0

0
0

文字

分享

0
0
0

墓仔埔小派對:那些在墓碑上生活的小東西們(*゚∀゚*)

MiTalk
・2019/02/13 ・1936字 ・閱讀時間約 4 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

陳俊堯
慈濟大學生命科學系 助理教授

 

 

Life after death,死亡國度現生機

Live after death 是英倫重金屬名團 Iron Maiden 在 1985 年發行的現場錄音。這張專輯的封面是樂團吉祥物乾屍 Eddie 從墳墓裡復活,背後是自己大大的墓碑。假鬼假怪的封面加上高速厚實的金屬,當年血氣方剛的我愛死這一味了,還在校慶時把專輯封面拿去當班上鬼屋的海報。三十多年過去,Iron Maiden 依然以高能量金屬在樂壇走跳,只是我已經退化為坐辦公桌的中年大叔,抱著 bass 想念已逝的年少輕狂。

不過,在 Science 雜誌上這篇以 Life after death 為題目的報導,還是馬上抓住了我的注意。雖然內容不是談 Iron Maiden 的音樂,但卻是個極為有趣的研究。Eddie 從石棺裡死而復生,而這篇研究裡談的,是在死人墓地裡繁衍生息的微生物。好奇妙的棲地選擇!

這篇研究看的是長在墓碑上的微生物。其實想想,以墓碑當做研究題材真是個聰明的選擇。首先墓碑是石頭,可以用來研究在石頭上生長的微生物。這環境不太優良,所以沒有高到嚇死人的生物多樣性要擔心。墓碑容易找,而且全球都有分佈,要做各個地理區的比較不成問題。墓碑上記載的時間,就是一塊全新石板被放在當地開始進行微生物生長實驗的時間。而且墓碑還有各種材質,同個墓園裡還找得到各種不同材質的墓碑。做野外實驗最怕樣點碰到人為干擾,但是墓園裡清淨得很,也不用擔心有人想把墓園填平去做別的用途。這真是個絶佳的研究主題。

大膽能吃嗎?墓碑細菌群的養分哪裡來?

墓碑絶對不是個好環境。這不是說墓園很可怕,而是石頭上沒養份又沒水,太陽直射時就得忍受沒辦法逃離的紫外光加高溫。讓我們來看看到底是什麼樣的細菌,有本事住在墓碑上。

-----廣告,請繼續往下閱讀-----

這個研究請採樣志工帶著剛拆封的牙刷,在墓碑上把 100 平方公分範圍裡的東西刷下來,總共收集了來自美國、西班牙、哥倫比亞、丹麥、比利時等地的 149 個樣本,送回實驗室分析。在經過 DNA 萃取之後,進行後續微生物組成判讀。

在這些墓碑上,有 33% 的序列來自 Proteobacteria,其中包括分解能力很好的 Sphingomonadales 群細菌。有 15% 是能行光合作用的 Cyanobacteria,在照得到大量陽光的地方看到它們蠻合理的。其餘序列主要來自耐命的 Bacteroidetes(14%) 和 Actinobacteria(13%),以及在貧瘠的養份狀況下能存活的 Acidobacteria(6%)。以抗紫外線能力聞名的 Deinococcales 數量不少,還有很多有固氮潛力的 Frankiales 存在。在真核生物方面,真菌佔了 47%,綠藻佔了 33%,這些系列有不少來自真菌和綠藻共生而成的地衣,跟我們平常看到的石頭表面差不多。

研究團隊蒐集來自各國各地墓碑,總共有149個樣本。圖/pixabay

一方墓養一方菌?石材造就菌種大不同

那在這 149 個樣本上出現的微生物像不像呢?他們發現不同地區的墓碑上面長了不一樣的微生物,推測微生物組成會跟當地的氣候(像是溫度濕度)有關。這些墓碑主要石材是石灰岩和花崗岩,而不同的石材上面出現的微生物組成不同,這個差異比不同地點造成的影響還大。

為什麼材質不同會有這麼大的影響呢?他們比較了這些菌種的生理特性,發現花崗岩上的菌種比較耐酸,可能是因為石灰岩的碳酸鈣成分維持了中性和弱鹼性的環境。而從總基因體 (metagenome) 定序結果也發現,花崗岩墓碑上的菌群有比較多抗酸基因,而石灰岩墓碑上的菌群有比較多光合作用相關及抗紫外線的基因。他們還比較了墓碑的年代和墓碑的方向(影響日照強度),結果發現這兩個因素不太影響微生物相組成。沒想到在墓碑上也能找到這麼有趣的微生物生態故事。

-----廣告,請繼續往下閱讀-----
© Copyright Des Blenkinsopp and licensed

看到這裡,你應該有個疑問:這研究很有趣,但是這個研究結果有什麼實際用途嗎?

其實有喔。這些在石頭表面的微生物會促進石材的風化,而很多古老建築和紀念碑的材質都是石頭,如果能搞清楚這些微生物到底在石頭上做了什麼,或許可以幫助我們保存這些具有歷史意義的建物。這群科學家推測,在花崗岩上的細菌設法產生大量的酸,把石頭裡的草酸溶解出來作為養分,所以必須耐酸。這些細菌的存在可能會加快石材的風化。但是在石灰岩上有碳酸根的中和效果,環境偏中性,所以有比較多光合生物生長來提供養分,跟花崗岩相比就是個完全不同的環境。這樣的研究結果,或許能提供後人做為保護古蹟時的策略參考。

  1. Ash, C. 2018. Weathering life after death. Science 360(6386), 281-2.
  2. Brewer TE, Fierer N. 2018. Tales from the tomb: the microbial ecology of exposed rock surfaces. Environ Microbiol. 20(3):958-70.

 

本文轉載自MiTalkzine,原文《在死亡國度裡找到生機》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

-----廣告,請繼續往下閱讀-----

訂閱連結:https://goo.gl/Qo59iG

-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
0

文字

分享

0
7
0
家中養貓狗,寶寶可能更健康?研究證實毛小孩有助於提升新生兒免疫力
PanSci_96
・2024/08/25 ・1454字 ・閱讀時間約 3 分鐘

  • 文/林芸寬、張愷丰、張庭瑀、郭亮均、林詠真 

最新研究:寵物與新生兒健康的密切關聯

現代家庭飼養寵物的比例逐年上升,貓狗已成為人類最親密的夥伴。農業部最新(2023)的資料發現,臺灣飼養貓狗的比例上升,家犬較上一期(2021)增加 19%;家貓較上一期增加 50%。然而,許多新手父母常擔心,飼養貓狗可能會影響新生兒的健康,像是引發呼吸道過敏等疾病,但近期的科學研究提供了相對令人安心的解答。 

最新研究指出,飼養貓狗,可能更能減少新生兒感染呼吸道疾病的機率。 圖/envato

科學家發現,飼養貓狗也許有益家庭中新生兒的健康。最新研究證實,家中貓狗不僅能增添樂趣,更能減少新生兒感染呼吸道疾病的機率。早在 2012 年,就有芬蘭研究團隊追蹤鄉村地區 397 名新生兒,自出生到一歲的健康狀況,發現有飼養貓狗家庭中的新生兒,較少感染呼吸道疾病。研究詳實記錄貓狗與新生兒的互動頻率,及其對新生兒健康的影響。

腸道菌相的力量:微生物如何提升寶寶免疫力

今(2024)年聖路易華盛頓大學兒科團隊發表在《Pediatrics》的最新研究,分析新生兒的就醫紀錄,並透過對父母的訪談,探討「親餵母乳」、「家中飼養貓狗」、「新生兒醫療需求」三者間的關係。研究發現,親餵母乳且家中有飼養貓狗的新生兒,出生六個月內對醫療服務的需求相對較低。華盛頓大學團隊推測,這可能是貓狗身上的微生物 ,增加了環境中微生物多樣性,並影響新生兒的免疫力。 

環境中微生物多樣性,與新生兒免疫力的關係為何?至今仍是未解的問題,但根據現有的研究,這很可能與新生兒體內「腸道菌相」的差異有關。「腸道菌相」是胃腸道中的微生物群落,由細菌、病毒和真菌組成,它們在我們的免疫系統發展中扮演了重要角色,特別是在生命的早期階段,對腸道的健康和功能有著深遠的影響。

-----廣告,請繼續往下閱讀-----

為何養狗的新生兒感染率更低?

2023 年的一項研究,進一步探討環境中微生物多樣性與新生兒免疫力之間的關係,揭示腸道菌相的多樣性在在影響了新生兒的健康。研究顯示,家中飼養狗的新生兒,其腸道中的梭桿菌、科林氏菌和瘤胃球菌等菌群明顯較多,這些菌種的豐富性有助於免疫系統的發育,也可能有助於減少新生兒過敏與氣喘的風險。

有趣的是,這份研究也提到,對於喝配方奶的新生兒而言,其腸道菌相的組成與養狗有關,「與狗接觸」可能成為他們獲取環境微生物的替代途徑,補充因缺乏母乳餵養而缺少的微生物,從而幫助免疫系統的發展。

小孩與狗的接觸,反而可能成為獲取環境微生物的途徑。 圖/envato

目前研究雖無法直接證實接觸貓狗可以增強免疫力,但可以確定的是,接觸貓狗的小孩,腸道內的微生物多樣性高,也比較不容易生病,新手父母可以不用太擔心養狗對小孩發育的影響。同時,與狗接觸還能改變嬰兒腸道中的微生物組成,這或許有助於減少呼吸道疾病的發生風險。

資料來源: 

  1. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=9418
  2. https://publications.aap.org/pediatrics/article/130/2/211/29895/Respiratory-Tra ct-Illnesses-During-the-First-Year
  3. https://www.nature.com/articles/s41390-024-03200-9
  4. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cea.14303
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
2

文字

分享

0
1
2
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

-----廣告,請繼續往下閱讀-----

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

-----廣告,請繼續往下閱讀-----

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

-----廣告,請繼續往下閱讀-----

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

-----廣告,請繼續往下閱讀-----

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。