0

0
1

文字

分享

0
0
1

火山爆發的場景有可能在台北出現嗎?來看看科學家如何觀測大屯火山群的「生命跡象」

研之有物│中央研究院_96
・2019/06/30 ・4782字 ・閱讀時間約 9 分鐘 ・SR值 525 ・七年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|古國廷、美術編輯|林洵安

大屯火山群是活火山?噴發會有大災難?

2019 年 5 月 27 日,在大屯火山群觀測研究成果記者會上,中研院地科所研究員林正洪與研究團隊經過長期監測,認定大屯火山群及龜山島為活火山。消息一出,因大屯火山群緊鄰大台北地區,噴發是否會影響民眾安全引發熱議。但科學上如何證明大屯火山群是活火山?火山噴發會造成哪些災害?應該如何監測和預防?本文專訪林正洪研究員,一一來破解。

先來瞧瞧大屯火山群的範圍有多大!大屯火山群包含 20 多個火山體,如大屯山、七星山、紗帽山、竹子山和大尖山等。這些火山體緊鄰台北地區,其中天母、北投、士林皆位於山腳,即使台北市中心的 101 大樓距七星山也不過 15 公里。

大屯火山群七星山上的小油坑。
圖片來源│林正洪

早期學者認為大屯火山群最近一次噴發已超過 10 萬年,而且不再活動,應是休火山或死火山。

-----廣告,請繼續往下閱讀-----

「但近年研究顯示:大屯火山群噴發紀錄應為 6 千年前,而且地底有岩漿庫,這些都可以證實大屯火山群是活火山!」林正洪表示。

如何判斷火山「是死是活」?

死火山,顧名思義它不再活動,即使曾經活動,也是發生在一、兩百萬年以前,甚至更久。

而活火山,如夏威夷的火山、日本阿蘇火山和櫻島火山,幾乎隨時在噴煙,甚至偶爾還有岩漿跑上來,就是現生的活火山。

但科學不能只用描述,所以還有兩個方式來判定:其一是「憑經驗」,研究火山 1 萬年內是否曾經噴發,其二是「看現象」,看看底下是否有岩漿庫。

-----廣告,請繼續往下閱讀-----

所謂憑經驗,就像發生竊案,警察會先找這兩、三年犯過竊盜罪的人,而不是 30 年之前有前科的人。以火山來說,噴發的歷史紀錄就是火山的「前科」,可以作為評定標準;至於為什麼是 1 萬年,是沒辦法中的辦法,因為非得訂個標準。而在地質學研究中最年經之地層為全新世 (Holocene),是大約一萬年前開始沉積之地層。

再以現象來看,如果找到岩漿庫,也就是火山的「彈藥庫」,那麼不管過去有沒有噴發,就要把它歸為活火山。

科學界多用以上兩個標準,如果都符合,就更沒有質疑的空間。

過去認為大屯火山群是死火山,近年研究卻說它是活火山,這是怎麼回事呢?

判斷大屯火山群在 10 萬年前噴發,大概是 1980 年代的研究,那時多用鉀氬做岩石定年。這種定年方式,用來測量百萬年或億萬年尺度的現象,10 萬年是它的「最小刻度」。

-----廣告,請繼續往下閱讀-----

換句話說,使用這種方法來做大屯火山群的定年,就像拿一把刻度很粗的尺測量,發現最小刻度內有東西,但已到極限無法再細看,只能說是 10 萬年。

直到 2011 年,中研院地科所同事陳中華和俄羅斯學者,將大屯火山群的火山灰拿去做碳十四定年。這種方式的「刻度」比較細,可以到千年、萬年。結果發現:大屯火山群最近一次噴發應該在大約 5 千到 6 千年前,符合 1 萬年內有噴發紀錄的活火山標準。

除了噴發紀錄,還有證據說明大屯火山群是活火山嗎?

火山地震波也能說明大屯火山群在活動。

大屯火山群的地震波,跟宜蘭、花蓮、嘉義的地震波很不一樣。宜蘭、花蓮地震是斷層錯動,就是岩層被扯斷造成的地震振動。這種振動就好像一把吉他的弦同時扯斷,高頻、低頻、中頻各種頻率都有。

-----廣告,請繼續往下閱讀-----

但在大屯火山偵測到的火山地震,是單一頻率的水滴狀地震波,以及多個頻率共鳴的螺絲釘狀地震波。而不論是單頻或多頻火山地震,統統都是活火山才有的現象。

為什麼?因為活火山有熱量,可以產生高壓氣體或液體,當它們從地底沿著岩縫往上竄,因為岩壁長寬固定,就會產生特定頻率的振動,好像火山在「吹直笛」!因為這個原理就像吹直笛時按住特定的孔,形成固定長寬的空氣柱,就會吹出單一頻率的聲音。

反過來說,死火山沒有熱能,不能產生這些高壓氣體和液體。就像煮開水,瓦斯還在底下燒,蒸氣不斷往上冒,鍋蓋就會動、然後呼呼作響;如果把瓦斯關掉,沒有了熱源,水會慢慢冷掉,鍋子也就不再發出聲音。

資料來源│林正洪 圖片重製│林洵安

除了火山地震,火山氣體氦同位素比例以及地殼變化,也都間接支持大屯火山群是有能量的火山,不是死火山,但最直接證據還是確認它底下真的有岩漿庫。

-----廣告,請繼續往下閱讀-----

如何確認大屯火山群底下有岩漿庫?您是像電影一樣開潛艦鑽入地底嗎?

哈哈,現在的科學技術不可能帶人鑽進熾熱的地底,親眼證實岩漿庫的存在。我是用自己發明的「陰影法」,標定大屯火山群岩漿庫的位置和面積。

原理如下:在透明的盒子裡吊起一顆金球,假設盒子上方是北台灣地表,盒子裡的金球是岩漿庫。然後關上燈一片漆黑,看不見盒子裡的情況 (就像在地底一樣),盒子上方的人要怎麼知道金球的位置和大小呢?

攝影│林洵安

這時可以在盒子底下放手機,讓手機的光向上照,光被盒內金球擋住,盒子上方就會出現金球的陰影。如此一來,不但知道盒子裡有金球,還能從陰影推知金球的位置和面積。

當然,地底下不會有光源,但有和光波很像的地震波,可以形成另類的地震波「陰影」。

-----廣告,請繼續往下閱讀-----

地震波怎麼取代光波呢?地底下一、兩百公里發生地震,就會發出地震波傳到地面。不過地震波中的 S 波,無法在液態物質中傳遞,所以當 S 波遇到液態的岩漿庫會被擋下來。

如下圖左邊的示意圖,地表的六個測站,發生地震時,黃色的地震觀測站因為位於岩漿庫正上方,接收不到 S 波,岩漿庫範圍以外的綠色測站才收得到 S 波。

於是,我就可以從哪些測站收到 S 波、哪些收不到,收不到的「陰影範圍」有多大,來估算岩漿庫的位置與面積了。

地震波的 S 波無法在液態物質中傳遞,P 波則是在液態跑比較慢。當它們穿過岩漿庫會造成 S 波陰影和 P 波緩達的現象,可用來推知岩漿庫的面積與大小。
資料來源│林正洪 圖片重製│林洵安

不過 S 波陰影只能算面積,無法估計厚度,因為無論岩漿庫厚度多少,S 波統統會被擋掉,這時就需要 P 波了。

-----廣告,請繼續往下閱讀-----

地震波中的 P 波 在固體中跑得快,液體中跑得慢。所以就如上圖右邊示意圖,同樣地表有六個測站,岩漿庫外的綠色測站會先收到 P 波訊號,岩漿庫正上方的黃色測站會晚一點收到。

而且岩漿庫越厚, P 波受阻礙的距離越長,黃色測站就越晚收到 P 波。因此從 P 波的延遲時間反推,就能估算出岩漿厚度。

根據估計,大屯火山群岩漿庫所在位置,大概在金山、萬里附近,面積約四分之一台北市行政區的大小,厚度約 4 至 10 公里。

如果大屯火山群噴發,會有哪些危害?

先來了解活火山噴發會有哪些危害。全世界標準的火山災害中,「熔岩流」算是大家最熟悉的,像電影中常看到岩漿從山上流下來。其實,熔岩流對人的生命威脅很小,因為它是慢慢滾過來,看得到也跑得掉。

但有一種跟它很像的「碎屑流」,才是真正可怕的火山殺手。當岩漿從火山口跑出來,碰到空氣時從液態變成固態,先在原地不斷堆疊增高,直到撐不住才轟然垮下……

在那一瞬間,溫度高達攝氏數百度的石頭和火山灰,以時速一、兩百公里的驚人速度向下俯衝。歷史上所有火山災害中,由碎屑流造成的死傷相當可觀,因為看到了大概也跑不了。

1984年,菲律賓馬榮火山的火山碎屑流。 圖片來源│維基百科

此外,還有「火山泥流」。當火山灰噴出後先堆積在山上,就像鋪上一層厚厚的灰。遇上降雨或颱風,灰變成泥巴,像土石流一樣沖刷下來。

當泥流沖進河谷,會把谷地填滿,之後降雨沒有河道可去,就會滿溢出來。這種災情菲律賓很多,每次颱風一來,村莊就會淹大水,持續二、三十年。

回到大屯火山群噴發可能造成的災害,主要看它噴發的量有多少。如果是小規模的火山灰和熔岩流,會影響山區周遭居民。

但我們強烈懷疑火山群裡的七星山可能會活動,屆時熔岩流、碎屑流、火山泥流會沿著磺溪,沖到北投、天母一帶,對當地造成衝擊。

若熔岩流和碎屑流等流到關渡大橋一帶,那裡的河口比較窄,如果堵住淡水河、基隆河道,河水流不出去,也可能造成災害。

這次研究提到龜山島也是活火山,規模如何?可能造成什麼災害?

根據火山灰定年,龜山島距今 7 千年內就噴發了 4 次,而且目前估算龜山島底下的岩漿庫,是大屯火山岩漿庫的 1.5 倍大,這些都符合活火山標準。

如果龜山島噴發,比較可能的災害是引發海嘯,將衝擊低淺、平坦的宜蘭平原。

若大屯火山群要爆發,多久前可以知道?平時該如何監測?

科學家和政府要預報火山即將爆發,只能根據火山的異狀。但從火山開始不安定,要等多久才會爆發就很難說了。有些火山一發現異常,一個禮拜後就噴發。但峇里島曾有火山撐了兩個月,日本的雲仙火山則撐了五、六年。

不過,民眾可以安心的是,很少火山從出現異狀到噴發短於一個禮拜的。換句話說,只要做好監測,至少有一週時間可以應變。

若要即時預警,就得仰賴平時監測,包括地表溫度、火山氣體、地殼變形和地震活動等方式。因為預測常要知道火山噴發的時間、大小和地點,我覺得透過地震監測相當有用。

目前在大屯火山群佈了 40 個地震站,螢幕上面每一條線就是一個測站。當火山要噴發前,岩漿會往上抬,或使周圍壓力增加,因此產生成千上萬的地震。
攝影│林洵安

我們可以從地震的位置,判斷哪裡的地底開始有岩漿活動,再由多少觀測站偵測到地震波,估計火山噴發的可能規模。

再來,從地震所在深度,估算目前岩漿離地表的距離和移動速度,例如岩漿跑到離地表 9 公里時,會在 9 公里附近產生很多地震;隔了一個禮拜,在 7 公里深處偵測到地震,代表岩漿在過去一周跑了 2 公里。

雖然時間和岩漿跑的距離,不一定是線性關係,但這些數據仍可提供科學家參考、評估火山噴發的可能時間,必要時通知政府撤離附近居民。

但就像是照片的像素越多,影像越清晰;地震測站要夠多,偵測解析度才會夠好。所以未來,我們將增加北台灣地震測站的數量,從原本的 40 個測站,擴大到 140 個,並在測站之間,每隔數十公尺布置一台簡易、小型的地動感測器,盡可能提高偵測的解析度。

資料來源│林正洪 圖片重製│林洵安

這些年研究大屯火山有沒有難忘的回憶?

我過去不是火山學者,而是做傳統地震的,天天都在研究地震波。十多年前接觸到火山地震,發現世界上怎麼有我一輩子投入,也不曾見過的地震波。這就好像小孩子每天關在房間玩,一不小心打開門,發現外面的世界完全不一樣。

不過,十幾年前開始研究大屯火山群,除了我和少數學者,沒有人相信它是活火山。但我覺得做科學,最誘人就是你的興趣,如果是喜歡的東西,你會不計成敗榮辱去研究它。

火山地震就這樣一直吸引著我。即使現在手邊有很多事,但每天動不動就盯著地震波看。地震波對我來說,勝過所有一切。也因為在中研院工作,讓我無後顧之憂做自己喜歡的研究,才能「十年磨一劍」得到如今的研究成果。

如果下輩子還可以再回來,我也要回中研院。地球科學還是超吸引我,一輩子還是做不完,如果還有來生,Why not?

「地震波對我來說,勝過所有一切。」林正洪眼睛發亮地說:「地底就像一間黑漆漆的房間,每個地震波像是房內突然一次閃光,讓屋頂上 (地面) 的我們有一次機會窺探房內 (地球內部)的秘密。」
攝影│林洵安

延伸閱讀

本文轉載自中央研究院研之有物,原文為大屯火山群不可怕,可怕來自不懂它 — 專訪林正洪,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3808 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

11
0

文字

分享

0
11
0
石器與傍人一同出土,誰是人之初的石器匠?
寒波_96
・2023/04/12 ・3785字 ・閱讀時間約 7 分鐘

古人類學研究中,如果挖掘現場同時出土石器和化石,多半會判斷石器的製造者,就是化石所屬的古人類。公元 2023 年發表的一項研究,卻讓智人們都很猶豫,因為與石器一起出土的死人骨頭竟然不是「人」,而是 Homo 的近親:傍人。究竟誰才是人之初的石器匠?

傍人拿著木棒,想像圖。圖/參考資料5

最早的奧都萬石器

空間上,遺址地點位於肯亞西部的 Nyayanga,非洲東部有多個大湖,這兒也是維多利亞湖的東北角,古時候算是適宜人居的優質地段。

時間上,年代不是那麼清楚。論文寫法是距今 259.5 到 303.2 萬年前之間,意思不是說延續 40 萬年那麼久,而是這段期間的某個時間點,或是某幾段時間,無法精確區分。如果簡單說一個大概年份,可以採取 290 萬年。

年代的判斷方式不只一種。原理為放射性元素的鈾釷/氦定年法((U-Th)/He dating)得到將近 300 萬年的數字,地磁反轉則判斷早於 258 萬年。地球的地磁曾經不定期反轉過好幾次,假如確認地層早於 258 萬年前的反轉,便能推測樣本比 258 萬年更早。

-----廣告,請繼續往下閱讀-----
Nyayanga 遺址的地點,附近就是維多利亞湖。圖/參考資料1

遺址總共出土 330 件人造物,195 件在地表撿到,135 件在遺址內挖到。石器數量不少,材質是當地不難取得的石英和流紋岩(rhyolite)。從形貌看來,確實是人為製作的工具,已經可以視為成熟的奧都萬(Oldowan)風格。

奧都萬石器最早於 1930 年代在坦尚尼亞出土,研究領導者正是上古神獸:路易斯.李奇(Louis Leakey)。2019 年的論文報告,衣索比亞的 Bokol Dora 1 出土的石器,比 258 萬年前的地磁反轉更早一些;這回肯亞的遺址年代似乎更早,也就是最早的奧都萬石器。

東非草原,多用途的工具

過往知道超過 200 萬年的奧都萬產品,大部分位於衣索比亞的阿法地區(就是命名「阿法南猿 Australopithecus afarensis」的那個地名阿法),距離這回的遺址超過 1300 公里。看來初期奧都萬使用者,分佈範圍不小。

Nyayanga 遺址出土的石器,屬於奧都萬風格。看似簡陋,意義卻可謂當年最先進的台積電晶片。圖/參考資料4

討論這些古人類學的議題時,我們習慣統稱作「東非」,不過東非概念類似東亞,相關地區的面積實際上很大,有時候距離可能超級遠。

-----廣告,請繼續往下閱讀-----

儘管相距甚遠,遺址當年似乎都是 C4 植物為主的草地,夾雜一些樹木,也就是如今常見的東非草原地形。這應該就是奧都萬使用者喜歡的環境。

石器是工具,做什麼用呢?根據磨痕等資訊判斷,有些石器曾接觸過堅硬的植物部位,如樹幹,也有些處理過軟的植物部位;另外還切割、砍砸過動物的骨頭與肉肉。

遺址出土的動物骨頭不少,能確定遭到石器迫害過的有河馬和牛科動物(包括各款式的牛、羊),石器使用者藉此取得肉肉和骨髓,可謂充分發揮石器的作用。動物未必是擊殺,也可能是撿屍取得。

據此判斷奧都萬最初的使用者,會用石器處理各種材料,不限於植物或動物。他們不只是熟練的石器匠,也是手巧的用戶。

-----廣告,請繼續往下閱讀-----
遠觀肯亞 Nyayanga 遺址。古人類活動時,這兒的環境應該更潮濕,足以讓河馬滾動。圖/參考資料4

石器與化石的演化史

製造與使用石器的人是誰?出土石器的遺址,不少沒有死人骨頭。Nyayanga 遺址倒是有化石,可是卻不是 Homo,而是 2 個「傍人」的牙齒。

這些名詞的關係有點複雜,先來解釋人的部分。傍人(Paranthropus)是何許人也?人類演化史上,300 到 400 萬年前是南猿(Australopithecus)的時代,傍人、Homo 應該都是南猿的衍生型號。

直立人、智人、尼安德塔人所屬的 Homo,和傍人、南猿是近親,都算是古人類;至於「人」是否包含傍人與南猿,看狀況。

再結合石器與年代的資訊,已知最早有 Homo 特徵的化石(無疑的「人」)為 280 萬年,最早的石器不是奧都萬,而是作工更簡陋的拉米關(Lomekwian),存在 330 萬年前的肯亞。所以最早的石器匠不是 Homo,想來也不意外。

-----廣告,請繼續往下閱讀-----

按照之前的資訊推敲,最早的拉米關石器早於 Homo,接著 Homo 距今 280 萬年誕生,260 萬年左右研發出奧都萬石器,看似井然有序。

可是 Nyayanga 遺址的年代十分曖昧,剛好卡在 Homo 最初誕生的階段。至今缺乏直接證據,證明那時已經有 Homo 存在,有的話卻也不意外,符合奧都萬最早製造者的時程。

然而,最早的奧都萬石器,卻與傍人化石一起出土,莫非最早的奧都萬是傍人手筆嗎?

傍人的牙齒。圖/參考資料4

傍人或 Homo,誰是製造工具的石器匠?

傍人的外貌更加粗壯,或許也有更猛的咬合力。以前推測傍人的適應主要在肉體和生理,Homo 則是製作工具的行為。此前缺乏明確證據,支持傍人也使用石器,所以這回即使傍人和石器一同出土,依然不敢認定傍人就是使用者。

-----廣告,請繼續往下閱讀-----

倘若某些南猿,已經摸索出最初的石器奧義,那麼身為南猿後裔的傍人也會操弄石頭,似乎沒那麼意外。

可是其他遺址也見到過,傍人和南猿與 Homo 住在附近;所以也可能是遺址當年同時住著沒有石器的傍人,以及使用石器的 Homo,後來卻只有傍人留下化石。總之,目前難以判斷誰是石器匠。

還有個黑暗的可能性:與石器一同出土的傍人,搞不好是被石器處理的對象?

古人類們的年代(橫軸)、飲食狀態(縱軸)。這回肯亞 Nyayanga 的化石是已知最早的傍人,和最早的 Homo 大略處於同一時期。圖/參考資料1

最早的傍人

我們對傍人的認識不多,這項研究儘管無法判斷傍人是否會使用石器,依然獲得重要的新知。

-----廣告,請繼續往下閱讀-----

傍人一度被歸類於南猿旗下,比較粗壯的南猿,後來才另立新屬 Paranthropus;para 意思是旁邊(beside 或 near),anthropus 是人。目前可分為 3 個物種,這項研究沒有斷言是哪個物種。

以前知道最早的傍人化石距今 260 萬年,出土於衣索比亞的 Omo Kibish,被歸類為衣索比亞傍人(Paranthropus aethiopicus)。

這項研究沒有特別討論,有趣的是,如果年代估計無誤,曾經於肯亞 Nyayanga 出沒的傍人極可能早於 260 萬年,那麼這就不只是最早的奧都萬石器,也是最早的傍人。距離最近的傍人化石 230 公里,也拓展了傍人的分佈範圍。

劃重點:

-----廣告,請繼續往下閱讀-----
  • 最早的傍人及奧都萬石器,在肯亞出土,年代超過 260 萬年,可能有 300 萬年。
  • 東非草原環境中,石器剛出現,用途就很廣。
  • 那時可能已經有 Homo 存在,但是石器與傍人一同出土,不確定誰是石器匠。

延伸閱讀

參考資料

  1. Plummer, T. W., Oliver, J. S., Finestone, E. M., Ditchfield, P. W., Bishop, L. C., Blumenthal, S. A., … & Potts, R. (2023). Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus. Science, 379(6632), 561-566.
  2. Stone Age discovery fuels mystery of who made early tools
  3. 2.9-million-year-old butchery site reopens case of who made first stone tools
  4. We found 2.9-million-year-old stone tools used to butcher ancient hippos – but likely not by our ancestors
  5. Did more than one ancient human relative use early stone tools?
  6. Ancient stone tools suggest early humans dined on hippo
  7. The “Robust” Australopiths
  8. de la Torre, I. (2019). Searching for the emergence of stone tool making in eastern Africa. Proceedings of the National Academy of Sciences, 116(24), 11567-11569.
  9. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., … & Roche, H. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521(7552), 310-315.
  10. Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., DiMaggio, E. N., Rowan, J., … & Reed, K. E. (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, 347(6228), 1352-1355.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1141 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。