Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「學好中文」才是好翻譯的優先條件:科學知識翻譯的眉眉角角與心法──2019泛知識節

泛知識節
・2019/04/25 ・2872字 ・閱讀時間約 5 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

  • 活動紀錄/郭宜蓁

台灣有許多科普書籍都是由翻譯而來,翻譯就像是作者跟讀者之間的傳話筒,那麼要怎麼當一個好的傳話筒?這個作者到底在寫什麼,為什麼要這麼寫?我這樣寫,讀者看的懂嗎?寫得這麼簡明扼要,是可以的嗎?

2019泛知識節,邀請到目前於特有生物研究保育中心服務,具有翻譯多本書籍經驗的林大利,談談「如何成為一位值得信賴的知識型譯者」。

2019泛知識節,「科學知識翻譯的眉眉角角與心法」講座現場。

不一定要外文背景,能熟悉該領域流變對翻譯才有利

熱烈歡迎專業領域投入翻譯工作,外文背景的譯者投入感興趣的領域!

林大利分享:科學研究,是科學知識產生器,也是人類認識世界的系統性活動。

孫維新教授是這麼說的:科學是一個框架,框架內的部分,是我們已知的知識;框架外的世界,則是一片未知的宇宙。因此,科學活動就是在努力的擴大這個框架,讓我們對世界的瞭解更多更廣。這個框架依然渺小,未知的世界仍浩瀚無垠。

如果能有更多專業背景者投入科學知識的翻譯,對於大眾了解世界會有更多的幫助。每個領域都會有各自的用語,同一個字詞換了一個領域,可能就是不同意思,像是特殊的專有名詞,或是科學上有新進展時的用語更新,只有熟悉特定領域及其目標讀者的譯者才能做得到。另外,譯者通常會尊重作者的作品,不對內容作實質上的改變。但如果發生作者本來就寫錯的情況,熟悉此領域的譯者比起其他人,更有機會抓出錯誤。

科學知識要如何有效的傳遞呢?

要將科學知識有效且精確的譯給讀者,最重要的就是:把中文學好!圖/pixabay

翻譯就是一種寫作,要將科學知識有效且精確的譯給讀者,最重要的就是:

-----廣告,請繼續往下閱讀-----

把中文學好!

林大利歸納出翻譯的基本原則:作者需提供齊全的資訊,譯者文字通順達意、遵循邏輯、簡明精要(不要太多廢話)、儘量客觀、審慎有據。

另外,有時候「廢話」也有別的作用。林大利曾經譯過一本書,書中有一個角色是條蛇,作者為了表示那是一條蛇,把單字的字尾都加上兩個s。翻譯時為了詮釋這個「 ss 」,他在每一句的句尾都加上「嘶嘶」。

翻譯的三大原則

一、理解作者

作者是誰?什麼樣的人?為什麼這麼寫?想表達什麼?

在翻譯時,不只是把語言本身讀懂就好,還需要知道作者到底想說什麼,以及基於怎樣的狀態寫出這個作品。除此之外,某些被創造出來的用語到底為何存在呢?當你知道起源時,很多時候還是無法直接翻譯,便該思考如何淺顯易懂地告訴讀者。舉例來說,”bird egg blue” 要怎麼翻譯呢?如果目標讀者是台大的學生,說不定可稱之為「水源市場藍」。(編按:台大對面的水源市場外牆曾有一段時間是淺藍色的。)

bird egg blue不存在中文的日常用語中,該怎麼翻譯會比較適當呢? 圖/pixabay

二、服務讀者

為了讓讀者在閱讀過程中不被中斷、順利閱讀,需要達成以下幾件事:

-----廣告,請繼續往下閱讀-----

減少冗詞贅字

為了減少各種贅字,譯者必須精簡自己的文字,清楚地將自己的想法透過白話文更精確地表現出來
結論就是:精簡白話文。

避免雙重否定(不~不~不~不~不~不~不~不~不~)

閱讀泛科學的文章,並不是不重要,而是我實在是不可以不去追蹤一個我朋友叫我不得不追蹤的泛科學IG帳號。你不能這樣子不明白我的明白,老是叫我不要去做一些我不能不去實踐的義務。
結論就是:好好說話,訂閱泛科學~(誤)不要一直說不啦(?)

-----廣告,請繼續往下閱讀-----

剷除閱讀障礙

在閱讀時,讀者可能會因為字詞的排序,在閱讀時被干擾、中斷,像是「不重視覺重聽覺」(重視/視覺)為了解決這個困擾,必須跳脫原本的文字,可譯作「以聽覺為主,視覺為輔」。

消滅錯字別字

從錯別字的數量,可以作為譯者對文章用心程度的指標,雖然是這麼說,偶爾還是會不小心出現幾個沒挑出來的錯字,可以參考這篇文章〈為什麼我們總是看不到自己文章中的錯字稍微安慰自己。不過實際上,為了解決錯別字的問題,可以透過把自己當作讀者,重新閱讀自己的翻譯,一方面能減少錯別字,同時還能再確認自己翻譯的內容是否能讓讀者理解,如果讀完之後連自己都無法理解,就需要修改一番。

-----廣告,請繼續往下閱讀-----

三、體貼編輯

前面提到,翻譯就像是作者跟讀者之間的傳話筒,然而在翻譯面前,還有一個重要的角色:編輯。

編輯就是這本書的總管,除了是最專業的讀者,同時也最熟悉目標讀者,便能給出貼近讀者需求的建議。林大利在翻譯童書時,編輯曾要求他更換一些成語的使用,因為某些年齡層的孩子還沒學到這些詞語。再者,翻譯過程中,譯者在翻譯用字遣詞上的特殊處理、考量等一定要讓編輯知道,像是前面的例子:為了詮釋蛇的用語「 ss 」,譯者在每一句的句尾都加上「嘶嘶」,這些細節都需要溝通清楚。

  • 小叮嚀:人非聖賢,但是錯字連篇、拖稿或是失聯讓編輯找不到,都是非常嚴重的情形。若遇到特殊狀況需要調整期程,要提前告訴你的編輯唷!

其他翻譯小細節

專有名詞的翻譯並不是那麼好處理,考量也很多。以童書為例,林大利在翻譯時會盡可能地讓書上的動物名稱跟動物園使用的名稱一致,如此一來爸媽帶孩子們去動物園參觀時,比較不會發生找不到書上動物的情形。另外,相同的專有名詞在面對不同讀者時,也有不同的處理方式,雖然林大利在翻譯時不喜歡用維基百科的詞彙,不過有些時候為了讓家長或小朋友快速查到資料,還是需要使用。

在翻譯上另一個困難點是「誤譯」,實作時大家可以想看看,你們講話時會這麼說嗎?「我今天去海邊,看到那裡有好多好多的有機體喔」。實際上念出來就可以感覺到不太對勁的部分。organism 常被被翻為「有機體」,但在這個語境底下應該要翻成「生物」吧!

-----廣告,請繼續往下閱讀-----

勇敢進行科學寫作吧!

科學寫作需要的不是峰迴路轉的劇情,而是簡單精確的闡述。圖/pixabay

這場演講介紹了專業領域者投入翻譯的好處,以及當你想投入翻譯時,應該注意哪些大原則、小細節。聽完之後,或許我們無法馬上成為神一般的譯者,不過聽完翻譯的各種眉眉角角後,也能理解科學寫作需要的不是峰迴路轉的劇情,而是簡單精確的闡述。林大利也提到,絕大部分譯者的缺點,在於中文寫作能力不夠好,透過多讀好的文章,才有機會寫出好文章。而且沒有人的第一篇譯稿就寫得十足完美,受挫折、被挑戰都是正常的事,唯有不斷的修改才能讓自己變得更強大!所以別害怕,勇敢踏出科學寫作的第一步吧!

只看活動記錄不過癮嗎?當天的現場影像記錄可至泛科學院免費觀賞:【線上影音】2019 泛.知識節-科學知識翻譯的眉眉角角與心法

-----廣告,請繼續往下閱讀-----
文章難易度
泛知識節
24 篇文章 ・ 4 位粉絲
從「科學太重要了,所以不能只交給科學家」,到「科學家太重要了,所以不能只懂科學」,再到「知識太重要了,所以不能讓它關在牆裡」,「泛知識節」為泛科知識召集之年度大型活動,承繼 PanSci 泛科學年會的精神與架構,邀請「科學」「科技」「娛樂」「旅行」四個領域的專家與耕耘者,一同談說、分享、攻錯。 這是一個大型的舞台,我們在此治茶拂席,虛位以待,請你上座。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
2024 臺灣科普環島列車啟程 催生科學傳播新力量
PanSci_96
・2024/10/21 ・915字 ・閱讀時間約 1 分鐘

「2024 臺灣科普環島列車」今(21)日自臺北火車站啟程,沿著西部幹線南下,將於 10 月 21 日至 26 日搭載全臺 202 所國小學生,展開 6 天的科普環島之旅。前副總統陳建仁、國科會主委吳誠文、數位發展部部長黃彥男、交通部臺灣鐵路公司副總經理賴興隆,美、荷、法、德、英國等駐臺代表、9 家車廂參與單位代表及師生們均蒞臨開幕式。

高中生成為科學傳播新力量 助力全臺科普教育

吳主委表示,自 2016 年以來,已連續 9 年舉辦科普環島列車活動,持續推動科學教育。今年活動規模擴大,火車將在 6 天內行經 17 個縣市、32 個站點,提供超過 300 項科學實驗,讓全臺學童能從小接觸科學。

更值得一提的是,近年來國科會積極邀請全臺高中學生,透過科學培訓後上車擔任「車廂關主」,帶領國小學童玩科普;高中生們由「知識接收者」轉為「科學傳播者」的角色,不僅加深其擔任小老師的使命感,也提升科學傳播、知識轉譯及組織規劃能力。

今年有 391 位來自全臺 18 所高中的學生參與培訓,其中 162 位為女學生,突破科技領域的性別刻板印象,展現女性在科學界的力量。這些科普小老師們將於 10 月 21 日至 26 日帶著全臺各縣市、鄉鎮國小學童學習更多有趣的科學實驗,為科普教育展開多面向的正循環。

-----廣告,請繼續往下閱讀-----

2024 年的科普環島列車很不一樣! 全民一起上列車、長知識

「2024 年臺灣科普環島列車」停靠站點及時刻表

今年臺灣科普環島列車首度開放全民上車體驗,活動開放報名迅速額滿,共有360位民眾參加,8節車廂搭載不同科技主題的特色實驗,包含今年最發燒的 AI 人工智慧、半導體、衛星通訊、以及與我們生活息息相關的隔震減震知識,都設計在車廂的科學實驗活動中,讓參與活動的學生、民眾能獲得最新最熱的科技知識。各車廂活動由台灣默克集團、友達永續基金會、瑞健醫療、ASM 台灣先藝科技、國家地震工程研究中心、數位發展部、緯創資通、聯華電子科技文教基金會和上銀科技等單位規劃設計。

國科會特別感謝各參與單位的支持與合作,讓此次活動更豐富多元。科普列車活動期間,在全國各地火車站及周邊地區也同時舉辦科學市集,歡迎各地民眾經過火車站時不要錯過難得的科學體驗機會!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
好想出國,但害怕語言不通?超好用的同步翻譯軟體推薦!
泛科學院_96
・2024/06/02 ・613字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

出國旅行除了肢體語言的即時翻譯選擇!

今天要來分享最新的 AI 翻譯蒟蒻,之前我朋友要去法國參加研討會,但他不只不懂法文,連英文都不太行,所以他就來問我,有沒有什麼好用的 AI 即時翻譯?

我說沒有,結果他從法國回來後,反過來跟我分享了他實測各種翻譯 APP 的心得,其中一個我體驗完還真的覺得不錯用啊!

所以今天的影片我想要來跟你分享三件事:

  1. 簡單聊一下 AI 語音識別的發展
  2. 朋友大推的 Litok 翻譯 APP 的功能介紹
  3. 最近超流行的 AirChat 空氣聊天室可以怎麼玩

最後,想問大家有沒有用過其他超好用的翻譯工具呢?

-----廣告,請繼續往下閱讀-----
  1. 我覺得 Litok 真是天降神物我下次英文會議馬上試用
  2. 假的,都是假的,我還是靠自己的金耳朵實在
  3. 身為工程師,自己用 Whisper 模型做的才好用
  4. 其他也可以留言分享喔

如果,有其他想看的 AI 工具測試或相關問題,也可以留言發問

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!