0

0
3

文字

分享

0
0
3

除了海豚烏龜,微生物也受到海洋塑膠的影響

MiTalk
・2019/02/20 ・2261字 ・閱讀時間約 4 分鐘 ・SR值 488 ・五年級

-----廣告,請繼續往下閱讀-----

楊姍樺
東海大學生命科學系 助理研究員
大學因為對鳥類恐懼誤打誤撞進入微生物領域,日久生情進而對環境微生物有了興趣。是一個希望達到和環境互相包容、與微生物互相包養的小小台灣土產博士。

就連整潔乾淨聞名於世的日本,海邊也看到各式塑膠垃圾。圖/楊姍樺 攝於沖繩

前陣子在沖繩的海邊,看到一位歐吉桑拄著拐杖,面朝大海迎著風和光閉目養神好愜意。就在我也想張開手臂迎著這春暖花開的下一秒,他生出個寶特瓶帥氣地往海裡丟,那個畫面非常衝擊。就在同一天,看到高雄小虎鯨體內十八個垃圾袋的新聞,雖不意外,但很悲傷。

近來,海洋塑膠幾乎是最熱門的議題,相關研究數量也在 2017 下半年爆炸性的增加,想寫計畫得看的參考資料多到足以讓我掉淚。這些研究的範圍包含了沙灘、近海、遠洋,或是各類海洋生物體內。這些研究結果顯示,無論是什麼地點,幾乎都能看到海洋塑膠的蹤跡,比收集寶可夢還簡單,就連南極海與深海底棲的無脊椎生物也都淪陷了。

這些海洋塑膠的大小從看得見的到看不見的都有,大的垃圾風化成小的,小的再風化成看不見的微塑膠。因此,受到影響的生物,當然也就包含了看得到的生物,與肉眼難以察覺的微生物了。

海洋微生物包含了:微藻、細菌、古菌、真菌與病毒。

它們小歸小,但在海中的數量龐大,根據美國國家海洋暨大氣總署的資料,海洋微生物占了海洋生物量的九成以上。因此,當龐大的海洋微生物與海洋塑膠相遇,會擦出什麼火花呢?其實科學家們目前對這方面知道的很有限,因為海洋微生物的功能繁雜,海洋塑膠的種類又多元,再加上海洋塑膠與微生物間還會彼此影響,就讓事情變得更不單純了。

-----廣告,請繼續往下閱讀-----

五花八門的塑膠種類,與微生物無限多的互動可能

許多人可能都有這樣的經驗,常用的水壺或是保溫瓶中,一段時間沒有清洗,或者就算每次都乖乖地清洗,瓶身的縫隙或是矽膠圈都會有很難清除的污垢,那是微生物構成的生物膜。只要是有水的環境中,固體的表面上很容易就會成為微生物的家。所以,可以想見,在海水中的塑膠上,左右逢源,可說是微生物的新天地。

當微生物黏附在塑膠上,不離不棄形成生物膜之後,塑膠的命運就撲朔迷離,走向各種不同的結局。因為,生物膜裡的微生物可能增加塑膠風化的速度,也有可能因為包覆了塑膠,減少塑膠接受 UV 光的照射,反而減緩了塑膠風化的速度。由於微生物會影響塑膠風化,也就會改變塑膠的大小與重量,而進一步會減緩或加速塑膠在水中的沉降,這也是為什麼連在深海中也可以看到塑膠的原因之一。

另外,我們餵給大海的垃圾種類五花八門,這些垃圾上又有形形色色的添加劑,像是漆、塑化劑或安定劑等。這些成份在與微生物接觸之後,本來安定添加物可能就會變得不安定而溶在水中。溶解的量與程度因為環境或是微生物的不同而改變。目前科學家們對這部分的知識也還在摸索當中。

珊瑚內的驚悚包。塑膠垃圾不只是會被鯨豚魚群吃下肚,珊瑚也會將它們包覆。但不知道這些被珊瑚承擔了的塑膠,會對珊瑚與珊瑚共伴微生物造成什麼影響。圖/楊姍樺攝於沖繩

還有,生物膜上多半有微生物產生的胞外聚合物 (extracellular polymeric substance,EPS),EPS 有黏性,可以讓微生物黏在一起,被微生物附上的塑膠微粒也會因此容易黏在濾食性生物的鰓上。想想看,冰箱冷氣的濾網久久沒清會發生什麼事?可憐的是,這些生物鰓上塑膠微粒並沒人會來幫牠們清。

-----廣告,請繼續往下閱讀-----

再來,由於不同材質的塑膠會吸引不同的微生物聚集,不同的微生物也會產生不同的代謝物,這些代謝物也會誘使一些本來不會吃到塑膠的海洋生物靠近。就像要你在沒有添加任何調味的水煮雞胸肉,或炸雞排之間做選擇,大部分我們還是走向「老闆雞排一份不切要辣」的那邊。有些以微生物為食的消費者,也就這樣順便將塑膠吃了下去。不過什麼樣的微生物會吸引什麼樣的生物來進食,這一點現在也還不是很清楚。

微生物研究開飯囉,「塑」食主餐挑不完

你可能會問我,不是最近這方面的研究爆炸性的多了嗎,怎麼講到什麼都是不清楚?因為人類製造的垃圾種類太多也太複雜了,在垃圾上的微生物的種類也數不清,科學家們研究的速度遠遠追不上我們製造問題的速度。

海洋雖然圍繞在我們身邊,但往往也是被疏忽的一環,畢竟科學研究的主力多半放在人的身上,因此不管是研究人力與經費,都往往不及醫學以及電子產業。然而,就算科學家們都卯起來做海洋塑膠與微生物的研究,光是塑膠種類與微生物的組合,再加上其他生物與非生物的因素,要在近期內(有生之年)解答前面的問題,也不是簡單的事。

而且,就算知道了微生物與海洋塑膠間的情愛糾葛,塑膠對生態系的危害還是沒有解決。或許未來我們會篩選到一些具有降解塑膠能力的微生物,也或許會知道哪些生物被危害的很嚴重要避免食用,再或許發明了更威猛的海洋吸塵器可以將海洋垃圾清除乾淨等等,但這些都是或許,也都是未來式。其實要減輕危害的方式,最不複雜且立即可以做的就是減少塑膠製品的使用,以及落實垃圾的回收。

-----廣告,請繼續往下閱讀-----

要是現在自己能做的都做不到了,還去期待科學的進步可以怎麼幫我們解決海洋塑膠問題,也太不切實際了不是嗎?

 

本文轉載自MiTalkzine,原文《塑膠微粒與海洋微生物》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

24
4

文字

分享

1
24
4
獵捕、船隻撞擊,曾經或正在上演的海豚悲劇——15 萬赫茲的悲鳴(一)
About鯨豚_96
・2020/12/22 ・3910字 ・閱讀時間約 8 分鐘 ・SR值 517 ・六年級

警告,本文含有血腥照片,請斟酌自身觀看

編按:最近,蔡依林的《甜秘密》MV,掀起了各種討論。其中一個,便是與鯨豚保育相關的議題。鯨豚作為海洋生態的重要指標,如今被人類保護,但從古至今,鯨豚的濫殺或意外都層出不窮。

這幾天台灣知名女歌手的新 MV 引起熱烈的討論,由於影片一開始就提及「有一個神祕的傳說,發生在一個名為黑鱗的漁村小鎮,而這個漁村有著獵殺鯨豚的殘忍傳統」,讓一些網友認為這是在批判日本和歌山縣太地町的「海豚捕獵季」。

台灣知名女歌手的新 MV 畫面截圖。
台灣知名女歌手的新 MV 畫面截圖。影片中女主角正在簽署「反獵殺鯨豚連署書」。連署書中戶籍一欄寫著「黑鱗市海佃路」、「黑鱗市北區」;澎湖沒有黑鱗市,但台南市有海佃路和北區喔!

太地町的「海豚捕獵季」,時間為當年 9 月初至隔年 2 月底,這半年內只要海象許可便會出海尋找鯨豚,一旦發現動物便會將其趨趕至海灣內屠殺。然而如果只在乎宰殺海豚的話,那就是不夠認識這個議題。

太地町最大的問題是捕捉活體海豚的買賣行為,這裡是全世界鯨類圈養產業的最大源頭。

其實倒也不必將這 MV 裡的漁村延伸到日本,在台灣西岸的離島澎湖,曾經就如同太地町一樣有著捕獵海豚的季節。但對於澎湖而言,這已經是過去的歷史,而太地町則依然是現在進行式。

-----廣告,請繼續往下閱讀-----

澎湖沙港圍捕海豚的歷史

位於澎湖北方湖西鄉的沙港村,其圍捕海豚的歷史約有一百年了,在早期物質缺乏的年代,那是他們重要的肉食來源與餽贈親友的禮物。

每年 12 月到次年 3 月常有成群海豚洄游至此,漁民們會使用「驅趕漁法」捕捉鯨豚。先召集眾多小船,並同時發出敲打聲,將追逐魚群的瓶鼻海豚和偽虎鯨等趕到岸邊使其擱淺,然後漁民將其拖行上岸宰殺,按照參與捕獵行動的程度依比例分食。

照片是民國五十年代,沙港村漁民捕獲一群海豚擱在沙灘上的場景,在動物保育觀念沒有明顯規定的時候,這可是大豐收的一天。當時澎湖每年常聽到沙港村漁民捕獲(海鼠)海豚,在市場也有看到賣海豚肉。圖/維基百科

沙港圍捕海豚,本是凝聚村民對社區集體認同的活動,但是單純的社區經濟行為漸漸的變為國際性的海豚買賣。1975 年後,沙港村圍捕海豚引起香港海洋公園的注意,透過商人接洽讓海豚因而有更高獲利的外國市場。此後,沙港漁民將驅趕圍捕的海豚區別,幼小且健康的海豚會被選出送到海洋公園馴養,剩下的則宰殺分食。

1980 年,一次 22 隻海豚的交易,以平均2萬元價格賣出;但不久全數死亡,開始引起國際鯨豚保育人士的注意。之後活海豚交易由「野柳海洋世界」接手,沙港固定供應活海豚給野柳海洋世界。賣海豚帶來的好利潤,使得這項金錢交易愈來愈重要,也造成社區分享精神的改變。

-----廣告,請繼續往下閱讀-----

1990 年,國際動物保護團體「信任地球 (Earthtrust)」保育組織拍攝了沙港「驅趕漁法」的影片,並交付全美電視網播映,引起國際輿論譁然,沙港也被指稱為「殺港」。台灣政府遭此壓力後,同年 8 月,《野生動物保育法》增列「鯨目」,將所有鯨魚和海豚納入保育類,使得沙港漁民圍捕海豚的傳統漁法強制步入終點,史稱「沙港事件」

澎湖沙港事件資料圖片之一,圖中為偽虎鯨。圖/Earthtrust
澎湖沙港事件資料影片截圖。圖/公視「我們的島#第3集-海島新樂園(1998-11-15)

2016 年 1 月 10 日,據「香港動物報」的報導,香港海洋公園宣佈,他們園內最長壽的瓶鼻海豚「 Jessie 」於晚間 10 時半死亡,終年 44 歲。根據初步臨床及解剖結果,死因是嚴重腎功能衰竭及腹膜炎。Jessie 是於 1978 年在澎湖被捕捉,而那時她只有 5 至 6 歲。然而從 1976~1984 年,香港海洋公園一共從澎湖引入 35 隻瓶鼻海豚,Jessie 可能是最後一個倖存者。

隨著 Jessie 的死亡,澎湖的圍捕海豚漁業是徹徹底底地變成了歷史。我們不用為此過於悲傷或無視它,沙港事件無疑是台灣鯨類保育的一個重大轉捩點,應當被人們多加認識與了解;要知道現在對鯨豚的保護規範,是由這些死去的生命所換來的,必須要更加珍惜維護,以及加強現有的保育措施。因為直至現今,仍持續發生人為的鯨豚死亡,即便這些死亡案例都被歸類在意外。

與人類親密的海豚,多半死在船槳下

在 MV 中,女主角與一隻野生「單體」海豚有著密切的接觸。所謂「單體」是指脫離族群的個體海豚,這在現實世界中是時有所聞的。最著名的莫過於「丁格爾 (Dingle)」 當地非常知名的雄性瓶鼻海豚「Fungie」。

-----廣告,請繼續往下閱讀-----

丁格爾是「愛爾蘭島 (Ireland)」西海岸被風吹拂的丁格爾半島上一個五彩斑斕的避風港,深受人們喜愛的海豚 Fungie 幾乎是它的代名詞。自從 40 年前牠出現在丁格爾港後,Fungie 就成為這個城市的長期居民。

牠每次消失的時間從不超過幾個小時。但是自今年 10 月 15 日以來,Fungie 一直下落不明。雖然有大批的船隻前往尋找這隻海豚,也有潛水員加入探索港口的水下角落和縫隙。但是沒有人發現 Fungie,不論是活的還是死的,最後搜索被取消了。

沒有人知道 Fungie 的確切年齡。牠於 1983 年在港口首次被發現,當地人認為牠當時已經完全長大,這樣一來,牠的年齡應該在 45 歲左右。其他估計認為牠接近 40 歲。這年紀與目前對野生瓶鼻海豚壽命的估計是一致的,因此有研究人員認為 Fungie 應是自然老死並成為了大海的一部份。

Fungie 能幾乎毫髮無傷以及被推測可能是自然老死的情況下消失在眾人眼前,這其實是萬幸並且是極度特殊的案例。因為在其他地區,更多進入人類領域並與人類有過度互動的單體海豚,牠們的最後命運是被船隻撞擊致死。

今年 10 月,英國「多塞特郡 (Dorset)」海岸,一隻據信最早是在 2018 年開始於該地區定居,並被稱為「Danny」的獨居雄性瓶鼻海豚的屍體在水中被發現,專家稱牠很可能是受到「大型螺旋槳的撞擊」。

-----廣告,請繼續往下閱讀-----
今年 9 月,社群媒體上大量報導 Danny,由於牠被拍到正面跳躍的畫面,非常引人注目。然而過了一個月,於 10 月底發現牠的屍體。圖片中可見牠的周圍有水上摩拖車及許多大型船隻。圖/英國 Daily Mail

非營利組織「英國鯨類擱淺調查計劃 (UK Cetacean Strandings Investigation Programme)」在「倫敦動物園 (London Zoo)」為 Danny 進行驗屍。得出的結論是,死亡是由於「船舶撞擊造成的急性身體創傷」。

海豚 Danny 屍檢照之一。左胸鰭明顯可見骨折,尾幹以下全數不見了。圖/英國鯨類擱淺調查計劃

該組織在臉書專頁發表貼文表示,

「可悲的是,當動物習慣了人類和船隻的存在時,諸如此類的意外遭遇不幸會導致嚴重傷害或死亡。船舶撞擊是一個全球性的問題,影響到各種各樣的鯨類物種,應當努力提高我們對這個問題的認識。」

海豚 Danny 屍檢照之一。位於胸鰭的身體部位有著深處的撕裂傷。圖/英國鯨類擱淺調查計劃

「許多獨居的海豚都被船隻撞擊致死。這是非常可悲的,但這絲毫不令人驚訝」

保護慈善機構「Marine Connection」的創始人 Liz Sandeman 告訴英國廣播公司新聞 BBC 說。

「當這些海豚來到岸邊,毫無疑問,牠們的行為確實在幾個月內發生了變化。牠們變得習慣了,失去了對自身周圍人類和船隻的警惕與畏懼。

在野生的海豚族群中,有來自長輩或者是母親的叮嚀與拉一把。然而單體海豚就是牠自己,沒有其他海豚可以教導或者提醒牠要注意外來的威脅,例如船隻的螺旋槳。很難再有像 Fungie 這樣幸運的獨居海豚,更多的是像 Danny 這樣有著不幸的結局。

-----廣告,請繼續往下閱讀-----

如果不與這些單體海豚保持適當的距離,我們對牠們的愛是間接導致牠們死亡的因素之一。我想,沒有人願意承受這樣的無力與懊悔。所以 MV 劇情中女主角與海豚的緊密互動,還是影片看看腦袋想想就好,好孩子千萬不能學喔!

參考資料

  1. So Long, and Thanks for All the Fun, Fungie(2020.11.25)
  2. 臺灣學校網界博覽會-沙港專題
所有討論 1

3

28
0

文字

分享

3
28
0
保育鯨豚,就是保護海洋生態──《23.97 的海洋哲思課》
幼獅圖書
・2020/12/18 ・2190字 ・閱讀時間約 4 分鐘 ・SR值 556 ・八年級

-----廣告,請繼續往下閱讀-----

介紹鯨豚這種海洋哺乳動物時,常被問到的幾個問題:

問:鯨魚 whale,海豚 dolphin,英文分得很清楚,為什麼臺灣合稱為「鯨豚」?

答:全球大約有八十種鯨豚,大大小小的牠們全屬於鯨目底下的鬚鯨亞目和齒鯨亞目。鬚鯨亞目的鯨種,一般體型龐大,不長牙齒,長鬚板,以鬚板來過濾小魚小蝦,吃食方式是濾食。齒鯨亞目的鯨種,體型大小都有,長牙齒,除了少數成員以牙齒為性象徵,大多數齒鯨以牙齒為獵食工具,行獵食行為。

鯨魚、海豚其實都是俗稱,各國標準不一。以中文名稱來說,有些體型如一般海豚大小的,卻以「鯨」來稱呼;又有些體型大過小型鯨的又被稱作「海豚」,「鯨」、「豚」之間相當混淆,因此臺灣以「鯨豚」來簡稱並含括所有的牠們。

臺灣東部海域的鯨豚,可依體型大小,大致區分為「小型鯨」(包括大部分的海豚、侏儒抹香鯨、小虎鯨、瓜頭鯨等)、「中型鯨」(領航鯨、偽虎鯨、虎鯨、各種喙鯨等)和「大型鯨」(抹香鯨、大翅鯨等)。

-----廣告,請繼續往下閱讀-----
一群領航鯨。圖/《23.97 的海洋哲思課》

問:海洋動物這麼多,為什麼特別介紹鯨豚?

答:若以食物鏈高層來介紹陸地上最具代表性的動物,應該就是人類吧。沒錯,鯨豚在海洋裡的生態位置,幾乎等同於陸地上的人類,牠們是最具代表性的海洋動物之一,不只如此,也不少人認為牠們模樣討喜,是代表海洋的海洋動物明星。

問:為何特別強調「鯨豚保育」,其他海洋生物都不需要保護嗎?

答:鯨豚是海洋哺乳動物,使用肺臟呼吸,潛水一段時間後,必須浮出海面換氣,當我們從事海洋觀察時,水面下的生態不容易在水面上看見,但鯨豚因為需要換氣比較沒有水面隔閡的問題,因此鯨豚被認為是海洋生態的指標生物。這海域若鯨豚頻繁出沒,表示這海域有牠們的食物,意謂這海域海洋食物鏈相對健全。這海域若牠們變少,可能就是這裡的食物鏈狀態出了問題;若這海域鯨豚從原本的頻繁出沒變成絕跡,顯然這裡的海洋生態處於崩潰狀況。

飛旋海豚。圖/《23.97 的海洋哲思課》

因而,鯨豚保育的真義,其實是保護這海域健康的食物鏈狀態,也就是保護這裡的海洋生態。了解鯨豚很容易可以轉換成進一步了解海洋生態。

鯨豚保育的真意,其實就是保護海洋。

-----廣告,請繼續往下閱讀-----

問:臺灣各海域都有鯨豚,為什麼賞鯨活動只在東部三縣市?

答:賞鯨活動必須仰賴在地鯨豚資源量(鯨豚發現率)為基礎,臺灣東部海域因為黑潮近岸,將大洋性生態推靠近我們沿海,而大多數鯨豚屬於大洋巡游動物,因此東部沿海的鯨豚發現率,根據二十多年來的記錄,大約維持在九成左右,是支持賞鯨活動盛行的原因。而西部海域的鯨豚,就剩下數量有限的臺灣白海豚,發現率低,資源量明顯不足,難以支持西海岸的賞鯨活動。

賞鯨船。圖/《23.97 的海洋哲思課》

問:為什麼參加的是「賞鯨活動」,出海看見的大部分是「海豚」?

答:分布於宜蘭、花蓮、臺東三縣市的賞鯨活動,事實上是以觀賞中、小型鯨為主,但偶爾可遇大型鯨的賞鯨活動。統稱為「賞鯨活動」,並不是刻意混淆「賞鯨」與「賞海豚」的差別,而是因為鯨豚的中文名稱容易造成鯨魚、海豚俗稱認知上的歧異,而且臺灣賞鯨活動出海觀賞的對象,絕大部分屬於開放大洋中的巡游性鯨豚,並不是像國外許多賞鯨活動的接觸對象,很多是相對封閉的海灣或內海等屬於季節性的休息場或繁殖場。

船前乘浪的一群飛旋海豚。圖/《23.97 的海洋哲思課》

也就是臺灣的賞鯨對象,是跟著大洋環流接近沿海,又隨著海流離開的大大小小各種鯨豚。

問:為什麼有些生態人士反對賞鯨活動?

答:有些生態人士擔心,賞鯨活動可能干擾、妨礙鯨豚生態,因此反對。

-----廣告,請繼續往下閱讀-----

生態資源接觸的通則是:必須小心謹慎,避免造成干擾。面對鯨豚資源,我們可以有兩種態度:不出海、不接觸;或者經由接觸,並從中學習如何接觸、如何相處,如何降低不必要的干擾。好比面對海洋危險的消極與積極兩種態度。

在無法禁止人類船舶航海,無法禁止漁撈行為,無法禁絕人類汙染排放於海的前提下,我比較支持,透過接觸、認識和學習,積極建立臺灣與鯨豚和善的新關係。

──本文摘自《23.97 的海洋哲思課》,幼獅文化出版,2020 年 11 月 10 日
所有討論 3

0

0
3

文字

分享

0
0
3
除了海豚烏龜,微生物也受到海洋塑膠的影響
MiTalk
・2019/02/20 ・2261字 ・閱讀時間約 4 分鐘 ・SR值 488 ・五年級

楊姍樺
東海大學生命科學系 助理研究員
大學因為對鳥類恐懼誤打誤撞進入微生物領域,日久生情進而對環境微生物有了興趣。是一個希望達到和環境互相包容、與微生物互相包養的小小台灣土產博士。

就連整潔乾淨聞名於世的日本,海邊也看到各式塑膠垃圾。圖/楊姍樺 攝於沖繩

前陣子在沖繩的海邊,看到一位歐吉桑拄著拐杖,面朝大海迎著風和光閉目養神好愜意。就在我也想張開手臂迎著這春暖花開的下一秒,他生出個寶特瓶帥氣地往海裡丟,那個畫面非常衝擊。就在同一天,看到高雄小虎鯨體內十八個垃圾袋的新聞,雖不意外,但很悲傷。

近來,海洋塑膠幾乎是最熱門的議題,相關研究數量也在 2017 下半年爆炸性的增加,想寫計畫得看的參考資料多到足以讓我掉淚。這些研究的範圍包含了沙灘、近海、遠洋,或是各類海洋生物體內。這些研究結果顯示,無論是什麼地點,幾乎都能看到海洋塑膠的蹤跡,比收集寶可夢還簡單,就連南極海與深海底棲的無脊椎生物也都淪陷了。

這些海洋塑膠的大小從看得見的到看不見的都有,大的垃圾風化成小的,小的再風化成看不見的微塑膠。因此,受到影響的生物,當然也就包含了看得到的生物,與肉眼難以察覺的微生物了。

-----廣告,請繼續往下閱讀-----

海洋微生物包含了:微藻、細菌、古菌、真菌與病毒。

它們小歸小,但在海中的數量龐大,根據美國國家海洋暨大氣總署的資料,海洋微生物占了海洋生物量的九成以上。因此,當龐大的海洋微生物與海洋塑膠相遇,會擦出什麼火花呢?其實科學家們目前對這方面知道的很有限,因為海洋微生物的功能繁雜,海洋塑膠的種類又多元,再加上海洋塑膠與微生物間還會彼此影響,就讓事情變得更不單純了。

五花八門的塑膠種類,與微生物無限多的互動可能

許多人可能都有這樣的經驗,常用的水壺或是保溫瓶中,一段時間沒有清洗,或者就算每次都乖乖地清洗,瓶身的縫隙或是矽膠圈都會有很難清除的污垢,那是微生物構成的生物膜。只要是有水的環境中,固體的表面上很容易就會成為微生物的家。所以,可以想見,在海水中的塑膠上,左右逢源,可說是微生物的新天地。

當微生物黏附在塑膠上,不離不棄形成生物膜之後,塑膠的命運就撲朔迷離,走向各種不同的結局。因為,生物膜裡的微生物可能增加塑膠風化的速度,也有可能因為包覆了塑膠,減少塑膠接受 UV 光的照射,反而減緩了塑膠風化的速度。由於微生物會影響塑膠風化,也就會改變塑膠的大小與重量,而進一步會減緩或加速塑膠在水中的沉降,這也是為什麼連在深海中也可以看到塑膠的原因之一。

另外,我們餵給大海的垃圾種類五花八門,這些垃圾上又有形形色色的添加劑,像是漆、塑化劑或安定劑等。這些成份在與微生物接觸之後,本來安定添加物可能就會變得不安定而溶在水中。溶解的量與程度因為環境或是微生物的不同而改變。目前科學家們對這部分的知識也還在摸索當中。

-----廣告,請繼續往下閱讀-----

珊瑚內的驚悚包。塑膠垃圾不只是會被鯨豚魚群吃下肚,珊瑚也會將它們包覆。但不知道這些被珊瑚承擔了的塑膠,會對珊瑚與珊瑚共伴微生物造成什麼影響。圖/楊姍樺攝於沖繩

還有,生物膜上多半有微生物產生的胞外聚合物 (extracellular polymeric substance,EPS),EPS 有黏性,可以讓微生物黏在一起,被微生物附上的塑膠微粒也會因此容易黏在濾食性生物的鰓上。想想看,冰箱冷氣的濾網久久沒清會發生什麼事?可憐的是,這些生物鰓上塑膠微粒並沒人會來幫牠們清。

再來,由於不同材質的塑膠會吸引不同的微生物聚集,不同的微生物也會產生不同的代謝物,這些代謝物也會誘使一些本來不會吃到塑膠的海洋生物靠近。就像要你在沒有添加任何調味的水煮雞胸肉,或炸雞排之間做選擇,大部分我們還是走向「老闆雞排一份不切要辣」的那邊。有些以微生物為食的消費者,也就這樣順便將塑膠吃了下去。不過什麼樣的微生物會吸引什麼樣的生物來進食,這一點現在也還不是很清楚。

微生物研究開飯囉,「塑」食主餐挑不完

你可能會問我,不是最近這方面的研究爆炸性的多了嗎,怎麼講到什麼都是不清楚?因為人類製造的垃圾種類太多也太複雜了,在垃圾上的微生物的種類也數不清,科學家們研究的速度遠遠追不上我們製造問題的速度。

-----廣告,請繼續往下閱讀-----

海洋雖然圍繞在我們身邊,但往往也是被疏忽的一環,畢竟科學研究的主力多半放在人的身上,因此不管是研究人力與經費,都往往不及醫學以及電子產業。然而,就算科學家們都卯起來做海洋塑膠與微生物的研究,光是塑膠種類與微生物的組合,再加上其他生物與非生物的因素,要在近期內(有生之年)解答前面的問題,也不是簡單的事。

而且,就算知道了微生物與海洋塑膠間的情愛糾葛,塑膠對生態系的危害還是沒有解決。或許未來我們會篩選到一些具有降解塑膠能力的微生物,也或許會知道哪些生物被危害的很嚴重要避免食用,再或許發明了更威猛的海洋吸塵器可以將海洋垃圾清除乾淨等等,但這些都是或許,也都是未來式。其實要減輕危害的方式,最不複雜且立即可以做的就是減少塑膠製品的使用,以及落實垃圾的回收。

要是現在自己能做的都做不到了,還去期待科學的進步可以怎麼幫我們解決海洋塑膠問題,也太不切實際了不是嗎?

 

本文轉載自MiTalkzine,原文《塑膠微粒與海洋微生物》

-----廣告,請繼續往下閱讀-----

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱