Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

墓仔埔小派對:那些在墓碑上生活的小東西們(*゚∀゚*)

MiTalk
・2019/02/13 ・1936字 ・閱讀時間約 4 分鐘 ・SR值 503 ・六年級

陳俊堯
慈濟大學生命科學系 助理教授

 

 

Life after death,死亡國度現生機

Live after death 是英倫重金屬名團 Iron Maiden 在 1985 年發行的現場錄音。這張專輯的封面是樂團吉祥物乾屍 Eddie 從墳墓裡復活,背後是自己大大的墓碑。假鬼假怪的封面加上高速厚實的金屬,當年血氣方剛的我愛死這一味了,還在校慶時把專輯封面拿去當班上鬼屋的海報。三十多年過去,Iron Maiden 依然以高能量金屬在樂壇走跳,只是我已經退化為坐辦公桌的中年大叔,抱著 bass 想念已逝的年少輕狂。

不過,在 Science 雜誌上這篇以 Life after death 為題目的報導,還是馬上抓住了我的注意。雖然內容不是談 Iron Maiden 的音樂,但卻是個極為有趣的研究。Eddie 從石棺裡死而復生,而這篇研究裡談的,是在死人墓地裡繁衍生息的微生物。好奇妙的棲地選擇!

這篇研究看的是長在墓碑上的微生物。其實想想,以墓碑當做研究題材真是個聰明的選擇。首先墓碑是石頭,可以用來研究在石頭上生長的微生物。這環境不太優良,所以沒有高到嚇死人的生物多樣性要擔心。墓碑容易找,而且全球都有分佈,要做各個地理區的比較不成問題。墓碑上記載的時間,就是一塊全新石板被放在當地開始進行微生物生長實驗的時間。而且墓碑還有各種材質,同個墓園裡還找得到各種不同材質的墓碑。做野外實驗最怕樣點碰到人為干擾,但是墓園裡清淨得很,也不用擔心有人想把墓園填平去做別的用途。這真是個絶佳的研究主題。

大膽能吃嗎?墓碑細菌群的養分哪裡來?

墓碑絶對不是個好環境。這不是說墓園很可怕,而是石頭上沒養份又沒水,太陽直射時就得忍受沒辦法逃離的紫外光加高溫。讓我們來看看到底是什麼樣的細菌,有本事住在墓碑上。

-----廣告,請繼續往下閱讀-----

這個研究請採樣志工帶著剛拆封的牙刷,在墓碑上把 100 平方公分範圍裡的東西刷下來,總共收集了來自美國、西班牙、哥倫比亞、丹麥、比利時等地的 149 個樣本,送回實驗室分析。在經過 DNA 萃取之後,進行後續微生物組成判讀。

在這些墓碑上,有 33% 的序列來自 Proteobacteria,其中包括分解能力很好的 Sphingomonadales 群細菌。有 15% 是能行光合作用的 Cyanobacteria,在照得到大量陽光的地方看到它們蠻合理的。其餘序列主要來自耐命的 Bacteroidetes(14%) 和 Actinobacteria(13%),以及在貧瘠的養份狀況下能存活的 Acidobacteria(6%)。以抗紫外線能力聞名的 Deinococcales 數量不少,還有很多有固氮潛力的 Frankiales 存在。在真核生物方面,真菌佔了 47%,綠藻佔了 33%,這些系列有不少來自真菌和綠藻共生而成的地衣,跟我們平常看到的石頭表面差不多。

研究團隊蒐集來自各國各地墓碑,總共有149個樣本。圖/pixabay

一方墓養一方菌?石材造就菌種大不同

那在這 149 個樣本上出現的微生物像不像呢?他們發現不同地區的墓碑上面長了不一樣的微生物,推測微生物組成會跟當地的氣候(像是溫度濕度)有關。這些墓碑主要石材是石灰岩和花崗岩,而不同的石材上面出現的微生物組成不同,這個差異比不同地點造成的影響還大。

為什麼材質不同會有這麼大的影響呢?他們比較了這些菌種的生理特性,發現花崗岩上的菌種比較耐酸,可能是因為石灰岩的碳酸鈣成分維持了中性和弱鹼性的環境。而從總基因體 (metagenome) 定序結果也發現,花崗岩墓碑上的菌群有比較多抗酸基因,而石灰岩墓碑上的菌群有比較多光合作用相關及抗紫外線的基因。他們還比較了墓碑的年代和墓碑的方向(影響日照強度),結果發現這兩個因素不太影響微生物相組成。沒想到在墓碑上也能找到這麼有趣的微生物生態故事。

-----廣告,請繼續往下閱讀-----
© Copyright Des Blenkinsopp and licensed

看到這裡,你應該有個疑問:這研究很有趣,但是這個研究結果有什麼實際用途嗎?

其實有喔。這些在石頭表面的微生物會促進石材的風化,而很多古老建築和紀念碑的材質都是石頭,如果能搞清楚這些微生物到底在石頭上做了什麼,或許可以幫助我們保存這些具有歷史意義的建物。這群科學家推測,在花崗岩上的細菌設法產生大量的酸,把石頭裡的草酸溶解出來作為養分,所以必須耐酸。這些細菌的存在可能會加快石材的風化。但是在石灰岩上有碳酸根的中和效果,環境偏中性,所以有比較多光合生物生長來提供養分,跟花崗岩相比就是個完全不同的環境。這樣的研究結果,或許能提供後人做為保護古蹟時的策略參考。

  1. Ash, C. 2018. Weathering life after death. Science 360(6386), 281-2.
  2. Brewer TE, Fierer N. 2018. Tales from the tomb: the microbial ecology of exposed rock surfaces. Environ Microbiol. 20(3):958-70.

 

本文轉載自MiTalkzine,原文《在死亡國度裡找到生機》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

-----廣告,請繼續往下閱讀-----

訂閱連結:https://goo.gl/Qo59iG

-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
0

文字

分享

0
7
0
家中養貓狗,寶寶可能更健康?研究證實毛小孩有助於提升新生兒免疫力
PanSci_96
・2024/08/25 ・1454字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/林芸寬、張愷丰、張庭瑀、郭亮均、林詠真 

最新研究:寵物與新生兒健康的密切關聯

現代家庭飼養寵物的比例逐年上升,貓狗已成為人類最親密的夥伴。農業部最新(2023)的資料發現,臺灣飼養貓狗的比例上升,家犬較上一期(2021)增加 19%;家貓較上一期增加 50%。然而,許多新手父母常擔心,飼養貓狗可能會影響新生兒的健康,像是引發呼吸道過敏等疾病,但近期的科學研究提供了相對令人安心的解答。 

最新研究指出,飼養貓狗,可能更能減少新生兒感染呼吸道疾病的機率。 圖/envato

科學家發現,飼養貓狗也許有益家庭中新生兒的健康。最新研究證實,家中貓狗不僅能增添樂趣,更能減少新生兒感染呼吸道疾病的機率。早在 2012 年,就有芬蘭研究團隊追蹤鄉村地區 397 名新生兒,自出生到一歲的健康狀況,發現有飼養貓狗家庭中的新生兒,較少感染呼吸道疾病。研究詳實記錄貓狗與新生兒的互動頻率,及其對新生兒健康的影響。

腸道菌相的力量:微生物如何提升寶寶免疫力

今(2024)年聖路易華盛頓大學兒科團隊發表在《Pediatrics》的最新研究,分析新生兒的就醫紀錄,並透過對父母的訪談,探討「親餵母乳」、「家中飼養貓狗」、「新生兒醫療需求」三者間的關係。研究發現,親餵母乳且家中有飼養貓狗的新生兒,出生六個月內對醫療服務的需求相對較低。華盛頓大學團隊推測,這可能是貓狗身上的微生物 ,增加了環境中微生物多樣性,並影響新生兒的免疫力。 

環境中微生物多樣性,與新生兒免疫力的關係為何?至今仍是未解的問題,但根據現有的研究,這很可能與新生兒體內「腸道菌相」的差異有關。「腸道菌相」是胃腸道中的微生物群落,由細菌、病毒和真菌組成,它們在我們的免疫系統發展中扮演了重要角色,特別是在生命的早期階段,對腸道的健康和功能有著深遠的影響。

-----廣告,請繼續往下閱讀-----

為何養狗的新生兒感染率更低?

2023 年的一項研究,進一步探討環境中微生物多樣性與新生兒免疫力之間的關係,揭示腸道菌相的多樣性在在影響了新生兒的健康。研究顯示,家中飼養狗的新生兒,其腸道中的梭桿菌、科林氏菌和瘤胃球菌等菌群明顯較多,這些菌種的豐富性有助於免疫系統的發育,也可能有助於減少新生兒過敏與氣喘的風險。

有趣的是,這份研究也提到,對於喝配方奶的新生兒而言,其腸道菌相的組成與養狗有關,「與狗接觸」可能成為他們獲取環境微生物的替代途徑,補充因缺乏母乳餵養而缺少的微生物,從而幫助免疫系統的發展。

小孩與狗的接觸,反而可能成為獲取環境微生物的途徑。 圖/envato

目前研究雖無法直接證實接觸貓狗可以增強免疫力,但可以確定的是,接觸貓狗的小孩,腸道內的微生物多樣性高,也比較不容易生病,新手父母可以不用太擔心養狗對小孩發育的影響。同時,與狗接觸還能改變嬰兒腸道中的微生物組成,這或許有助於減少呼吸道疾病的發生風險。

資料來源: 

  1. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=9418
  2. https://publications.aap.org/pediatrics/article/130/2/211/29895/Respiratory-Tra ct-Illnesses-During-the-First-Year
  3. https://www.nature.com/articles/s41390-024-03200-9
  4. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cea.14303
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
2

文字

分享

0
1
2
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

-----廣告,請繼續往下閱讀-----

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

-----廣告,請繼續往下閱讀-----

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

-----廣告,請繼續往下閱讀-----

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

-----廣告,請繼續往下閱讀-----

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。