0

1
1

文字

分享

0
1
1

翡翠水庫為什麼綠綠der?何不問問生活在此的葡萄藻

MiTalk
・2019/03/06 ・2240字 ・閱讀時間約 4 分鐘 ・SR值 566 ・九年級

-----廣告,請繼續往下閱讀-----

江殷儒
中央研究院生物多樣性研究中心 副研究員​
​台灣微生物歲時記

 

蓄水、防洪還能發電,萬用的翡翠水庫

住在臺北都會區的小確幸之一,就是品質優良的自來水。相信待過台灣西部其他城市的朋友們,都會心懷感激地用力點頭。首都台北的都市傳說之一,就是以為臺北自來水的主要水源來自翡翠水庫。

事實上,我們使用的自來水主要來源是南勢溪(佔 75% 左右)。翡翠水庫作為備用水源,調蓄供應公共用水。此外,翡翠水庫亦有發電及防洪等功能。翡翠水庫位於新店溪支流北勢溪之上,是型態極為狹長的水庫,上游起始於坪林附近,範圍涵蓋新北市的新店區、石碇區以及坪林區。

翡翠水庫蜿蜒於新店溪支流北勢溪,起始於坪林區的灣潭一帶。圖/作者提供

水庫興建於 1970年代,集水後淹沒了北勢溪原有的許多景點如翡翠谷與鷺鷥潭,也淹沒了烏來杜鵑的野生族群;但同時也創造了千島湖(位於水庫中段)等臺北新景點。如果有機會,搭乘水庫管理局的採樣船自大壩往坪林逆流而上,你將能體會前赤壁賦「縱一葦之所如,凌萬頃之茫然」的暢快。運氣更好的話,晴天時能望見數十隻黑鳶在水庫上空盤旋的奇景。

搭乘採集船沿翡翠水庫的採樣點進行浮游藻採集,行進間能飽覽湖光山色。圖/作者提供
盤旋於翡翠水庫上空的黑鳶等猛禽。圖/作者提供

實際現場走一回,咦?為何水庫褐褐綠綠的

水庫的大壩目前並不開放觀光,進入主壩需向翡翠水庫管理局申請許可。但是驅車從坪林沿著台九線往新店方向,仍然可以經由產業道路進入水庫上游的黃櫸皮寮及灣潭,飽覽翡翠水庫的山光水色。附近的灣潭古道蜿蜒於灣潭溪,沿途綠樹蔭茵,流水潺潺,極盡視聽之娛。當你來到灣潭附近,眺望水庫,觸目所及是漫山遍野的大片茶園。

-----廣告,請繼續往下閱讀-----
翡翠水庫上游灣潭一帶的茶園。圖/作者提供

種植茶葉必須的肥料,尤其是氮肥與磷肥,無可避免地進入水庫,造成水質優養化,引發藻類的生長。水庫優養化的常用指標為卡爾森優養指數法。此方法根據透明度、水中葉綠素 a 及總磷量來決定優養化程度:指數小於 40 為貧養;40 到 50 之間為普養;大於 50 為優養等級。

簡單的講,淡水湖泊與水庫通常是缺磷的環境;磷酸鹽的輸入會造成藻類(主要色素是葉綠素 a) 生長,進而減低湖水的清澈程度。自水庫蓄水以來,中央研究院生物多樣性研究中心的退休研究員吳俊宗博士長期監測水庫藻類的種類與密度,時間持續 25 年之久。

這項重要的長期監測工作 4 年前由筆者接棒進行。我們的研究結果顯示,相對於茶園的肥料使用,集水區的大型開發工程,例如雪山隧道的興建,對水庫水質的影響更為鉅大。工程會導致大量磷酸鹽從土壤岩石中釋出,進入水庫,導致藻類的大量生長。即使工程停止,藻類密度也需經過 5 年左右的時間,才能回復到工程開發之前的貧養狀態(卡爾森指數年平均在 40 以下)。

翡翠水庫的大壩採樣點之藻類密度與總磷量在過去 30 年的變化情形。圖/取自吳俊宗與江殷儒研究結果。

水庫內的葡萄藻也會產油酸?

近年來,翡翠水庫偶爾會出現大量的葡萄藻,導致水面上漂浮著許多褐棕色的團塊。這種形態特殊的群聚型綠藻,最適合的生長水溫約 20 至 23 度之間,因此常出現在春夏之交的貧養溫帶及亞熱帶湖泊及水庫。當水體的磷酸鹽濃度升高時,常會造成葡萄藻的優勢。十年前在花蓮鯉魚潭曾有數次葡萄藻藻華的發生。

-----廣告,請繼續往下閱讀-----

我們(當時我是碩士班學生,指導者是吳俊宗教授)發現葡萄藻會生成大量的不飽和脂肪酸,例如亞麻油酸。這些不飽和脂肪酸會廣泛地抑制其他藻類(影響細胞膜結構及離子通透)及浮游動物的生長。也就是說,葡萄藻會製造生化武器來攻擊競爭對手或是攝食者。

翡翠水庫發生在 2017 年 6 月底的優勢葡萄藻生長。圖/高麗珠提供

除了造成湖泊與水庫的藻華,葡萄藻更引人注目的是生質能源的應用潛力。葡萄藻能產生大量的三萜類脂質 (triterpene),最多能佔到細胞乾重的一半,形成它那著名的褐色膜鞘結構,也是”葡萄藻”名稱的由來。

這些脂質與原油的結構已經很相近,經過簡單的轉化即可當成生質能源利用。可惜的是,至今尚未找到大量培養葡萄藻的方法。也就是說,湖泊水庫常大量發生,甚至造成生態問題;但實驗室環境卻無法穩定培養,且往往失去特徵性的膜鞘(三萜類脂質),僅剩下綠色的藻細胞,因此失去了生質能的用途。這讓我想起我的德國指導教授 Georg Fuchs 博士常常對我說的話:「微生物學,始於培養,終於培養。」微生物的分離培養與發酵技術,是生技利用的基礎與關鍵!

光學顯微鏡下的葡萄藻。圖/高麗珠提供

參考文獻

  1. Wu JT, Chiang YR, Huang WY, Jane WN 2006. Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80: 338-345.
  2. Chiang YR, Huang WY, Wu JT 2004. Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40: 474-480.
  3. Banerjee A, Sharma R, Chisti Y, Banerjee UC. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 223:245-279.

 

本文轉載自MiTalkzine,原文《夏天翡翠水庫的葡萄藻》

-----廣告,請繼續往下閱讀-----

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

7
1

文字

分享

0
7
1
小小的藻類生長大爆發的「藻華」,如何影響經濟與健康?——《藻的秘密》
臉譜出版_96
・2020/01/16 ・3032字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/茹絲.卡辛吉;譯者/鄧子衿

藻華產生的軟骨藻酸,對人類與哺乳類都有威脅的毒素

全球各地藻華產生軟骨藻酸事件出現的次數不但愈來愈頻繁,面積也愈來愈大,這是因為海水變得更溫暖,同時有更多肥料流入海中所造成的。

根據最近歐盟的研究,軟骨藻酸對於海洋哺乳動物和人類都造成了嚴重的威脅。海獅經常因為軟骨藻酸中毒而死亡。人類如果無意間攝入了軟骨藻酸,會產生嘔吐、頭痛、無法辨別方向、癲癇等症狀,有的時候甚至會死亡。1987 年的加拿大愛德華王子島(Prince Edward Island),有四人因為中毒而死,另外還有超過百人生病,全是因為吃了受到汙染的海鮮。

紫貽貝(淡菜)。赤藻產生藻華時產生軟骨藻酸,容易易蓄積於濾食海藻的生物體內,因此可能經由食物鏈進入人體中。文字資料來源:衛福部食藥署;圖/嵌入自國立台灣海洋大學有毒海洋生物網頁

研究警告,住在海邊的人和以採集貝類為樂的人,最容易受到毒害。長期接觸到這種毒素,除了會產生上面所說的症狀之外,還會有記憶問題。由於貝類接觸到有毒的藻華之後,軟骨藻酸可以留在體內長達一年,美國華盛頓州建議消費者每個月食用刀蟶的次數不要超過十二次。

擬菱形藻形成的藻華也會造成經濟損失。

2015 年夏天,矽藻藻華從美國加州中部海域往北延伸到加拿大卑詩省外海,綿延一千五百哩,產生的軟骨藻酸濃度也破了觀察紀錄。州政府因此禁止在這個區域撈捕貝類長達四個半月,同時也警告消費者不要食用來自這個海岸線的貝類。漁民和岸邊相關事業損失了數千萬的收入。

藍綠菌會製造哪些毒素?

藍綠菌為何要演化出製造毒素的能力,到現在還不清楚,但這些毒素本來的目的可能不是用於防禦,因為藍綠菌在演化史早期中並沒有掠食者。

圖/GIPHY

微生物學家最近指出,最常見的藍綠菌毒素微囊藻毒(microcystin)可能是用來防護過多的紫外線,這類化合物的功能類似防曬油。如果劑量高的話會致命,劑量低時在肝臟中累積,也會對於寵物造成長期傷害。

-----廣告,請繼續往下閱讀-----

另外還有其他的藍綠菌毒素:節球藻毒素(nodularin)存在於微鹹的水域中,而柱孢藻毒素(cylindrospermopsin)存在於淡水中。雖然不是所有由藍綠菌形成的藻華都有毒,不過我絕對不會在長著藻華的池塘或是混濁綠色的池水裡游泳,也不會讓我的狗喝這些水。

腰鞭毛藻形成的「紅潮危機」

但遺憾的是我們不只要小心綠色,具有紅色色素的微型藻類腰鞭毛藻(Karenia brevis)每年都會大量繁衍,從墨西哥灣岸起,往北延伸到北卡羅來納州的大西洋海岸,讓海水呈現暗紅色,並且對岸邊居民造成身體與經濟傷害。

美國加州外海的赤潮。圖/wikimedia

腰鞭毛藻所呈現的色調讓它們所形成的藻華也稱為「紅潮」(red tide)。紅潮中充滿能夠攻擊人類神經系統及毒害海洋哺乳動物的雙鞭甲藻毒素(brevetoxin)。多年前我前往佛羅里達州外海的安娜瑪麗亞島(Ana Maria Island)度週末假期,就親身體驗到紅潮的厲害。

抵達島上之後,我在海灘散步,卻覺得呼吸不順、眼睛發熱。我以為自己生病了,但是旅館櫃檯人員說這是當地的紅潮所引起的。雖然我沒有注意到海水呈現紅色,但是腰鞭毛藻的確活躍著,在海浪與海風的作用下,腰鞭毛藻飄入空氣中,被我這樣沒有留意而去海灘的人吸入。

遭遇紅潮的地區之所以不幸,是因為紅潮能夠持續好幾個月。

2006 年發生在佛羅里達州的紅潮持續了十七個月,讓當地的旅遊業一蹶不振。二○一七年在佛羅里達州發生的紅潮,到了二○一八年秋天依然造成損害,殺死的魚類和其他海洋哺乳動物,總重高達兩百七十萬磅,因為呼吸道症狀而入院治療的人數也破了紀錄。水中二氧化碳濃度提高(這是大氣中二氧化碳濃度提高所造成的),會刺激腰鞭毛藻生長,紅潮因而出現。

-----廣告,請繼續往下閱讀-----

外來貝類導致微囊藻的大量繁衍,並且無時無刻都在釋放毒素

最近幾年的夏天,俄亥俄州陶雷度(Toledo)附近的伊利湖(Lake Erie)中,會出現由銅綠微囊藻(Microcystis aeruginosa)和其他數種有毒藍綠菌形成的藻華。這些藻類讓湖水呈現噁心的綠色,看到這湖水表面藻華的人,把它描述成豌豆湯、綠油漆,或是薄荷奶昔。肥料逕流與水溫升高是藻華出現的主要原因,但是入侵的貝類也助了一臂之力。

斑馬貽貝(zebra mussel)和條紋貽貝(quagga mussel)在 1980 年代隨著船艙的壓艙水進入了五大湖,之後便大量繁殖。牠們會和魚類競爭,搶食藻類。但是這些貝類很挑食,不吃微囊藻,而是把微囊藻的競爭者吃掉,因此微囊藻在水中得以立足,並且大量繁衍,無時無刻都在釋出毒素。

看的見與看不見的藻華,持續地影響我們的生活

藻華不只難看,還嚴重影響了陶雷度市四萬名飲用伊利湖水的居民。2014 年,伊利湖出現史上最大的藻華,汙染面積高達三百平方哩,大約等於紐約市。

吸取湖水的管子距離岸邊數哩遠,由於受到藻華覆蓋,使得陶雷度市的公共用水系統關閉了兩天,不只沒有飲用水,也沒有清洗碗盤和沐浴嬰兒的水。從那時起,該市設立了早期預警系統,以便動用額外(而且昂貴)的活性炭過濾系統。不過我可以想像,陶雷度市民如果看到水源上完全覆蓋著藻類的衛星照片時,依然會覺得不安。

受綠潮襲擾的海岸線。圖/wikimedia

這樣的問題並不限於陶雷度市,現在蘇必略湖(Lake Superior)和紐約州手指湖(Finger Lakes)也遭到夏季藻華的入侵。

普洛伏(Provo)附近的猶他湖(Utah Lake)不但是熱門的度假地區,也是當地的水源,但是在 2016 年,湖水變成綠色,而且必須關閉,因為市政府發現湖中有毒藍綠菌的濃度是世界衛生組織認為「造成急性健康傷害」濃度的三倍。同年夏天,有幾個人在洛杉磯附近的金字塔湖(Pyramid Lake)游泳之後生病了。衛生官員測量湖水中的微囊藻毒素濃度,發現是警告標準的六倍。

-----廣告,請繼續往下閱讀-----

在奧瑞岡州的上克拉馬斯湖(Upper Klamath Lake)是有毒藻華湖泊的典型。這座湖的湖水淺、湖面平靜,正適合水華束絲藻(Aphanizomenon flos-aquae)生長,這種藍綠菌生產的毒素能夠導致麻痺。奧瑞岡州克拉馬斯河上的水庫,也容易出現微囊藻形成的藻華(飲用水中的微囊藻毒素特別危險,因為就算煮沸也無法消除這種毒素)。這種危險並不只限於當地:通過水力發電的管路,這種藻類可以在一百八十哩外的下游出現。

有些傷害性藻華(harmful algal blooms)會讓水呈現螢光綠,或甚至是明亮的粉紅色,很容易就可以看得出來。但是看不見的藻華每年入侵了美國數千座湖泊、池塘和水庫。

美國地質調查局(US Geological Survey)最近發現,美國西南部地區有 39% 的溪流中有微囊藻毒素。在 2016 年夏天,有十九個州因為傷害性藻華而發布公共健康警報。在北半球,情況愈來愈糟,夏天出現藻華的時間愈來愈早,持續的時間也愈來愈長。

淡水中的傷害性藻華對經濟的影響,雖然現在還沒有完整的資料,不過堪薩斯州立大學在 2009 年的一項研究中估計,淡水傷害性藻華每年會造成二十二億美元的損失,原因包括限制了水上娛樂活動、造成岸邊的房地產下跌、拯救瀕危物種的費用,以及處理飲用水的花費。

——本文摘自泛科學 2020 年 1 月選書《藻的祕密:誰讓氧氣出現?誰在海邊下毒?誰緩解了飢荒?從生物學、飲食文化、新興工業到環保議題,揭開藻類對人類的影響、傷害與拯救》,2019 年 12 月,臉譜出版

-----廣告,請繼續往下閱讀-----

 

臉譜出版_96
85 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
1

文字

分享

0
0
1
人工智慧的「黑箱作業」,類神經網路如何將生物分類的?
MiTalk
・2019/06/08 ・4467字 ・閱讀時間約 9 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/吳育瑋 臺北醫學大學醫學資訊研究所助理教授

這篇文章是我在讀到 Nature Methods 在 2018 年 3 月 5 日刊登的文章「Using deep learning to model the hierarchicalstructure and function of a cell」1後,在臉書 MiTalk 社團寫下的三篇短文的整理集結。在這三篇短文中,我簡要地介紹了目前人工智慧的技術基礎「類神經網路」的概念,再將其延伸到這篇文章提及的系統生物學研究,並解釋目前類神經網路之所以被稱為「黑盒子」的原因,以及這項系統生物學研究處理黑盒子的手法。

資訊輸入和輸出,如何用「類神經網路」做出無人車?

我們先來聊聊目前機器學習中最火紅的演算法「類神經網路」究竟是什麼東西?

動物的神經元大致上都有著可以接受來自其他神經元的訊號的樹突 (dendrite),以及可以傳送訊號給其他神經元的軸突 (axon)。類神經網路的單位神經元架構與生物的神經元類似:都有著數個可以接受其他神經元的「輸入 (Input)」,以及數個傳送訊號給其他神經元的 「輸出 (Output)」。將一大堆這樣子的神經元連結起來,就是類神經網路了。

當然,這種連結也不是亂連的。類神經網路通常會分成好幾「層」,而每一層與每一層之間的神經元都會緊密連結著 (fullyconnected),以下我用個實際的例子來說明這所謂的「層」是怎麼回事。

在 1989 年的時候,卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN 2。這台無人車的主要架構有三個:一台在車子前面隨時拍照的照相機或攝影機,一台執行類神經網路運算的電腦,以及由電腦控制的方向盤,請參考下圖:

-----廣告,請繼續往下閱讀-----
  • 第一層(最底層):照相機照出來的 30 x 32 個 pixel 的影像,以及8 x 32 個雷射距離測定器像。總共輸入單位是 30 x 32 + 8 x 32 = 1216 個。
  • 第二層(中層):由 29 個類神經網路神經元構成的隱藏層(最初期的設計只有4 個)。
  • 第三層(最上層):45 個輸出神經元,代表著方向盤要打那個角度;每個神經元代表一個角度,例如第一個神經元代表方向盤往右打 30 度,第二個代表方向盤往右打 28 度,依此類推。
卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN。圖片取自:LVINN 論文2

這麼簡單的類神經網路,就已經可以讓這台車在路上以 60 英哩的速度行駛了。可見得類神經網路機器學習的威力。

那麼類神經網路是怎麼訓練的呢?簡單地說,我們在訓練類神經網路時,必須要給它一組(通常是數量很多的一大組)已經知道正確答案的訓練樣本,讓類神經網路之間的神經元連結可以自動透過輸入訊號與正確答案的比對調整自身的參數。這樣的訓練會持續上數千或甚至數百萬次,直到正確率無法再提昇為止。比如說 ALVINN 無人車的訓練就是在真人開車時,將每張相機照出來的圖片與人類開車者的方向盤角度(也就是正確答案)進行連結,並持續調整參數直到答案錯誤率很低為止。

換句話說,ALVINN 這台無人車所做的事,就是模仿人類的開車行為。

除了無人車,「類神經網路」也能區分生物種類?

在上一段我們解釋了何謂類神經網路。一句話總結的話就是類神經網路就是連結在一起的人工神經元,而且可以透過無數次訓練盡量提高執行任務(比如說下棋或預測天氣)的準確率。在這一段中我將提到類神經網路與生物網路之間的關係

-----廣告,請繼續往下閱讀-----

類神經網路通常是由許多的「層」數以及每一層內的「神經元」數量所構成的;然而究竟需要多少層網路,或是每一層網路需要多少神經元,則沒有一定的準則。

我認為這是類神經網路最關鍵,卻也最難以決定的參數。舉例來說,先前提到過的自駕車 ALVINN 總共只有一層網路(不考慮輸入與輸出層的話),且這一層只包含 29 個神經元節點。但是現在如 Tesla 或其他品牌自駕車的類神經網路絕對比這個架構複雜許多。我們在設計類神經網路的時候,甚至需要不停地 trial-and-error 後才能決定「最佳」的網路架構,而這裡的「最佳」理所當然是由預測準確率來決定的。

那麼這和微生物或生命科學有什麼關係呢?這要先從一篇Nucleic Acids Research 論文3 講起。在這篇論文中,卡內基美隆的研究人員試圖透過類神經網路試圖研究不同的細胞(比如說胚胎分化時期的 early-2-cell、late-2-cell、8-cell、16-cell,或不同種類的細胞如 fibroblast、BMDC、以及上皮細胞等),並查看這些細胞的基因表現是否有著明顯的差異。他們的研究標的是不同研究團隊定序出來的 single-cell RNASeq 資料。

簡單來說,他們希望將許多人體內不同種類細胞的 RNASeq 資料透過類神經網路處理後,能夠過濾雜訊,留下最清楚的基因表現訊號。其最終目的當然是透過分群演算法視覺化看出每種細胞的區別

舉例來說,在論文的圖中,我們可以看到不同的人類細胞在經過類神經網路處理後,能夠有著最大化的分群效果;而且群與群之間大致上距離都相當遠,顯示出基因的表現量的確會隨著細胞的不同而不同。

-----廣告,請繼續往下閱讀-----
不同細胞的基因表現差異視覺化。圖片取自:Nucleic Acids Research 論文3

在同一項研究中,研究人員也發現如果小心地設計類神經網路架構,並將其與生物意義結合的話,將能達到最好的效果。這裡說的與生物意義結合的意思,指的是在設計的類神經網路層級中考慮到生物網路的數量以及結構。

他們首先算出這些基因表現量資料,並將資料建成 protein-protein interaction (PPI) 與 protein-DNA interaction (PDI) 的網路系統,並找出裡面總共有 348 個彼此之間有關聯的子網路;而就在找出「348」這個神奇數字後,研究人員就將類神經網路的隱藏層設計成兩層,且各有著 348 個神經元節點,分別代表這 348 組 PPI 與PDI 子網路。他們發現這樣子的類神經網路設計將能達到最理想的分群效果。

好的。到底我之所以鋪了類神經網路和生物意義這些梗要幹嘛呢?當然最主要的目的就是要說明 2018 年 Nature Methods的論文1 到底在講什麼。這篇論文雖然也是走類神經網路路線,但是他們網路的設計相當極端:完全按照生物的代謝途徑 (metabolic pathway) 來設計神經元的分佈(作者群在另一篇論文中提到他們就是受到這一篇 Nucleic AcidsResearch 的論文啟發而設計出這種奇妙的架構的)。

換句話說,這篇系統生物學的論文設計的類神經網路事實上已經不太有傳統的「隱藏層」的概念,而是完全按照代謝途徑連結人工神經元。透過這個方法,他們的類神經網路中總共包含了酵母菌的 2526 個子網路系統,分別代表不同的細胞代謝途徑。在經過訓練與比較後,這個經過特殊設計的網路結構可以準確地透過不同的基因表現預測酵母菌的細胞生長,並且預測的準確率比傳統數層緊密連結的類神經網路還要好上許多。

-----廣告,請繼續往下閱讀-----

神秘的黑盒子,「類神經網路」是怎麼運作的?

在類神經網路的世界中,常常會聽到一個說法:以類神經網路為基礎架構的人工智慧預測模型是「黑盒子  (black box)」。這裡的黑盒子當然不是飛機出事後可以撿回來分析的那個,而是無法打開無法分析而且完全不曉得裡面到底在幹嘛的系統。為什麼會有這種說法呢?一切都要從類神經網路模型是如何訓練的開始講起。

黑盒子系統就像骰骰子一樣,即使知道力學原理,我們還是無法得知骰盅內部到底發生了什麼?圖/pixabay

在類神經網路的世界中,每一個神經元可以接收來自數十甚至數百個神經元的訊號,並且可以傳送訊號給數十到數百個其他神經元。這種連接方式讓類神經網路的參數異常地多,且輕易就可以上到百萬千萬甚至億這種等級。我再次拿 ALVINN,那台 1989 年的無人車來當例子好了。

ALVINN 的輸入層有 1216 個神經元節點,中間的隱藏層有 29 個神經元,而輸出層有 45個神經元。這個相對來說架構非常簡單的類神經網路的參數就有 1216 X 29 X 45 = 1586880 個參數要考慮了,更別提其他
更複雜的深度學習類神經網路模型了。

事實上,參數數量多還在其次,真正的關鍵在於類神經網路的訓練方式。在訓練類神經網路時,我們往往會做以下兩件事:

-----廣告,請繼續往下閱讀-----
  1. 『 隨機』初始化類神經網路中的『所有』參數
  2. 隨著每個樣本的預測對錯微調所有的參數

我來用實際生活案例舉個例子好了。假設你要登一座山,目標是山頂。這座山每個地方的地型都完全不一樣。所以從 A 點上山和從不一樣的 B 點或 C 點上山的路都不盡相同。假設隨機把你放在這座山邊的某一點,要你朝著山頂為目標前進。這時候你的每一步就都會是在「那個當下」最佳的往山頂路線。所以從不同的點上山路線就有可能會差異極大,雖然最後都能到山頂就是了。

類神經網路的黑盒子,就是來自這個初始化與細微調整。因為參數太多,而且微調整的方式會隨著初始位置的不同而不同,所以一個調整好的類神經網路雖然可以達到不錯的預測成果,但是幾乎沒有人知道為什麼能夠達到這個預測效果。

  • 題外話,這個議題已經受到機器學習以及人工智慧界的重視了。許多人都在想辦法解開這個「黑盒子之謎」5, 6, 7

再舉個例子。每個人的大腦會隨著發育環境的不同而有著不同的發展軌跡,所以幾乎沒有兩個人的大腦神經連結方式是完全相同的。雖然每個人都知道蘋果可以吃,或者是被打會痛;但是發展出這個知識的「神經元連結」則有可能每個人都不一樣。

參數設定越明確,越能解開「黑箱作業」!

回到主題。在前一段落提到的:完全按照代謝途徑建構的類神經網路,和其他網路系統不同的是,它有著「解開黑盒子」的效果呢。

-----廣告,請繼續往下閱讀-----

這是因為這套「酵母菌的類神經網路預測模型」是完全按照「生物的代謝途徑」來連結的,所以雖然每個參數還是會因為類神經網路訓練過程而有所不同,但是我們可以得知某個神經元的總輸入參數值,也就是這個神經元的活化 (activation;中國翻成『激活』) 程度。只要將預測過程中每個神經元被活化的程度彼此比較,就能夠得知那個神經元扮演著最重要的角色;而這個神經元也就會是整個代謝途徑中最關鍵的基因或是調控因子。

下列 a、b 兩圖中皆可在這個類神經網路中,不同的基因活化後將會趨動不同的細胞反應,如 a 圖的 PMT1 與 IRE1 兩條基因與細胞壁的組成與強度有關,而 b 圖則可見 ERV7 與 RAD57 與DNA 的修復有著密切關聯性。

(點圖放大):按照細胞代謝途徑建構的類神經網路系統模擬測試結果。圖/參考文獻 1 ,Figure 3a 與 3d。

回到系統生物學,這套系統之所以對系統生物學的研究很有幫助的原因,在於它是一個可模擬生物在輸入各種訊號(如食物或環境刺激)後,將整個生物代謝途徑中最關鍵的基因標示出來的系統。礙於篇幅沒辦法將所有的元件講的非常清楚(比如說類神經網路本身就有一大堆參數要設定,然後訓練時也往往要扯到方程式微分模型之類的),只是很概略地將最大方向的概念用各種例子來說明。希望各位在讀完這個系列後能夠對何謂類神經網路有著最基本的認知,也能大致理解為什麼類神經網路會被詬病為「黑盒子」的原因。

參考文獻

  1. Ma et al., “Using deep learning to model the hierarchical structure and function of a cell”, Nature Methods, 15:290–298, 2018.
  2.  Pomerleau D., “ALVINN: an autonomous land vehicle in a neural network”, Advances in Neural Information Processing Systems 1, pp. 305-313, 1989.
  3. Lin et al., “Using neural networks for reducing the dimensions of single-cell RNA-Seq data”, Nucleic Acids Research, 45(17):e156, 2017.
  4. Yu et al., “Visible Machine Learning for Biomedicine”, Cell, 173(7):1562-1565, 2018.
  5. Knight W., “The Dark Secret at the Heart of AI”, MIT Technology Review,2017.
  6. Wisdom D., “Deciphering The Black Box of AI”, Medium, 2018.
  7. Castelvecchi D., “Can we open the black box of AI?”, Nature 538:20-23, 2016.

MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

0
2

文字

分享

0
0
2
別小看無腦水螅,牠可以用神經系統和細菌溝通呢!
MiTalk
・2019/05/24 ・2726字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

  • 許嘉合/中央研究院/生物多樣性研究中心/博士後研究員

由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

「靠!絞痛又開始了,而且一陣比一陣還痛!」心裡忍不住的罵了髒話後,我還是認命的吞下ㄧ顆止痛藥。對許多受原發性經痛困擾的女性朋友來說,止痛藥才是我們的好朋友。真不知道痛覺神經演化出來折磨人幹麻?其實,這一切的始作俑者就讓我們怪罪給水螅與它的祖先!

水螅 (hydra) 生活在淡水中[註1], 屬於刺絲胞動物門 (Cnidaria)、水螅蟲綱 (Hydrozoa)。同樣隸屬於刺絲胞動物門的還有水母、海葵、珊瑚。它們擁有簡單的散漫神經系[註2],是第一群具有神經系統的動物。其中水螅因為構造簡單,培養、繁殖容易的特性,最適合拿來當模式物種來研究神經傳導。

水螅照片與形態。形態圖改繪自 GeoChembio.com , 照片/visualhunt
  • [註1]:水螅構造簡單,呈輻射對稱:觸手環繞在口部周圍用以捕食;基盤用來附著或移動。雌雄同體,有精巢和卵巢可行有性生殖,但通常行無性的出芽生殖。常見的種類有綠水螅與褐水螅。
水螅散漫神經系統示意圖。圖片改繪自 Murillo-Rincon et al . 2017 圖 1c 及Reese et al . 圖 49-2a。
  • [註2]:水螅擁有最簡單的散漫神經系統,神經系統缺乏統整訊息的中樞,具有兩種不同的神經細胞,包括感覺細胞 (sensorycells) 與多極神經元 (ganglionneurons)。水螅上皮細胞表層的黏膜主要成分為醣蛋白複合物,適合細菌居住。

神經系統的功能與定義一直都被認為是清晰無疑的:它可以接收環境中的物理、化學訊息,讓生物能感知、並能對這些訊息有所反應或行動。然而近年來科學家發現神經系統在演化初期可能具有不同功能,可能被用來與周遭環境中的微生物溝通,還能控制微生物菌相的組成。疑!這聽起來是不是很像後天免疫系統的工作內容?由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

不會說話的水螅房東,如何和他的細菌房客溝通?

然而,水螅到底是怎麼利用神經系統來跟它們的細菌房客溝通的呢?在水螅 Hydra magnipapillata 的上皮細胞 (epithelialcell) 表面,有群細菌定居在那。裡面數量最多(佔了 75% 以上)的成員是 β- 變形菌綱(β-Proteobacteria)的成員,尤其是曲桿菌屬 (Curvibacter) 的菌種。第二多和第三多的居民則是 γ- 變形菌綱 (γ-Proteobacteria) 和擬桿菌門 (Bacteroidetes) 的菌種。

-----廣告,請繼續往下閱讀-----

細菌房客的種類組成會受水螅房東的種類和健康狀況影響,並且會受水螅上皮細胞分泌的抗微生物胜肽 (antimicrobialpeptides) 抑制。然而,抗微生物胜肽的生成又會受到神經系統的抑制(圖3,a)。因此,科學家在缺乏神經系統的水螅突變個體上,發現過量的抗微生物胜肽導致上皮細胞原有的 β- 變形菌綱菌種大量減少到只剩下原本的一成。但是原來的第三名擬桿菌門菌種的數量則增加了十倍。所以雖然社區裡面的總菌口數還是維持不變,但組成卻大大的改變了。

水螅神經訊息傳遞與抑制途徑示意圖。a. 神經細胞會抑制上皮細胞分泌抗微生物肽,減弱抗微生物肽抑制細菌生長的功效。b.水螅觸手部分的神經細胞會合成神經胜肽 NDA-1,傳送至上皮細胞表面的黏液層中,抑制曲桿菌生長。圖/許嘉合繪製

除此之外, 神經細胞還會分泌另一種叫做 NDA-1 神經胜肽 (cationic neuropeptie), 去控制主要細菌居民曲桿菌 (Curvibacter) 在自己身體上的分佈位置!這種神經胜肽 NDA-1 在水螅的觸手細胞製造得比較多,合成後會被傳送至上皮細胞表面的黏液層中,用來抑制曲桿菌生長(圖3,b)。這也是為什麼曲桿菌主要出現在水螅的軀幹而非觸手上的原因。這個結果證實水螅能用神經系統控制細菌社區的成員組成與分布位置。

垃圾吃垃圾大?長細菌的水螅好壯壯?

但是,如果你以為細菌只能單方面受制於水螅,那就錯了!細菌與水螅的溝通是雙向的。雖然目前還沒有直接的證據,可是當研究人員用抗生素去除掉水螅身上的細菌後,發現如果水螅身上沒有細菌的話,身體收縮的頻率會不正常升高。另外在水螅胚胎發育的過程中,如果和有正常菌陪伴成長的水螅胚胎相比,無菌的水螅胚胎在發育時更容易發生嚴重的真菌感染。所以,好房客細菌可以保庇你健康長大!而為了要讓好房客細菌乖乖的、不離家出走、不失控,神經系統可是擔負著重要的使命呢!

整合目前在水螅的研究結果,科學家推測神經系統不但可以偵測環境中的細菌、辨認出其中的特定菌種,還可以依據細菌房客組成的不同,來調節體內的生理代謝狀況或控制、篩選體表菌相的組成。當有房客搗亂時,它們還可以引發上皮細胞的先天免疫反應,來維持秩序。

-----廣告,請繼續往下閱讀-----

當研究回到人身上,有腦的我們也能和細菌溝通嗎?

藉由研究模範房東水螅與細菌房客的對話,我們才有機會進一步瞭解神經、免疫系統與共棲微生物的交互作用。例如水螅上的共棲菌如何影響神經系統的放電,以及如何影響水螅的行為。這樣的研究對應到人類,就和最近很夯的:腸腦軸線 (gut-brain axis) 有關。所謂的「腦腸軸線」,是指腸與腦兩個器官間有神經網路讓彼此,連結溝通。近年來科學家發現,藉由這條專線,腸內的菌群可以影響大腦的發育、功能與內分泌系統;而大腦也利用這條熱線控制腸胃道內的內分泌與免疫反應,進而影響了腸道內的菌群組成。

所以當你緊張時可能會拉肚子或引起腸躁症;而當你飲食不正常造成腸內菌相失衡時,也可能引起過敏反應或增加焦慮、憂鬱行為。廣義來說,腦腸軸線其實包含了腸道菌群、神經系統、內分泌系統與免疫系統。其研究範疇更可以橫跨微生物學、生理學與神經心理學,在高等生物上所牽涉到的反應非常的錯綜複雜。因此,或許藉由研究小巧簡單的神經模式物種-水螅,能夠幫助我們釐清一些蛛絲馬跡,找到新的答案。

在了解了神經系統的重要性與在演化中所扮演的角色後,我比較能體諒神經系統這一路走來所負擔的工作既複雜又辛苦。我想下次經痛時,我我我….. 髒話會少罵一點的!

參考資料

  1. Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, Herbst E-M et al. (2017). A secreted antibacterial neuropeptideshapes the microbiome of Hydra. Nature Communications 8: 698.
  2. Bosch TCG, Miller DJ (2016). The hydra holobiont: a tale of several symbiotic lineages. In: Bosch TCG, Miller DJ (eds). The Holobiont Imperative: Perspectives from Early Emerging Animals. Springer Vienna: Vienna. pp 79-97.
  3. Murillo-Rincon AP, Klimovich A, Pemoller E, Taubenheim J, Mortzfeld B, Augustin R et al. (2017). Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 7: 15937.
  4. Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2010). Campbell Biology, 9th edition. Pearson Education.
  5. Foster JA, McVey Neufeld KA (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-
    312.

本文轉載自MiTalkzine,原文《神經散漫的水螅與細菌小房客的對話

-----廣告,請繼續往下閱讀-----

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱