0

0
2

文字

分享

0
0
2

Canva 不只可以做圖,還可以做影片啦!更強大的 Magic Studio 幫你從修圖到剪片全搞定!

泛科學院_96
・2024/04/04 ・555字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

別再用非常好色跟 Word 的文字藝術師了!

去年初 Canva 推出了 Magic Design 魔術設計師,可以讓你一鍵圖片上傳、自動完成行銷圖片與海報。現在魔術系列正式成為了一個完整的「魔術工作室 Magic Studio」。

Magic Studio 已經成為我快速製作影片的首選,對,你沒有聽錯,用 Canva 做圖已經過時了,現在是 Canva 做影片的時代啦!

今天就用這支影片,快速帶你學會 Canva 的新 AI 功能吧~

-----廣告,請繼續往下閱讀-----

Canva 除了以上的 AI 功能之外,其實還支援更多更多相關的應用。你可以在應用程式選單裡面看到採用 AI 技術的分類裡面有上百種整合第三方的 AI 工具套件,比如知名的人臉 AI 圖片生成說話影片平台 D-ID 或 HeyGen,或者各種圖片編輯套件如 Catoonify 把圖片變成插畫、Colorize 把老照片重新上色等等,應有盡有。如果你有測試到什麼喜歡的套件,歡迎在影片下方留言,或者加入泛科學院的官方 Discord 社群與大家交流分享,我們不見不散。

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1624字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
218 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。