證明地球是在動的呢?

加速度運動

相信大部分的讀者都有下面的經驗,那就是坐在平穩(等速)直線行駛的車廂內不會覺得火車在動;如果那個時候旁邊也有一輛類似的火車經過,我們根本無法知道到底是誰在動。

事實上不止不會覺得火車在動,伽利略早在四百多年前就告訴我們:不管在車廂裡做任何實驗都沒有辦法偵測出火車在動的(相對論)。但是如果火車突然加速,我們便可立即警覺到火車在動。

如果坐在等速前進的火車中你不會感受到火車在動。圖/envatoelements

圓周運動因為運動方向一直在改變,所以不是直線運動,而是一種加速度運動。坐遊樂場所裡的旋轉木馬之所以有被往外甩的感覺便是因為加速度造成的。地球的自轉及公轉都是圓周運動,我們不是也應該有被往外甩的感覺嗎?

-----廣告,請繼續往下閱讀-----

高中物理告訴我們圓周運動的加速度 a 為

上式中的 v 為圓周上物體的運動速度,r 為圓半徑。地球自轉運動最厲害的地方在赤道上, 將其值及地球半徑代入上式,得地球自轉在赤道上的加速度為 0.033 m/s2,只有重力加速度 9.8 m/s2 的 300 分之 1 而已。

這加速度需要 14 分鐘才能將車子或火車從零加速到時速 100 公里(「高性能」車子大約只需十秒鐘),我們能感覺出來嗎?此一往外甩的慣性力【常被稱為「離心力」(centrifugal force)與重力方向相反,因此如果有非常精確的體重機,原則上可以讓我們測出赤道上重量減輕,證明地球在自轉的。

將地球公轉的平均速度及半徑代入上式,則得地球公轉的加速度為 0.006 m/s2,與重力加速度一比更是微乎其微。所以想靠地球自轉及公轉的加速度來偵測地球在動顯然是相當困難的。

-----廣告,請繼續往下閱讀-----

恆星視差

坐火車的人都有這一經驗:窗外比較近的東西從眼前飛過,越遠的東西就越不動。所以如果火車是從左往右,當你比較圖一中遠近不同之 A、B 兩點的相對位置時,你將發現中非常遠的 A 點不動;但是比較近的 B 點則會從 A 之右邊 B’ 移到 A 之左邊 B”。事實上這視差與火車動不動無關,而是因 A、B、及觀察者三者的相對位置而異。

圖/作者提供

同樣的道理,因為地球繞太陽公轉,我們可以在兩個不同的軌跡點(例如夏至及冬至兩點)看到這「恆星視差」(stellar parallax)現象(圖一)。1838 年,德國天文學家貝塞爾(Friedrich Bessel)成功測量了天鵝座(Cygni)61 號恆星的視差,證明地球並不是一年四季都在同一個位置。當然,不在同一個位置表示「動過」,所以間接地證明了地球在動。

星光像差

站在大雨筆直而下的大街上時,你只需將雨傘直接舉過頭頂即可保持乾爽。可是當你開始走路時,你便必須將雨傘朝行走方向傾斜以免被淋濕,走得越快,傾斜度就需要越大。如果不知道雨是垂直而下(對地球而言),你將誤以為雨是從前方傾斜而至(對你而言)。

(左)在雨中靜止不動;(右)在雨中往右跑。 圖/作者提供

同樣的道理。當地球繞太陽公轉運動時,我們也可以檢測到與運動速度有關之入射星光的「傾斜」(見圖二)——在天文學上稱為「星光像差」(stellar aberration)。因為地球一年四季的運動速度不同,所以「像差」也將因之而異。。

-----廣告,請繼續往下閱讀-----

1725 年起,英國天文學家布拉德利(James Bradley)及同事一直在努力想測量天龍座伽馬(Gamma Draconis)的視差;他們雖然沒有找到預期的現象,但卻發現天龍座伽馬在三天內往「錯誤」的方向移動了驚人的弧度。在同事去世後不久,布拉德利終於意識到這無法用視差來解釋的現象是:因地球在恆星方向運動速率不同之「光像差」(light aberration)和光速有限所引起的。

布拉德利於 1729 年元月向英國皇家學會宣布此一首次確鑿證明地球在「動」的發現,提供了阿里斯塔克斯、哥白尼、和開普勒理論正確性的觀察證據。巴黎天文台台長德蘭布爾(Jean Delambre)認為這是「(18 世紀)最輝煌、最有用的發現」;在其 1821 年所出版之《18 世紀天文學史》中謂:「正是由於布拉德利的這⋯發現,我們才有了現代天文學的準確性。」 

圖/作者提供

傅科

最能夠直接證明地球每日自轉的實驗是「傅科擺」(Foucault pendulum)。法國人傅科(Léon Foucault,1819 – 1868) 小時候對學校功課沒興趣,喜歡自己在家建造玩具和機器。1839 年進入巴黎醫學院,看到血就昏暈,因此只好放棄從醫。但指導教授多內(Alfred Donné)慧眼識英雄,把他留聘為助手從事研究,兩人於 1845 年合作出版了《顯微鏡課程》(A Course of Microscopy)。

傅科與多內的合作開啟他作為科學傳播者的職業生涯:多內退休後,傅科成為具有影響力之《辯論雜誌》(Journal de Débats ) 的科學編輯,接替了多內向公眾報導最新科學領域發展的角色。透過每週生動地報導巴黎科學院會議,傅科很快引起了公眾和科學精英的注意,包括了法國具有影響力的數學家和政治家阿拉戈(François Arago)。

-----廣告,請繼續往下閱讀-----
圖/作者提供

1850 年傅科突發出奇想:如果能夠設計出一個鐘擺,其頂點雖可以隨地球上的支架移動,但能完全自由轉動(也就是與支架間的旋轉摩擦力為零);那麼鐘擺一旦開始擺動,因為不會跟著地球旋轉,地球將在其下方旋轉——但對地球上觀察者來說,將是擺動平面在旋轉。1851 年元月,傅科在家中地下室成功地建造了這樣一個鐘擺後,阿拉戈要求他在巴黎天文台也裝置一個。

不久後,巴黎的每一位科學家都收到了前往巴黎天文台參觀鐘擺的邀請。在天文台進行實驗證明地球確實在旋轉的 1851 年 2 月 3 日,阿拉戈也向科學院宣讀了現在稱為「傅科擺」的論文。幾週後,傅科在巴黎萬神殿(Panthéon)的圓頂上用一根 67 米長的金屬絲懸掛了一個重 28 公斤的黃銅塗層鉛擺,又復製了一個「傅科擺」(圖三,註 1)。

傅科擺的物理

台灣早期科教館曾經展示過「傅科擺」,現在已經找不到了。但相信許多讀者都曾在世界其它各地(如北京或廣州)看過。如果在北極的正上方掛一個「傅科擺」,我們很容易直覺地了解地球將在其下方以 24 小時的週期旋轉。將鐘擺掛在赤道上某一點的正上方,則它只受到地球自轉的前進推力(見後),筆者還可以了解(看出)地球在其下方不會旋轉;但筆者很難想像掛在台北的上空時,地球如何在其下方旋轉?

在忘寢廢食之苦思後,筆者終於領悟到伽利略 1630 年用來錯誤地「證明」地球在動的例子,事實上正是解釋 1851 年「傅科擺」的最佳工具。一個往東方前進之逆時針方向旋轉輪子,在任何一瞬間,對「一位靜止不動的旁觀者 A」來說(圖四左),最上方那一點的速度應該比中間點慢,最下方那一點則比中間點快(註 2)。

-----廣告,請繼續往下閱讀-----

但是對於與輪子同時前進、但不旋轉之中間觀察者 B 來說(圖四中),兩個向量相減的結果,上方那一點的速度將是往左,下方那一點的速度則是往右,這正是為什麼他只看到輪子在逆時針方向旋轉的原因。對一位隨輪子旋轉及前進之中間觀察者 C 來說,則輪子不轉不動:如果觀察者 B 不是一個數學點的話,將依順時針方向旋轉(圖四右,註 3)!

圖/作者提供

地球自轉造成台北 101 大樓往右的旋轉推力;大樓南方因為旋轉圈子比正上方的中間點大,速度因之比中間點快;反之,大樓北方則因為旋轉圈子較小,速度應比中間點慢(圖五白色箭頭)。所以對旁觀者 A 來說, 101 大樓中間點及南、北方兩點之表面速度如圖四左所示;圖四中則為觀察者 B 所看到的:整個台北(地球表面)在圍他逆時針方向旋轉。

住在地球上的我們當然是隨著台北地球表面旋轉的觀察者 C:整個台北不轉不動,B 在順時針方向旋轉;如果 B 是「傅科擺」(記得掛它的條件嗎?),則是鐘擺平面在順時針方向旋轉!同樣的原理我們可以推論到:「傅科擺面」在北極會順時針方向旋轉(週期 24 小時);在赤道上不旋轉(因南、北方兩點之速度一樣);越北的「傅科擺」週期越短(因南、北方兩點之速度差別越大,註 5)。

結論

在「加速度運動」一節裡,我們談到了地球的自轉及公轉所產生的效應在日常物體的運動中,因與其它力相比太小了,很難偵測到。但在長距離和長時間的大規模運動中(如大氣中之空氣或海洋中之水),它還是可能脫穎而出變得很明顯的,例如海邊高(低)潮之所以每天出現兩次,正是因為地球自轉的關係(註 2)。

-----廣告,請繼續往下閱讀-----

又如時常發生在台灣之熱帶氣旋(颶風)的形成,事實上也正是因地球自轉之故:在北半球產生逆時針的氣旋(註四),在南半球將產生順時針的氣旋。但赤道附近因旋轉太小,不會有颱風的。

除傅科擺外,要證明地球在動的原理似乎都很容易理解,但不容易執行;反之,傅科擺似乎容易製作,卻不容易理解。怪不得雖然早有人懷疑地球在動,但卻必須等了兩千年才能觀測到。即使在科技突飛猛進的今天,要證明地球在動似乎也不是幾個字就可以解釋清楚的,怪不得國中生(甚至大學生)只能支吾以對了。

*************** 猜猜看:旁觀者 A 是誰 ***************

我們在圖四及文中提到了「一位靜止不動的旁觀者 A」;不知讀者是否曾在心中質問「他是誰呢?」牛頓也曾想過這個問題:這位靜止不動的旁觀者在他心中是「絕對空間」——一個永遠存在那裡靜止不動的宇宙背景。

但是與他同時代的德國哲學家、科學家和數學家萊布尼茲(Gottfried Leibniz,1646 -1716)卻認為根本沒有這種空間,空間只是一種幻覺。對愛因斯坦發展廣義相對論有巨大啟發的馬赫(Ernst Mach,1838 -1916,奧地利物理學家兼哲學家)是一位十足的實證派人物,他認為任何可觀察到的現象都是相對於遙遠的恆星(或宇宙中所有的物體),因此從這裡得出地球在旋轉的結論是不合理的:我們怎麼知道不是恆星在旋轉呢?當太空沒有任何物體時,地球是否還在自轉呢?

德國哲學家、科學家兼數學家,萊布尼茲(Gottfried Leibniz,1646 -1716) 圖/wikimedia
奧地利物理學家與哲學家,馬赫(Ernst Mach,1838 -1916) 圖/wikimedia

他認為如果沒有其它物體比較,地球與靜止無異,旋轉沒有任何意義。因此對馬赫來說,加速不是絕對的、也是相對的!所以地球的自旋是相對於這「一位靜止不動的旁觀者」(遙遠的恆星)而言的,是它造成的!讀者相信馬赫的觀點嗎?或者根本沒有這個人(萊布尼茲幻覺空間)?或者還是比較相信牛頓的絕對空間? ⋯⋯甚或是因為我去看它,所以地球才在旋轉的近代量子物理觀?對這些爭論有興趣的讀者請參考《我愛科學》。

註解

  1. 原來之擺錘在 2010 年 4 月 6 日因電纜斷裂損壞無法修復,現在的鉛擺為複製品。
  2. 伽利略錯誤地認為這一快一慢的(地球)速度變化正是造成潮汐現象的原因;依照他這一個理論,海邊高(低)潮每天只出現一次,但事實上我們知道因為地球自轉的關係,高(低)潮每天出現兩次。牛頓正確地解釋了潮汐現象主要是因月球引力造成的。
  3. 如果 B 或 C 向前丟出去一顆石子,則 B 將看到該石子直線前進;但是因為「科氏力」(Coriolis force )的關係,C 將看到該顆石子沿右彎的曲線前進;詳見『「 離心力 」真的存在嗎?』。所以「科氏力」可用來解釋「傅科擺」在地球表面的軌跡(與地點緯度、從什麼地方啟動鐘擺、及鐘擺長度有關;加上鍾擺頂點雖然不隨地面旋轉,但並不是「絕對」靜止不動,而是隨地球自轉及公轉,因此細節上是很複雜的,以至於在網路上可以看到許多不同或不完全正確的軌跡圖)。
  4. 因為註 3 之「科氏力」。在網絡上可以看到不少用同樣的原理來解釋水槽、浴缸、或抽水馬桶排水時,在北半球的水流將是逆時針方向旋轉。筆者家中兩個抽水馬桶排水時都是逆時針旋轉,不知讀者府上是否也是一樣?但筆者覺得像加速度一樣,我們不可能偵測到地球自轉對這麼小之水體影響的,有興趣的讀者可參考英文《科學美國人》 2001 年的『有人終於以解決了「水流下排水管的方向是否會因您所在的半球而異」這個爭論?如果有,為什麼?』。
  5. 我們可以利用微積分來計算圖四中之旋轉速度。如果地球的半徑為 R,該中心點是地球表面緯度 Φ 上的一點,則其地球旋轉半徑應該是 Rcos(Φ),將它乘以地球自轉速率 ė,即得在該點的直線速度。其上下兩點的直線速度微差 dėRcos(Φ) 造成對該點的旋轉(圖四中),將它除以旋轉微半徑 RdΦ 則得附近表面對該點的旋轉速率: 。鐘擺的週期與之成反比;台北的緯度為 25°N,故「傅科擺」的週期為 56.8小時[=(24小時)/sin (25°)]
-----廣告,請繼續往下閱讀-----
所有討論 1
賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。