0

0
1

文字

分享

0
0
1

心臟、尾鰭與脊椎,那些以斑馬魚進行的「再生」研究

研之有物│中央研究院_96
・2019/02/23 ・2997字 ・閱讀時間約 6 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|王怡蓁、美術編輯|張語辰

渦蟲切不盡,春風吹又生

2016 年中研院的院區開放,陳振輝進行一場「如何跟金鋼狼一樣再生複雜組織?」科普演講,有個國小小朋友問:「渦蟲最多可以切成幾段?」當開始問這個問題,就離了解再生機制更近一步。而若能了解越多,就離增強人類組織與器官再生能力更近一步。

本文專訪中研院細胞與個體生物學研究所的陳振輝助研究員,了解為何及如何透過「斑馬魚」研究「再生」。
攝影│張語辰

擁有再生能力,也許能一圓人類的長生不老夢

長生不老的確是有可能的,像是渦蟲在實驗室生存條件充足的情況下,會將自己的身體拉成兩段,各自再生成完整的個體。這種可以極端再生的生物,存活的時間似乎沒有限制。

一百年前,美國諾貝爾獎科學家摩爾根( Thomas Hunt Morgan )曾經將渦蟲切成 279 塊,發現這 279 塊渦蟲仍然可以再生回來。但若以最小的單位,也就是「一顆細胞」能不能再生為「一隻渦蟲」呢?這個答案也是有機會。

-----廣告,請繼續往下閱讀-----

若將渦蟲分解成單細胞(幹細胞),只憑這個幹細胞無法再生成一隻渦蟲。但若是將這個幹細胞移植到被放射線照過的渦蟲身上,原本被放射線照過的渦蟲會在兩週左右死亡,但植入幹細胞的渦蟲卻可以重新恢復再生能力,這好像是讓殭屍復活一樣!(Wagner et al., 2011)

再生的最小單位似乎可以說是幹細胞,但這是在有限制的條件下,且環境也相當重要。

為什麼會想研究「再生」?

十多年前當我在陽明大學生化所讀碩班時,研究的是中草藥抗氧化物的純化,當時對免疫學感興趣,在中研院擔任助理的階段、還有剛到美國時也待在免疫學研究的實驗室。在達特茅斯學院遺傳所讀博士班二年級時,才轉換到「生理時鐘」的研究。

當時以「麵包黴菌」來觀察光反應對生理時鐘的影響,黴菌為了適應光線會產生「胡蘿蔔素」,但產生到一定的量便會停止,從黴菌感受光的調控機制可以在分子層面上去解釋其它生物對光的適應性,這系列的實驗非常有意思。

黴菌跟老鼠與人類一樣擁有生理時鐘,也會受到光反應調控,然而,在老鼠與人類身上解釋光反應對生理時鐘的影響十分複雜,用黴菌來觀察較為容易。

-----廣告,請繼續往下閱讀-----

在博士班畢業的前一年,大部分的博士生會轉換研究題目來增強自己的學術能力,那時我問自己:「什麼是我一輩子做了會覺得有趣的事?」

偶然看到幾篇有關「渦蟲再生」的研究論文,當時的我覺得這個主題很酷,於是申請了幾個研究再生機制的實驗室,後來在美國杜克大學醫學院的細胞生物學實驗室,與教授 Ken Poss 相談甚歡,因此加入了這個以斑馬魚研究再生的團隊。這個實驗室從我剛加入時大概有七、八個人,現在已經有二十人,顯示學界對於再生研究有濃厚興趣。

從斑馬魚可以得知哪些「再生」訊息?

在 Ken Poss 教授的實驗室中,目前三分之二的人都以斑馬魚研究「心臟再生」。根據衛福部的統計指出,台灣的第二大死因是心臟病,而美國則位居第一名,因此美國非常重視心臟的再生研究,也投入大量的資源支持。另外,用斑馬魚研究「脊椎再生」也是熱門的項目。

我自己是研究斑馬魚的「尾鰭再生」,也許有人會覺得尾鰭是魚類特有的器官,但尾鰭再生的研究,也許有機會應用於生物的斷肢再生。

紅線是斑馬魚尾鰭被截斷的部位,一般的斑馬魚會再生尾鰭(左圖),但基因突變的班馬魚會失去再生能力(右圖)。陳振輝團隊藉由誘發基因突變,找出是哪個基因出問題?也許就是觸發再生機制的關鍵。
圖片來源│Chen et al., (2015). Transient laminin beta 1a induction defines the wound epidermis during zebrafish fin regeneration. PLoS Genet 11 (8), e1005437.

現在在我們的實驗室,主要探索斑馬魚「表皮細胞」如何分工合作進行再生,下一步也想觀察斑馬魚尾鰭中其它細胞的運作,比如說若把尾鰭的「神經細胞」截斷,再生將無法進行。因此,了解各種細胞在再生過程中扮演的角色,是了解再生反應重要的方向。

從像斑馬魚這種「模式動物」去提出問題,需植基於許多理論基礎,要建立模型以及問對問題,這個過程的確很難。

-----廣告,請繼續往下閱讀-----

當時我們實驗室的老闆 Ken 是建立斑馬魚心臟再生模型的初始者,還記得 Ken 說過 一開始要說服大家,斑馬魚可以用來做心臟再生的研究,大家都很難理解。(Poss et al, 2002) 現在我覺得很幸運的是,可以站在這些巨人的肩膀上進行研究。

研究「再生」的過程,遇到哪些困難?

研究斑馬魚如何及為何再生的過程中,建立「研究工具」最花時間。

研究老鼠與果蠅的科學家非常多,因此可以共享某些研究工具,例如要是老鼠的指節可以再生,利用老鼠的指節做為再生研究,科學家就可以運用前人建立好的研究工具來問問題。然而,在斑馬魚的成魚研究上,大部分的研究工具就需要自己建立,例如斑馬魚表皮細胞的研究工具 Skinbow 多顏色標誌技術,因此實驗時間就會拉得很長。

斑馬魚的生長週期是三個月,但建立新的基因轉殖魚作為研究工具的時間,一般就要花上六個月到九個月。

看起來很像印象派的筆觸?其實是陳振輝團隊研發的 Skinbow 多顏色標誌工具,用來研究斑馬魚修復傷口和再生複雜組織過程中,表皮細胞如何運作。
圖片來源│陳振輝實驗室網站

研究過程,會有想放棄的時候嗎?

在我讀書的年代,生命科學是明日產業,生命科學系是非常熱門的明星科系,但現在大環境的就業情況並不樂觀,學生也紛紛退卻。我的想法是,要預測明日產業是困難的,你只能問你自己興趣在哪裡,如果是真的有興趣,就會有理由和動力堅持下去。

-----廣告,請繼續往下閱讀-----

無論是我以前博士班做的黴菌生理時鐘研究,或現在進行的斑馬魚再生研究,都是從黴菌和斑馬魚這種模式生物上來回答問題。利用各種模式生物的強項,問適合的問題就可以找到答案。

再生能力這領域還很新,就像一座待探索的西部大荒野,還有好多問題可以問。

這些發現除了以研究論文呈現,也希望能與小朋友們分享,小朋友非常有創造力,也許能問出我們想不到的問題。如果學校有興趣,我們實驗室可以提供斑馬魚與如何觀察尾鰭再生的方法,讓小朋友一起動手體驗再生的科學奧妙。

現在每天一早都很期待到實驗室,看看研究有什麼進展,想知道自己設計的實驗會有什麼成果,很像「我都在做我喜歡做的事,還剛好有人給我薪水」。

工作並非一帆風順,實驗的結果不如預期其實是常態,每天都有不同的挑戰要克服。但若是能重新選擇,我還是會走上學術研究這條路。

-----廣告,請繼續往下閱讀-----
看起來彷彿藝廊的網站,每一張照片,都訴說著對再生研究的好奇與發現。
圖片來源│陳振輝實驗室網站

延伸閱讀

本文轉載自中央研究院研之有物,原文標題為:「從動物身上問對問題,就可以找到答案!」陳振輝談斑馬魚的超強再生力,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3617 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
208 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
16 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
左看右看 貓頭鷹、寶石竟是斑馬魚
顯微觀點_96
・2024/03/28 ・1870字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

乍看以為是寶石結晶的斑馬魚肌纖維、如竹林屏風般的斑馬魚尾鰭,到似貓頭鷹的斑馬魚鏡像圖以及充滿生命力大樹般的斑馬魚神經樹突,每一幅影像都以斑馬魚為題,卻拍出不同的趣味。

本次 Taiwan 顯微攝影競賽八名優選獎中,就有四位得獎者是中研院細胞與個體生物學研究所陳振輝老師的學生。這些拍出技術與美感兼具作品的研究者,分別為 Uday Kumar、Marco De Leon、陳樂融和劉昱秀。

其中, 來自印度的 Uday Kumar 參加第一屆顯微攝影競賽至今,年年獲獎,更榮獲首屆金獎。而他的同儕,來自菲律賓的 Marco De Leon 也因受到他的啟發參賽,於今年獲得優選。

-----廣告,請繼續往下閱讀-----

陳振輝老師實驗室主要以斑馬魚為樣本進行再生研究。他的學生們各自探索斑馬魚的不同組織或器官;有人專精於研究心臟、有人專門研究神經,有人則專門研究肌肉纖維。

Gems And Maturity Marco Pomida De Leon
Gems And Maturity Marco Pomida De Leon
生命之樹 劉昱秀

Uday Kumar 表示,由於每個人研究的方向不同,因此必須從基因工程到成長過程,各自「顧好」自己的斑馬魚。

這些攸關研究進度與實驗設計的斑馬魚,養殖在細生所地下室的魚房。數十個排列整齊畫一的魚缸,裡頭有著各式大小、不同生長階段和品系的斑馬魚。

為了能夠取卵進行基因轉殖,從養殖器皿到時間都必須加以控制。Uday Kumar 表示,除了一般魚缸外,養殖斑馬魚會再裝置一個多孔的產卵盒。晚上將公魚和母魚用隔板隔開,並保持環境黑暗,避免交配產卵。

-----廣告,請繼續往下閱讀-----

等到隔天上午將隔板拿掉,讓公魚、母魚相會,並利用光周期誘發產卵、受精後,必須將特製的產卵盒斜置,好讓受精卵下沉到魚缸底部。如此一來,也可避免斑馬魚將受精卵吃掉。

陳振輝老師實驗室專注於「多顏色細胞標誌技術」(Brainbow/Skinbow)。利用基因重組的方式,將紅、藍、綠三種不同色的螢光蛋白在個別細胞裡表現不同數量,依不同比例產生更多顏色來標誌不同細胞。

Uday Kumar 表示,要將目標基因注入細胞內,需要使用顯微注射技術,在立體顯微鏡下將注射管準確地插入受精卵中。

不過這對他來說,顯微注射已經是一件熟練到「像騎腳踏車」般簡單的事,一天注射超過 500 顆受精卵都沒問題。

-----廣告,請繼續往下閱讀-----

雖然基因轉殖對這些研究者來說已是熟能生巧的事,但要建立新的基因轉殖魚仍然要花上漫長的時間,通常需要 6 個月到一年,品系才會逐漸穩定。以 Uday Kumar 於 2021 年獲得金獎的作品來說,就是花了兩年才培育出能以正確比例呈現美麗色彩的斑馬魚。

顯微攝影的每一幅作品除了呈現出精彩美麗的影像外,背後更蘊含著每一位研究者精湛的技術以及長久累積的研究心血。

583050
細生所地下室的魚房,有著各式大小、不同生長階段和品系的斑馬魚。攝影/楊雅棠
Uday Kumar使用立體顯微鏡。攝影/楊雅棠

斑馬魚小教室

斑馬魚(Danio rerio)是常見的模式生物之一,原分布於孟加拉、印度、巴基斯坦、緬甸、尼泊爾等南亞淡水流域。其體長約 3 至 4 公分,雄魚體修長且背部呈淺橄欖黃色,雌魚體渾圓腹部較彭大;適合生長溫度為 23 至 28℃。

斑馬魚胚胎透明、發育期間短,容易觀察;且屬於脊椎動物,與人類有相似器官如心血管、神經等,加上基因組序列已解開,基因轉殖容易,種種優點使得牠成為非常適合作為遺傳研究及藥物篩選的脊椎動物模式。

查看原始文章

參考資料

  1. 顯微鏡下一抹彩虹,陳振輝,《中央研究院週報》第 1610 期
  2. 臺灣斑馬魚中心——中研院分支介紹,黃聲蘋,《中央研究院週報》第 1360 期
  3. 心臟、尾鰭與脊椎,那些以斑馬魚進行的「再生」研究
  4. 「從動物身上問對問題,就可以找到答案!」陳振輝談斑馬魚的超強再生力
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
16 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。