0

1
1

文字

分享

0
1
1

差點震垮葡萄牙的里斯本大地震,震出地震研究的新視角——《愛因斯坦冰箱》

商周出版_96
・2019/08/21 ・2372字 ・閱讀時間約 4 分鐘

生長在臺灣的我們對地震向來不陌生,歷史上哪一次地震對人類文明影響最大呢?恐怕非 1755 年里斯本大地震莫屬,那一次的地震不僅差點震垮葡萄牙這個老牌的殖民帝國,引發了最早的地震學研究,更讓方興未艾的啟蒙運動得到一個施力點,撼動西歐傳統宗教道德合一的傳統。

特別是這場大地震深深地吸引了一位年輕普魯士學者的目光,我們依稀可以在幾十年後他精心完成的哲學體系中聽到這場大地震的餘音。

1755 年的銅雕,表示里斯本大地震後,所發生的火災及被海嘯摧毀的船隻。圖/wikimedia

1755 年 11 月 1 日早上 9 點 40 分左右,一場劇烈的搖晃持續了 3~6 分鐘,許多房屋應聲而倒。這天是天主教的諸聖日,所有的信徒必須到教會參加彌撒,所以當天教堂裡擠滿了信徒。這場驚天地動里斯本市中心被震出了一條約五公尺寬的巨大裂縫,但可怕的災難尚未結束。

大地震後約四十分鐘後,接續三波的大海嘯席捲里斯本,摧毀了碼頭和市中心;禍不單行的是,地震引發的大火延續了五天才被撲滅。而整個南葡萄牙也都遭到非常嚴重的破壞,連大西洋沿岸如北非、英國、愛爾蘭都遭到海嘯的襲擊。光是里斯本的死亡人數就可能高達九萬人(當時里斯本人口約二十七萬),里斯本 85% 的建築物被毀,很多珍貴的資料也被大火焚毀,最可惜的莫過於達伽馬的詳細航海記錄。

國王若澤一世(Jose I)以及皇室成員在日出舉行彌撒後就離開了里斯本,逃過了一劫。被國王視之為股肱之臣的梅羅(後來受封為龐巴爾侯爵)聘請很多建築物和工程師來重建里斯本,不到一年,里斯本就恢復了盎然生機,而這些新建物特別注重防震的設計。

現在里斯本的市中心龐巴爾下城是抗震建築的最早實例之一,建築的特徵就是龐巴爾籠(gaiola pombalina),它是一種對稱的木格框架,可以分散地震力量;此外還有高過屋頂的牆,可以遏止火災蔓延。龐巴爾侯爵曾讓軍隊在周圍遊行,以模擬地震來測試建築物。里斯本市中心的廣場現在還矗立著若澤一世的騎馬銅像,俯瞰著重建的里斯本城。

若昂一世銅像。圖/wikimedia

龐巴爾侯爵是個富有科學精神的人,除了進行重建外,還照著順序,一個一個教區地進行諮詢;他的問題包括:地震持續了多久?地震後出現了多少次餘震?地震如何產生破壞?動物的表現有否不正常?水井內有什麼現象發生等。

這些問題的答案現在還存放於「葡萄牙國家檔案館」(National Archive of Torre do Tombo)。藉著這些資料,現在的地震學家估計里斯本大地震的規模達到 9,震央位於聖維森特角(Cabo de Sao Vicente)之西南偏西方約 200 公里的大西洋中。這算得上是現代地震學的濫觴了。

這場大地震影響的不只是葡萄牙,而是整個歐洲的知識界。對後世影響最大的首推英國的約翰.米歇爾牧師在地震之後所寫的論文:《關於地震成因以及地震現象的觀察》(Conjectures concerning the Cause and Observations upon the Phaenomena of Earthquakes)1一文。他在這篇論文中提出地震會擴散,就像水波在池塘擴散一般,是一種波動現象。而且他還主張地震的波動在遇到地層的斷層時,波傳播的方面會隨著改變。

米歇爾甚至嘗試尋找震央,並且認定震央在大西洋,所以他懷疑地震後的海嘯是由於地震引起的。但是談論到地震的成因,他可就錯得離譜了,他認為是地殼的水與地心的火相遇形成高壓的氣體所造成的。

現代地震學直到十九世紀的愛爾蘭科學家羅伯特.馬萊(Robert Mallet)在 1862 出版的《1857 年拿坡里大地震:觀測地震學的第一原則》(Great Neapolitan earthquake of 1857: the first principles of observational seismology)才算是真正成為一門科學。

馬萊用實驗以及收集的資料推測 1857 年發生在義大利拿波里地震的震央在地表下九哩。地震學這個英文字「seismology」正是馬萊所創造的。

地震波與芮氏地震規模

地震:岩體受到黑色箭頭的力,開始在黑框區域內變形累積能量,並且變形。累積能量超過岩體強度,岩體沿著箭頭方向作相對位移,釋放累積能量。圖/商周出版提供

十九世紀末,德國物理學家埃米爾.約翰.維舍特(Emil Johann Wiechert) 發現地球表面的岩石密度和地球平均密度之間存在著一定差異,隨即提出地球有一個質量極大的鐵核的結論,他也是史上首位地球物理學教授。而他的理論被他的學生賓諾.古登堡(Beno Gutenberg)發揚光大。古登堡在 1914 年提出了地球有三個分層的結論。

維舍特的另一個學生宙依皮瑞茲(Karl Bernhard Zoeppritz)提出的 Zoeppritz 方程式是連結 P 波(primary wave)與 S 波(次波,secondary wave)的重要關鍵。

P 波意指首波或是壓力波(pressure wave)。在所有地震波中,P 波傳遞速度最快,因此發生地震時,P 波會最早抵達測站並被地震儀記錄下來,這也是 P 波名稱的由來。P 波的 P 也代表壓力(pressure),來自於其震動傳遞類似聲波,屬於縱波的一種(或疏密波),傳遞時介質的震動方向與震波能量的傳播方向平行。

S 波的速度僅次於 P 波。S 波的 S 也可以代表剪切波(shear wave),因為 S 波是一種橫波,地球內部粒子的震動方向與震波能量傳遞方向是垂直的。S 波與 P 波不同的是,S 波無法穿越外地核,所以 S 波的陰影區正對著地震的震源。

至於地震的成因,則是直到 1906 年舊金山大地震後,美國科學家哈里.菲爾丁.芮德(Henry Fielding Reid)提出彈性回跳理論(elastic-rebound theory)才有具體的答案。因為地殼為彈性體,受到應力行為時,會不斷地變形並且累積應變能量,當應變能量累積到超過岩體中弱面強度時,岩體就會沿著此弱面滑動造成地震震波。

芮氏地震規模最早則是在 1935 年由兩位來自美國加州理工學院的地震學家芮克特(Charles Francis Richter)和古登堡共同制定的。規模相差 1,代表振幅相差 10 倍,而所釋出的能量則相差約 32 倍。人類對地震的了解隨著物理學的發展而不斷增加,但是直到今天,我們還是無法準確地預測地震。

注釋

  1. 出處:Philosophical Transactions, li. 1760

——本文摘自泛科學 2019 年 8 月選書《愛因斯坦冰箱》,2019 年 7 月,商周出版。

文章難易度
商周出版_96
81 篇文章 ・ 328 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商業出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

8
0

文字

分享

0
8
0

地震規模越大,晃得越厲害?

鳥苷三磷酸 (PanSci Promo)_96
・2021/09/16 ・3706字 ・閱讀時間約 7 分鐘

本文由 交通部氣象局 委託,泛科學企劃執行。

某天,阿雲跟阿寶分享了一個通訊軟體上看到的資訊:

阿雲:「欸,你知道最近有個傳言說,花蓮有 7.7 級地震,如果發生的話台北會有 5.0 級的震度耶!」

阿寶:「蛤?那個傳言也太怪了吧,應該是把規模和震度搞混了!」

震度:量度地表搖晃的單位

確實常常有人把地震的規模跟震度搞混,實際上,因為規模指的是地震釋放的能量大小,所以當一個地震發生時,它的規模值已經決定了,只是會因為測量或計算的方式不同,會有些許的數字差異,而一般規模計算會到小數點後第一位,故常會有小數點在裡面。然而震度指的意思是地表搖晃的程度,度量表示方式通常都是以「分級」為主,比如國外常見、分了 12 級震度的麥卡利震度階,就是用 12 種不同分級來描述,而中央氣象局目前所使用的震度則共分十級,原先是從 0 級到 7 級,而自 2020 年起,在 5 級與 6 級又增了強、弱之分,也就是震度由小而大為 0-1-2-3-4-5弱-5強-6弱-6強-7 等分級,所以在表示上我們以整數 + 級或是強、弱等寫法,就可以區分規模和震度,不被混淆了!

而為什麼專家常需要強調震度和規模不一樣?那是因為震度的大小,是受到許多因素的影響。地震發生後,造成地表搖晃的主要原因是「地震波」傳來了大量能量,規模越大的地震,代表的就是地震釋放的能量越大,就像是你把擴音的音量不斷提高時,會有更大的聲音傳出一般。所以當其他的因素固定時,確實會因為規模越大、震度越大。

可是,地震波的能量在傳播過程中也會慢慢衰減,就像在演唱會的搖滾區時,在擴音器旁往往感覺聲音震耳欲聾,但隔了二、三十公尺之外,音量就會變得比較適中,但到了會場外,又會變得不是那麼清楚一樣。所以無論是地震的震源太深、或是震央離我們太遙遠,地震波的能量都會隨著距離衰減,一般來說震度都會變得比較小。

「所以,只要把那個謠言的台北規模 5.0 改為震度 5 弱,說法就比較合理了嗎?」阿雲說。

「可是,影響震度的因素還有很多,像是我們腳下的岩石性質,也是影響震度的重要因素。」阿寶說。

場址效應:像布丁一樣的軟弱岩層放大震波

原本我們都會覺得,如果地震釋放能量的方式就像是聲音或是爆炸一般,照理說等震度圖(地表的震度大小分布圖)上會呈現同心圓分布,但因為地質條件的差異,分布上會稍微不規則一些,只能大致看出震度會隨著離震央越遠而越小。地震學上有一個專有名詞叫做「埸址效應」,指的就是因為某些特殊的地質條件下,反而讓距離震央較遠的地方但震度被放大的地質條件。其中最常見的就是「軟弱岩層」和「盆地」兩種條件,而且這兩種還常常伴隨在一起出現,像是 1985 年的墨西哥城大地震,便是一個著名的例子。

影片:「場址效應」是什麼? 布丁演給你看

墨西哥城在人們開始在這邊發展之前,是個湖泊,湖泊中常有鬆軟的沉積物,而當湖泊乾掉之後,便成了易於居住與發展的盆地。雖然 1985 年發生的地震規模達 8.0,但震央距離墨西哥城中心有 400 公里,照理說這樣的距離足以讓地震波大幅衰減,而地震波傳到盆地外圍時,造成的加速度(PGA)大約只有 35gal,在臺灣大約是 4 級的震度,然而在盆地內的測站,卻觀測到 170gal 的 PGA 值,加速度放大了將近五倍,換算成震度,也可能多了一至二級的程度,也造成了相當程度的災情。盆地裡的沉積物,就像是裝在容器裡的布丁一樣,受到搖晃時,會有更加「Q 彈」的晃動!

1985 年墨西哥城大地震的等震度圖。圖/wikipedia

因此,在臺灣,雖然臺北都會區並沒有比其他區有更多更活躍的斷層,但地震風險仍不容小覷,因為臺北也正是一個過去曾為湖泊的盆地都市,仍有一定程度的地震風險,也需要小心來自稍遠的地震,除了建築需要有更強靭的抗震能力,強震警報能提供數秒至數十秒的預警,也多少讓人們能即時避災。

斷層的方向與震源破裂的瞬間,也決定了等震度圖的模樣

阿雲似懂非懂的接著問:「可是啊,為什麼有的時候大地震的等震度圖長得很奇怪,而且有些時候震度最大的地方都離震央好遠呢!也太巧合了吧?」

「這並不是巧合,因為震央下方的震源,指的其實是地震發生的起始點,並不是地震能量釋放最大的地方啊!」阿寶繼續解釋著。

「蛤!為什麼啊?」阿雲抓抓頭,一邊思考著。

地震是因為地下岩層破裂產生斷層滑動而造成的,雖然不是每個地震都會造成地表破裂,但目前科學家大多認為,地震的破裂只是藏在地底下,沒有延伸到地表而已,而且從地震的震度,也可以看出地底下斷層滑移的特性。

斷層在滑動時,主要的滑動和地震波傳出的地方,會集中在斷層面上某些特定的「地栓」(Asperity)之上,這些地栓又被認為「錯動集中區」,而通常透過傳統的地震定位求出來的震源,其實只是這些地栓中,最早開始錯動的地方。但實際上,整個斷層錯動最大的地方,往往都不會在那一開始錯動的地方,就像是我們跑步時,跑得最快的瞬間,不會發生在起跑的瞬間,而是在起跑後一小段的過程中,而錯動量最大的區域,才會是能量釋放最大的地方。而或許是小地震的地栓範圍小,震央幾乎就在最大滑移區的附近,因此也看不太出來,通常規模越大,震源的破裂行為會隨著時間傳遞,此效應才會越明顯。

震源與震央位置示意圖。圖/中央氣象局

那麼斷層上的地栓位置能否確認?這仍是科學上的難題,但近年來科學進展已經能讓我們透過地震波逆推斷層上的錯動集中區,至少可以透過地震波逆推斷層破裂滑移的型式,得以用來比對斷層破裂方向對震度分布的影響。以 2016 年臺南—美濃地震為例,最大錯動量的地區並不在震央所在的美濃附近,而是稍微偏西北方的臺南地區,也就是因為從地震資料逆推後,發現斷層在破裂時是向西北方向破裂。而更近一點的 2018 年花蓮地震,錯動量大、災害多的地方,也是與斷層破裂方向一致的西南方。

一張含有 地圖 的圖片  自動產生的描述
2016 年臺南美濃地震的等震度圖。圖/中央氣象局

透過更多的分析,現在也逐漸發現破裂方向性對於大地震震度分布的影響確實是重要議題。而雖然我們無法在地震發生之前就預知地栓的位置,但仍可從各種觀測資料作為基礎,針對目前已知的活動斷層進行模擬,就能做出「地震情境模擬」,並且由模擬結果找出可能有高危害度的地區,就能考慮對這些地區早先一步加強耐震或防災的準備工作。

多知道一點風險和危害度,多一份準備以減低災害

但是,直到目前為止,我們仍無法確知斷層何時會錯動、錯動是大是小。科學能給我們的解答,只能先評估出斷層未來的活動性中,哪個稍微大一些(機會小的不代表不會發生),或者像是斷層帶附近、特殊地質特性的場址附近,或許更要小心被意外「放大」的震度。而更重要的是,當地震來臨前,先確保自己的住家、公司或任何你所在的地方是安全還是危險,在室內要小心高處掉落物、在路上要小心掉落的招牌花盆壁磚、在鐵路捷運上要注意緊急煞車對你產生的慣性效應…多一些及早思考與演練,目的就是為了防範不知何時突然出現的大地震,在不恐慌的情況下保持適當警戒,會是對你我都很重要的防震守則!

【參考文獻】

鳥苷三磷酸 (PanSci Promo)_96
4 篇文章 ・ 7 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策