0

1
2

文字

分享

0
1
2

還在慢慢判定菌種?讓微生物鑑定儀幫你一把!

MiTalk
・2019/03/28 ・2932字 ・閱讀時間約 6 分鐘 ・SR值 578 ・九年級
  • 施朝仁/財團法人食品工業發展研究所/生物資源保存及研究中心研究員

「我是誰?」微生物百百款,要如何鑑定?

對所有微生物研究的從業人員而言,無論是在學界、業界抑或是醫界,精確的微生物身份判定或鑑定,一直都是最重要的事情。

在學界,正確的菌種鑑定關係著研究生能不能順利畢業、教授的論文能不能發表;在業界,微生物產品中菌的正確性則關係著普羅大眾的健康與權益;在醫界,精確的菌種鑑別,更是影響醫生能否正確下藥,是攸關生死的重大任務。

傳統微生物的鑑定方法建立於形態觀察生理生化反應的基礎上。

形態觀察不外乎菌長的圓還是扁?長還是短?有無鞭毛?會不會產生內孢子?革蘭氏染色是紅還是藍?菌落形態是濕潤隆起或是乾扁皺縮等等。生理反應要看菌的厭氧性、生長溫度、生長酸鹼值、耐鹽程度等。生化反應則是看對碳源的利用、碳水化合物的氧化或發酵、酵素反應等等。然而,這些檢測所謂的表現型特性 (phenotype) 的觀察或試驗,往往費時且耗工,甚至不一定精確。

傳統微生物的鑑定方法建立於形態觀察及生理生化反應的基礎上。圖/pixabay

時代在走,進步要有:微生物鑑定儀歷代演進

因應著科研人員對 「快速」、「可靠」 的渴望與需求,微生物鑑定平台也跟著快速演進中,更快、更準的套組與儀器不斷地推陳出新。以生化反應偵測為例,Biomerieux 公司在 1970 年代推出 的 API ® 鑑定產品堪稱全球最早開發的手工微生物鑑定系統。

這套系統將繁複的零散生化試劑融合成套裝式組合,曾被視為微生物領域中的黃金標準鑑定法,被廣泛運用在各領域當中,整個系統大約涵蓋 600 多種菌株,所需的鑑定時間只要 18-72 小時 。

然而,他畢竟還是 『手工套組』,操作時的試劑添加、結果判讀都還是得自己來。

API® 鑑定系統。圖/作者提供

於是另有廠商推出了半自動的鑑定系統,如 BiOLOG 公司推出的 MicroStation 微生物菌種鑑定系統 ,只要手動添加菌液到 96 孔樣本盤,反應結果就交由機器判讀、比對。這套系統可鑑定的菌株範圍更廣,多達 2500 種。

BiOLOG MicroStation 微生物菌種鑑定系統。圖/作者提供

有了半自動系統後,當然就會有廠商研發全自動系統,Biomerieux 公司繼 API ® 系統後,再接再厲推出全自動微生物分析系統 Vitek 2 Compact,強調只要備妥菌液,機器就可以自動將菌液吸入測試卡內,在含有不同試劑的小反應槽裡進行反應,腸內桿菌最快 2-6 小時即可判定身份。

Vitek 2 微生物鑑定系統。圖/作者提供

上述這些鑑定方式,都是根據微生物的表現型來進行判定,然而隨著分子生物技術的快速進步,基於微生物基因型的分類方法發展得如火如荼。不管是利用細菌的 16S RNA 基因序列,或是真菌的 18S RNA 基因序列,只要能取得目標微生物的 DNA,經過簡單的聚合酶連鎖反應 (PCR) 及定序反應就能獲得菌種的 DNA 序列。

也因此,線上基因序列資料庫的資料正以每日數以萬計的數量快速累積中。根據這些序列,生物資訊專家可快速的將各個微生物樣品進行比對分類,甚至畫出他們的系統演化樹圖。微生物學家只要將手上未知菌種的 16S 或18S rRNA 基因的序列與資料庫進行比對,很快地就能得到最接近的菌名,而且多數菌種的身份判定能精確到連同種不同品系都鑑定得出來。於是,現在的微生物從業人員,遇到未知菌株,第一個反應就是定序。至此,微生物鑑定平台正式進入了基因型的時代。

別再蝦等了,2小時內菌種鑑定迅速搞定

而隨著定序繼續的突飛猛進,尤其次世代定序儀的發展,更將微生物鑑定帶入另一個境地:不用純菌也不用活菌就可了解全菌組成的宏觀基因體世代 (metagenomics)。

不過這不是此篇重點,表過就好。對微生物生態學家、醫院微生物檢驗人員或食品、藥廠環境監控人員而言,每天所面對的絕對不會是簡單、少數幾株菌的鑑定工作,往往一次就是數百甚至上千個未知菌落。即使你的老闆很有錢,可以很豪邁地把全部的未知菌落 (菌液) 通通送去做定序,但別忘了還要先一個一個抽 DNA、跑 PCR、跑電泳確認增幅片段等等的工作得先進行,就算實驗室裡有錢到可以將上述工作都以全自動設備代勞,「時間」仍是無法避免的成本。

解決的方法就是基質輔助雷射脫附游離飛行時間式質譜儀,以下簡稱 MALDI-TOF MS ,這項技術近年已被廣泛應用在微生物鑑定與研究上。此儀器的原理為:

將樣品與基質 (通常為有機酸) 混合,以鐳射光激發樣品,讓樣品氣化游離後,飛行至偵測器,系統再將樣品中所有蛋白質、胜肽、代謝物等依質量大小以圖譜呈現。

這就像是要分析一個班級(細胞)的學生體重(全細胞蛋白質)組成,讓學生穿上感應槍聲會強迫起跑的特定衣物(基質),並排站於起跑線(樣本盤),鳴槍(雷射激發)後起跑。學生裡體重輕的跑得快,體重重的跑得慢,裁判在終點線依抵達順序將學生排序,排列於司令台(圖譜),則可得到該班級學生體重組成(蛋白質指紋圖譜)。

MALDI-TOF MS 解析微生物的全細胞蛋白質分子量大小範圍在 2000-20000 Da 之間,此區間的蛋白質以核醣體蛋白等胞內負責持家的蛋白質為主4。核糖體蛋白在不同菌種都需要用到且需求量相當,所以不易受到外在培養條件影響,故質譜訊號有良好重複性與再現性,可作為菌種鑑別之依據。MALDI-TOF MS 設備的製造商已與德國菌種中心合作,將已知菌株的蛋白質指紋圖譜建立資料庫,利用相同物種指紋圖譜一致的特性,將未知樣本圖譜與已知圖譜比對,則可快速完成微生物身分鑑定。

MALDI-TOF MS 系統。圖/作者提供

對於一般微生物而言,其解析度已能達到 「種」 層次的鑑別,甚至是近緣物種之區分,因而被認為具有取代細菌 16S rRNA 基因定序比對之潛力1,2,3。MALDI-TOF MS 技術比對菌株細胞裡的多種蛋白質,而 16S/18S rRNA 基因的比對只用一個基因為代表。想像要區分兩個班級的特色差異,分析全班同學的體重組成,似乎比只抓班長出來比較身高體重來的宏觀一些。

利用 MALDI-TOF MS 進行微生物分類鑑別最大優勢在於時間成本的降低。只要將欲分析的菌落直接塗抹於樣本盤,覆以特定基質即可,而且每個樣品盤可同時處理 96 個樣品,上機後 2 小時內即可完成所有分析。每一個樣品點所需使用的試劑耗材花費低於百元新台幣,相較於前述的手動微生物鑑定套組-API® 與半自動-BiOLOG 或全自動鑑定系統-Vitek 2,甚至是 16S rRNA 基因序列分析,在操作上更加簡便且成本更低,因此非常適用於短時間內進行大量樣品之快速分群鑑別分析。想做菌種鑑定,你不用再苦等生化反應與定序結果了,試試 MALDI-TOF MS吧!

參考文獻

  1. Dieckmann, R. Helmuth, R. Erhard, M. and Malorny, B. 2008. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74:7767–7778.
  2. Ruiz-Moyano, S. Tao, N. Underwood, MA. and Mills, DA. 2012. Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Food Microbiol. 30:432–437.
  3. Sedo, O. Vadurova, A. Tvrzova, L. and Zdrahal, Z. 2013. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of- flight mass spectrometry profiling. Rapid Commun. Mass Spectrom. 27:2729–2736.
  4. Wieser, A, Schneider, L. and Jung, J. 2012. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 93:965–974.

 

本文轉載自MiTalkzine,原文《還在等菌種鑑定結果?試試 MALDI-TOF MS吧!

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 3 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱


0

4
0

文字

分享

0
4
0

史前人類能靠划船橫渡黑潮嗎?臺日合作航海實驗證明「可以」——東京大學綜合研究博物館教授海部陽介專訪

科技大觀園_96
・2021/10/21 ・5595字 ・閱讀時間約 11 分鐘
2019 年 7 月 9 日,一艘從臺灣出發的獨木舟,在經歷了45小時的航程後,划入「與那國島」。圖/海部陽介 提供

2019 年 7 月 9 日,一艘獨木舟划入「與那國島」,它從臺灣出發,經歷了 45 小時的航程。同樣的旅程也曾在 3 萬多年前發生嗎?這是海部陽介主導的研究計劃「跨越黑潮——復現 3 萬年前的航海」希望回答的問題。

琉球考古的疑問: 琉球人更早以前從何而來?

海部陽介任職於日本國立科學博物館(目前轉往東京大學),是非常有經驗的古人類學專家,除了日本國內的舊石器時代遺址外,他也研究亞洲各地的古人類化石,如印尼爪哇島的爪哇人(是一種直立人,Homo erectus ),印尼佛洛勒斯島的佛洛勒斯人( Homo floresiensis ),以及臺灣澎湖水道的澎湖原人。

乍看之下,海部陽介之前的研究主題和史前航海沒有太大關係,是什麼原因讓他投入這項最終耗時 6 年的大型跨國合作計畫呢?

海部陽介表示,契機來自他在琉球群島的考古。琉球群島中某些島嶼上,存在距今數萬年的人類遺址,而當時琉球群島皆為海島,距離最近的大陸有相當距離,非得跨越大海才能抵達。這激發了海部陽介的好奇心:古代琉球島民是怎麼抵達的?

琉球群島包含一連串島嶼,一共延綿 1,200 公里。這些島上,6 個島存在距今約 3 萬年的舊石器時代遺址,最早的距今約 35,000 年。

琉球群島包含一連串島嶼,一共延綿 1,200 公里。圖/海部陽介 提供

2016 年,海部陽介共同發表的論文,報告了沖繩島上 Sakitari Cave 的調查,這兒發現 35,000 年前人類存在的證據,還有 23,000 年前以貝殼製成的魚鉤,是已知全世界最早的魚鉤,此外,該遺址的活動跡象,一直延續到大約一萬年前;種種跡象顯示,島上的古代人懂得利用海洋與陸地資源,適應地非常不錯。

地理上,琉球群島介於臺灣與日本的九州之間,這兩地最可能是古代人移民琉球的前一站,由考古學與其他證據推論:琉球群島最早的居民來自臺灣與九州。

超過 3 萬年前的琉球人,來自臺灣?

我們所屬的物種——智人,在舊石器時代就有渡海能力。約 5 萬年前便有智人從東南亞大陸出發,通過東南亞海域的眾多島嶼,最後抵達新幾內亞與澳洲。然而,如果要從臺灣航向琉球群島,面臨的難度很可能比前往澳洲更大,這是因為臺灣與琉球之間存在非常強大的海流:黑潮,而且從臺灣岸邊無法看見某些目標島嶼。

黑潮的流向雖然也算是由南向北,卻不會把人從臺灣帶到琉球群島,只會繼續北漂。倘若不穿越黑潮,就無法登陸琉球。這也是計畫叫作「跨越黑潮——復現 3 萬年前的航海」的原因。

不過,琉球群島上,年代最早的遺址超過 3 萬年,而臺灣島上已知年代最早的遺址,卻是距今 3 萬年的長濱文化,帳面上比琉球群島還晚一點。關於這個問題,海部陽介認為,比 3 萬年更早之前,臺灣應該就已經有人居住,只是目前尚未得知他們的蹤跡。這部分仍有待臺灣考古學家的努力。

跨越黑潮,屬於大家的實驗!

憑藉舊石器時代的技術,有可能從臺灣航向琉球嗎?既然有疑問,那就來試試看吧!

航海實驗的計畫從 2013 年開始,雖然一開始缺乏資源,但之後逐漸獲得足夠的贊助,包括來自日本民間的支持。以及臺灣的合作對象,主要是台東的國立臺灣史前文化博物館,林志興副館長等人,另外還有其他的合作者,像是中研院的臧振華、黃智慧等人,國立臺灣大學海洋研究所等單位和個人。

支持計畫的贊助者除了政府預算和大企業,也有民眾捐款。海部陽介一開始就希望大眾參與,因此重視向公眾宣傳;他強調,這不是單純的科學研究計畫,而是屬於大家的實驗。

一個航海實驗,需要許多領域的專家參與,考古學家、古生物學家、海洋學家、民族學家、植物學家等專業自是不可或缺,此外更重要的還有製作船隻的工匠,以及上陣划船的專業人員,畢竟研究人員不懂製作船隻,也不擅於划船。所幸願意幫忙的人不少,透過人脈介紹,海部陽介一位一位找到合適的成員。

大海茫茫:模擬舊石器時代航海

從 2013 到 2019 年,「跨越黑潮」計畫在漫長六年中,進行了哪些研究呢?主要有三批不同材料的航海實驗,還有數學模擬、浮標漂流分析等相關研究。這些都有助於我們了解史前航海的各種面向。

船員方面,由於預設目標是成功移民,在新天地建立族群,那麼船員中不只男生,也應該有女生。因此每次航海實驗,船員組成都是男女混合。

既然研究對象是舊石器時代的航海,最基本的原則是,只能用舊石器時代有的材料和科技造船與航行。材料只能選擇當地有可能存在的植物,主要以石製工具造船,不可以用金屬工具或金屬材料,也不能用 3 萬年前應該不存在的釘子,更不用說更先進的舵、帆科技。

三批航行實驗中,團隊第一次使用「草船」,第二次改用「竹筏」,第三次則換成「獨木舟」。這三者中,草船最容易製作,但是結構最脆弱;竹筏難度增加,船體較為堅強;獨木舟生產難度最高,也最堅固。先後三部分實驗,竹筏部分於 2019 年最先發表論文,草船部分今年(2021 年)發表,獨木舟部分則仍在醞釀。

三批航行實驗中,團隊第一次使用「草船」是容易製作的,但是結構最脆弱。圖/海部陽介 提供

漸漸與海溶為一體:草船的失敗經驗

大海是活的!計畫永遠趕不上變化,事前做再多準備,出海後進入瞬息萬變的自然環境,也只能靠船員自己探索出路。局外人看地圖,就是這樣划過去;可是當事人划著小船,面對茫茫大海,主觀感受肯定不是這麼回事。如今的實驗即使不成,船員還有後援;3 萬年前一旦失敗,幾乎是死路一條。

事後證實穿越黑潮的任務,只有獨木舟成功達到目標,但是了解草船、竹筏為什麼會失敗,也是非常寶貴的知識。

琉球群島南端的與那國島離臺灣最近,距離只有 100 多公里,所以被選為關鍵的實驗地點。於 2016 年進行的草船實驗,以蘆葦編成束(reed-bundle)造船,預計由與那國島航向西表島。與那國島到西表島的距離是 80 多公里,而且只限於琉球群島內部,不需要穿越黑潮;然而,兩艘草船都失敗了。

琉球群島南端的與那國島,距離台灣僅 100 多公里,所以被選為關鍵的實驗地點。圖/海部陽介 提供

海部陽介表示,蘆葦草船浮在水上沒有問題,而且算是平穩,但是在海流中要讓草船前進不太容易;更嚴重的問題是,草船出海後會逐漸吸水,愈划愈費勁,這使得草船無法勝任跨海遠洋航行的載具。

另外團隊也觀察到,耗費物力與人力製作的草船,只要一次遠航,船體就會崩解到無法再次使用。也就是說只能單程使用,不只無法回程、也無法繼續航向下一地點。而如果連與那國島到西表島都無法航行,臺灣到與那國島距離更遠,黑潮海流更強許多,靠著草船,想必是毫無機會。

耗費物力與人力製作的草船,只要一次遠航,船體就會崩解到無法再次使用。圖/海部陽介 提供

就是上不了岸:竹筏的失敗經驗

了解草船的缺陷以後,海部陽介將目標轉向竹筏,並與臺灣方大量合作。阿美族的造船師 Laway 以臺灣的竹子為材料,用古法製作竹筏。竹筏實驗預計由台東航向綠島,距離只有 33 公里,不過兩地之間有黑潮通過。

阿美族的造船師 Laway (左)以臺灣的竹子為材料,用古法製作竹筏。圖/海部陽介 提供

地圖上直線距離 33 公里,實際划起來當然不是。2017 年完成竹筏出海後,船員們賣力划了 14 小時,累積 80 公里航程,可是仍在距離綠島 10 公里遠處轉圈,一直無法上岸,最終只好宣告放棄。2018 年第二次竹筏實驗,同樣以失敗告終。

連 30 多公里遠的綠島都過不去,超過 100 公里的與那國島恐怕希望更渺茫。另外也發現問題:製造竹筏時產生的裂縫,會減弱船體強度,光憑舊石器時代的技術很難解決。

竹筏實驗告訴我們:穿越黑潮的難度,或許不是竹製船體能夠克服。

2018 年第二次竹筏實驗,同樣以失敗告終。圖/海部陽介 提供

航向琉球,獨木舟成功!

累積草船與竹筏的失敗經驗後,海部陽介繼續測試獨木舟。舊石器時代的獨木舟應該是由大樹一體成型製成,但是由於森林保育,臺灣和日本都很難取得木頭。所幸一番折騰後,還是從日本獲得一棵樹,順利製成一艘獨木舟。

第三批實驗的船體獨木舟,由日本當地製作後再運回台灣進行實驗。圖/海部陽介 提供

2019 年的獨木舟實驗,預計由台東航向與那國島,距離 200 多公里,而且需要跨越黑潮,難度超越之前的實驗 。不過獨木舟也是更加優秀的遠航載具,它的船體更堅固,速度更快,但是在海上比較不穩,需要更高超的操縱技術。

經驗老道的 5 位划船員,經歷 45 小時,220 多公里的航程後,最終成功在與那國島登陸。除了日本、臺灣一般媒體大幅報導外,科學媒體《科學》(Science)也有新聞專門介紹。這項實驗證實:只靠舊石器時代的技術與材料,航行 200 公里又跨越黑潮是可行的!

經驗老道的 5 位划船員,經歷220 多公里的航程後,最終成功在與那國島登陸。圖/海部陽介 提供

獨木舟這部分研究,海部陽介預計將結合古代海流模擬,寫成架構更全面的論文。海部陽介表示,這些實驗讓他體驗到,跨海航行除了科技以外,「人」更是關鍵!面對一望無際的大海,船員們勢必需要高強的技術、知識、深刻的經驗,以及團隊合作的精神,否則無法克服難關,成功上岸。

和舊石器時代相比,我們的日常科技進步太多,但是這就表示現代人比較聰明嗎?恐怕未必如此。絕大部份人只是出生在自己的時代,接受此前累積的知識,按照那個時代的方式生活。不同時空的人,各自面對不一樣的問題,說到解決問題的能力,古代人肯定不會遜於現代人。

總之海部陽介覺得:舊石器時代的人真的很厲害!

是有意識主動渡海,還是意外北漂?

有些人會有這樣的困惑:現代的環境、氣候和 3 萬年前明顯有別, 現在進行的航海實驗,能反映古代的狀況嗎?事實上,即使是數萬年前非常寒冷的冰河時期,從臺灣到琉球群島的距離也差不多;而黑潮等附近的海流,也僅有不多差異。所以海部陽介的一系列實驗,的確可以推論古代的情形。

三種船體的渡海實驗指出,若要從臺灣前往琉球群島,草船毫無機會,竹筏的機率非常低,獨木舟最有可能成功。人類若想主動渡海,有辦法辦到。但是有沒有可能,移民琉球並非自願,而是意外的漂流呢?

此一問題可以考慮兩個因素:人數與機率。

  1. 需要多少人移民,才能形成足以繁衍延續的族群?海部陽介和一隊日本學者合作,數學模擬得到的結論是:最少需要 5 女 5 男,否則就會滅團。這只是估計的最低人數,不同的出生率、死亡率都會影響;實際上所需的人數,應該比 10 人更多。
  2. 人類被自然力量成功送往琉球群島的機率多少?海部陽介和一隊臺灣學者合作,分析一批難得的浮標紀錄。從 1989 年到 2017  年,在臺灣釋放的 122 個浮標,以及從呂宋釋放的 16 個,最終只有 4 個,在洶湧波濤或是颱風影響下,於十多天後抵達琉球群島某島的 20 公里內。

由此可見,隨波逐流之下,浮標通過黑潮,從臺灣抵達琉球島嶼的機率很小。而人類又比浮標更脆弱,沒辦法生存太多天。因此人類要從臺灣漂流到琉球,成功率非常低。在這種狀況下,還要累積到移民足夠延續的人數,可謂非常非常不可能。

重現史前人與人之間的連結,也反思 3 萬年後的現在

海部陽介投入史前航海研究這麼多年來,得到的主要結論為:琉球群島的史前居民假如源自臺灣,幾乎不可能是隨機漂流,而是有意識的渡海遠航,獨木舟則是最可能成功的載具。

「跨越黑潮——復現 3 萬年前的航海」是一項很有雄心的計畫,在日本、臺灣,與其他國家,都有許多不同領域的參與者,海部陽介對他們非常感謝,也特別表示,這些合作大幅增進他對臺灣的認識。

海部陽介語重心長地指出,現代人群分成不同國家,常有人與人間的衝突,不過各地仍也有不少交流,史前時代便是如此。考古學家的工作,讓我們認識過往人與人之間的連結,讓我們面對當下局面、思考議題時,可以拓展想法 。

「跨越黑潮」計畫有許多不同領域的參與者,海部陽介(右1)對他們非常感謝。圖/海部陽介 提供

參考文獻

科技大觀園_96
1 篇文章 ・ 3 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策